Accepted Manuscript

 $Copper(I) \mbox{-} Promoted \ Trifluoromethylthiolation of \ Arenediazonium \ salts \ with \ AgSCF_3$

Changge Zheng, Yang Liu, Jianquan Hong, Shuai Huang, Wei Zhang, Yupeng Yang, Ge Fang

PII:	S0040-4039(19)30341-7
DOI:	https://doi.org/10.1016/j.tetlet.2019.04.018
Reference:	TETL 50733
To appear in:	Tetrahedron Letters
Received Date:	4 March 2019
Revised Date:	6 April 2019
Accepted Date:	9 April 2019

Please cite this article as: Zheng, C., Liu, Y., Hong, J., Huang, S., Zhang, W., Yang, Y., Fang, G., Copper(I)-Promoted Trifluoromethylthiolation of Arenediazonium salts with AgSCF₃, *Tetrahedron Letters* (2019), doi: https://doi.org/10.1016/j.tetlet.2019.04.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tetrahedron Letters

journal homepage: www.elsevier.com

Copper(I)-Promoted Trifluoromethylthiolation of Arenediazonium salts with AgSCF3

Changge Zheng^{a, *, b}, Yang Liu^a, Jianquan Hong^a, Shuai Huang^a, Wei Zhang^b, Yupeng Yang^a, Ge Fang^b

^aKey Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China

^bSchool of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang Uygur Autonomous Region, P. R. China

ARTICLE INFO * Corresponding author. Tel.: +86-510-85917763; Fax: +86-510-85917763; E-mail: cgzheng@jiangnan.edu.cn (C.-G. Zheng)

Permanent address.
 Article history:
 Received
 Received in revised form
 Accepted
 Available online

Keywords: Trifluoromethylthiolation AgSCF₃ Arenediazonium salts Sandmeyer reaction

The compound with a aryl trifluoromethyl sulfides (ArSCF₃) structural motif have recently attracted great attention as pharmaceuticals and agrochemicals.¹ Due to the strong electronwithdrawing effect and high lipophilicity, the trifluoromethylthio group (SCF₃) could enhance the metabolic stability and bioavailability of the parent molecules. Since natural compounds containing SCF₃ are uncommon, it is urgently needed to develop synthetic methodologies of trifluoromethylthio compound.² As the traditional method for introduction of SCF₃ into aromatic backbones, the chlorine-fluorine exchange reactions of trihalogenomethyl thioethers usually suffer from harmful waste and multistep synthesis under harsh reaction conditions (Scheme 1).³ Through the trifluoromethylations of sulfur-containing substrates precursors, such as thiols,⁴ thiocyanates⁵ and disulfides,⁶ these synthetic methods are limited by substrate availability and/or functional group tolerance. By the transition metal-catalyzed/mediated conversion of halogen7 or boric acid substituents,⁸ the one-step trifluoromethylthiolation have been carried out using easily stored, inexpensive and handled reagents as SCF₃ or CF₃ sources. With nucleophilic and electrophilic trifluoromethylthio reagents recently, direct C-H aromatic trifluoromethylthiolation was also developed remarkably.9 The electrophilic trifluoromethylthiolation with aryl-magnesium or lithium reagents have been exemplified employing CF₃SCl or N-SCF₃ reagents.¹⁰ The straight-forward Sandmeyer-type reaction are potential and easy-to-handle alternatives for the trifluoromethylthiolations, through arenediazonium salts from cheap and broadly available aromatic amines.11

An efficient method for trifluoromethylthiolation of arenediazonium salts has been developed in mild conditions with a stable and convenient AgSCF₃. It provides a straightforward and convenient way for the synthesis of trifluoromethylthiolated compound from diazonium salts in moderate to good yields.

2009 Elsevier Ltd. All rights reserved.

Scheme 1. Methods for aryl trifluoromethylthiolation.

