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A series of non-imidazole histamine H3 receptor antagonists based on the (3-phenoxypropyl)amine
motif, which is a common pharmacophore for H3 antagonists, has been identified. A preliminary SAR
study around the amine moiety has identified 8a as a potent H3 antagonist possessing a good pharmaco-
kinetic profile in the rat.
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The endogenous amine, histamine, is a ligand for four distinct
histaminergic receptor subtypes, namely the H1, H2, H3, and H4

receptors.1 H1 receptors are located in the CNS, and on skin and
smooth muscle in the airways; H2 receptors are located in the gas-
trointestinal tract. Antagonists of the H1 and H2 receptors are well-
known therapeutic agents, and have been used clinically for many
years for the treatment of allergic diseases and ulcers, respectively.
H3 receptors are located primarily in the CNS where they act as
both autoreceptors for histamine as well as heteroreceptors for
other neurotransmitters. Evidence from in vivo studies in animals
indicates that H3 receptor ligands may be useful for the treatment
of a variety of CNS-related disorders like ADHD, Alzheimer disease,
sleep disorders, and neuropathic pain.2 Additionally, given the
known role of central histamine in the control of appetite, H3

receptor ligands are also reported to be active in animal models
of obesity.2,3 The H4 receptor is located on various hematopoietic
cells and functions in chemotaxis of these cells.4 There are cur-
rently no marketed drugs that act at either the H3 or H4 receptors,
although several companies have entered clinical trials with H3

antagonists/inverse agonists for the treatment of cognition, pain,
and narcolepsy.5 Recently, positive clinical data in a small clinical
trial for narcolepsy have been reported.6

Structurally, the first generation of H3 ligands were analogs of
histamine in that they were based on a 4-substituted imidazole
motif. Typical examples of agonists and antagonists are given in
Figure 1. These compounds were useful tools in delineating some
of the pharmacology of the H3 receptor, but in general imidazole
All rights reserved.
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derivatives make poor drug candidates due to their propensity to
inhibit numerous mammalian CYP450 isozymes,7 and in the case
of a CNS drug, their poor brain penetration. Therefore, a significant
synthetic effort was undertaken in academia and industry to iden-
tify non-imidazole-derived H3 antagonists. Although the natural
product Aplysamine-1, identified by scientists at Harbor Branch
Oceanographic Institute and Schering-Plough, was known as a
weak H3 receptor ligand,8 the first real breakthrough came from
Ganellin and co-workers who identified the phenoxyalkyl amine
motif of Aplysamine-1 as a potent H3 pharmacophore (UCL 1972,
Fig. 2).9 Subsequently, a large number of groups have utilized this
pharmacophore as the basis of their own programs (Fig. 2).2a More
recently, other H3 pharmacophores have been described, but none
have been as thoroughly examined as the phenoxyalkyl amine.10,11

When examining the structures of compounds based on this
pharmacophore described in the primary and patent literature,
we were struck not only by the similarity of many of the structures
but also by the apparent promiscuity of the receptor toward moi-
eties on the phenyl ring. Simple moieties like the nitro group as
well as basic groups, fused rings, and heterocycles are all tolerated.
Based on a series of benzimidazole-substituted analogs previously
prepared in our laboratories, we decided to investigate a series of
compounds in which the phenyl ring was substituted by an N-
linked 5-fluorobenzimidazole moiety (Fig. 3).12 The results are de-
scribed herein.

The syntheses of the analogs in Tables 1 and 2 are described in
Schemes 1 and 2.13 Initially, we decided to focus on analogs incor-
porating a 2-pyridyl, thioether, or ether moiety at the 2-position of
the benzimidazole ring based on our previous experience.12 Briefly,
the benzimidazole moiety is constructed by reacting amine 1 with
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Figure 1. Examples of imidazole-derived agonists and antagonists.
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difluoronitrobenzene 2 to yield 3. Reduction of the nitro group of 3
gave compound 4, which was coupled with picolinic acid to give
amide 5. Heating 5 in acetic acid results in ring closure to give
benzimidazole 6, which was alkylated on the phenol to give key
intermediate 7. Chloride 7 was easily converted to a variety of
amines 8 utilizing parallel synthesis techniques.

The synthesis of analogs incorporating either an ether or a thi-
oether in the 2-position of the benzimidazole moiety is given in
Scheme 2.

Treatment of phenol 9 with base and 1-bromo-3-chloropropane
followed by displacement of the chlorine with piperidine gave 11
in excellent yield for the two steps. Reduction of the nitro group
of 11 with Ra-Ni and reaction with 2 gave compound 12. Reduction
of the nitro group, again with Ra-Ni, gave the amine which was
reacted with either thiocarbonyl diimidazole (X@S) or carbonyl
diimidazole (X@O) to give 14a and 14b. Treatment of 14a or 14b
with base and an alkyl halide gave the ethers 15a and 15b. Human
H3 binding data for analogs 8, 14, and 15 are given in
Tables 1 and 2.14



Table 1
Human H3 binding data for benzimidazoles 814

Benzimidazole Amine H3 Ki
a (nM)

8a N 1.2

8b

N

CH3H3C
11

8c NO 3.4

8d

N

2.0

8e NH3CN 13

8f
N

1.2

8g
N

5.1

8h

N

N CH3

H3C

4.8

8i
N

S
20

8j
N

5.3

8k N
N

H3C
3.6

8l N 107

8m

N

713

8n NHO 1.8

8o N
O

O

H3C
16

8p N
H2N

O
20

8q
NH2N

O
11

8r NHH3C 101

a H3 binding Ki values are the average of at least two independent
determinations.

Table 2
H3 binding data for 14 and 1514

Compound X or RX H3 Ki
a (nM)

14a O 8.7
14b S 8.0
15a SCH2CH3 2.6
15b OCH2CH3 15

a H3 binding Ki values are the average of at least two independent
determinations.
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A number of conclusions regarding the SAR of this series of
benzimidazole-derived H3 ligands can be drawn from these
data. First, five-, six-, and seven-membered monocyclic amines
give good to excellent H3 binding activity, and a second het-
eroatom is tolerated within the ring (entries 8a–k). Bulkier,
fused bi- and tricyclic amines, however, are less active (entries
8l and 8m) although some steric bulk is tolerated (8d). It is
interesting to note that a simple methylamine substituent does
not result in good binding affinity (8r). Polar substituents like
amino, hydroxyl, ester, and amide are tolerated on the pyrrol-
idine and piperidine ring (entries 8h and 8n–8q). The position
of the substituent on the ring does not appear to be critical to
the binding affinity in the case that was examined (8p
vs 8q).

The nature of the substituents on the benzimidazole moiety
does not seem to play a major role in the binding profile. Hetero-
atomic, heteroaroyl, and ether substituents are tolerated at the 2-
position of the benzimidazole ring (Table 2). For example, ana-
logs 14a and 14b, featuring either oxygen or sulfur in the 2-posi-
tion, or analogs 15a and 15b are good ligands for the H3 receptor.
Taken in aggregate, these data are consistent with the idea that
the phenoxyalkyl amine H3 pharmacophore used in this study
is, in general, very tolerant of different substituents on the phe-
nyl ring.

In addition to H3 binding activity, hERG activity was mea-
sured using a high-throughput rubidium efflux assay.15 Repre-
sentative data are given in Table 3. In general, hERG activity
as measured by this assay is quite high regardless of the nat-
ure of the amine present on the terminal position. This obser-
vation is consistent with other similar series of H3 ligands
incorporating this pharmacophore that also displays hERG
activity.2b Interestingly, introduction of polar substituents, an
approach that has frequently demonstrated a positive impact
on hERG activity, could improve the hERG profile of some
analogs in this series as well (Table 3, compounds
8h and 8n).

Because of its excellent activity at the human H3 receptor, 8a
was further profiled. Compound 8a had a Ki of 1.8 nM when
tested against the mouse H3 receptor, and its in vitro functional
activity as measured in a human cAMP assay was 0.1 nM.16 It
was a full antagonist. It did not inhibit CYP3A4 or 2D6 when
tested at concentrations up to 30 lM.17 Furthermore, 8a pos-
sessed a reasonable oral pharmacokinetic profile in a high-
throughput rat pharmacokinetic assay: AUC = 2027 h ng/mL;
Cmax = 393 ng/mL (10 mg/kg in methyl cellulose, n = 2, 0–6 h time
points).18

In conclusion, a new series of H3 ligand based on a well-known
H3 pharmacophore, the phenoxyalkyl amine, have been identified.
Many of these analogs possess excellent H3 binding affinity, but
like many analogs that incorporate this motif, they also have the
potential to interact with the hERG channel. This series also helps
to demonstrate the promiscuous nature of the receptor toward this
pharmacophore.
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Table 3
Rubidium efflux data for selected analogsa

Compound Rb efflux (%)

8a 70
8c 62
8h 26
8i 42
8l 94
8n 16
8o 49

a Compounds were tested at a concentration of 5 lg/mL.
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