Firstly reported by J. H. Clark,¹² the classical Sandmeyer-type reaction system were not suitable for the substrates of electrondonating groups, using the expensive and unstable copper(I) trifluoromethanethiolate (CuSCF₃) (Scheme 1). Through reaction system of CuSCN and inexpensive Ruppert-Prakash reagent (TMSCF₃) by Goossen,^{13, 14} aryl trifluoromethyl thioethers are exclusively formed using sodium thiocyanate (NaSCN) as a sulfur source. With the unstable Me₄NSCF₃ as the trifluoromethylthiolation reagent, the Sandmeyer-type reaction could also be carried out in the presence of CuSCN,¹⁵ even under condition of metal-free.¹⁶ Recently, the toxic and hard-to-get bis(trifluoromethyl) disulfide (CF₃S)₂ can also be employed in the straight-forward Sandmeyer-type trifluoromethylthiolation of readily available arenediazonium salts, in the presence of photocatalyst (eosin Y) by Wangelin.¹⁷ Although some important achievements have been made in Sandmeyer trifluoromethylthiolation, some drawbacks are still found in these reaction systems. For example, the trifluoromethylthiolation reagents employed in these approaches are toxic or unstable to

ANUSCRIPT CCEPTED M

Tetrahedron

storage for extended periods. Recently, Y. Yang and coworker have developed a low-cost method for the preparation of CuSCF₃ via triphenylphospine-mediated deoxygenative reduction of Langlois' reagent (CF₃SO₂Na) in the presence of CuCl.^{7h} However, the preparation procedure is somewhat complicated which must be carried out in high temperature under nitrogen atmosphere. Moreover, excessive amount of triphenylphosphine is also employed in this procedure, generating a large amount of environmentally harmful Ph₃P=O as by-product. As the relatively inexpensive, stable and easy-to-handle reagent, AgSCF₃ could form a reactive source of ¬SCF₃ in the presence of n-Bu₄NI or KI.¹⁸ Intrigued by the Sandmeyer trifluoromethylation of aromatic amines and trifluoromethylthiolation with AgSCF3,19, 20 we have been trying to develop effective approaches for metalmediated trifluoromethylthiolation of arenediazonium salts with AgSCF₃.

Table 1

Optimization of the reaction conditions.^a

		AgSCF ₃ , Cu salt, Base, Additive			SCF ₃	
F		Solvent, air, rt, 12 h			'h	
					2a	
Entry	Cu salt	[Cu] (mmol)	Base	Additive	Solvent	2a Yield (%) ^b
1	CuCl	0.01	K ₂ CO ₃	n-Bu ₄ NI	CH ₃ CN	13
2	CuBr	0.01	K ₂ CO ₃	n-Bu ₄ NI	CH ₃ CN	10
3	CuI	0.01	K ₂ CO ₃	n-Bu ₄ NI	CH ₃ CN	25
4	CuSCN	0.01	K_2CO_3	n-Bu ₄ NI	CH ₃ CN	21
5	CuBr ₂	0.01	K_2CO_3	n-Bu ₄ NI	CH ₃ CN	14
6	Cu(OAc) ₂	0.01	K_2CO_3	n-Bu ₄ NI	CH ₃ CN	20
7	Cu(OTf) ₂	0.01	K_2CO_3	n-Bu ₄ NI	CH ₃ CN	19
8	Cu(MeCN) ₄ BF ₄	0.01	K_2CO_3	n-Bu ₄ NI	CH ₃ CN	23
9	CuI	0.02	K_2CO_3	n-Bu ₄ NI	CH₃CN	32
10	CuI	0.05	K ₂ CO ₃	n-Bu ₄ NI	CH ₃ CN	53
11	CuI	0.1	K_2CO_3	n-Bu ₄ NI	CH ₃ CN	80
12	CuI	0.1	K_2CO_3	-	CH ₃ CN	82
13	CuI	0.1	Na ₂ CO ₃	-	CH ₃ CN	46
14	CuI	0.1	NaHCO ₃	-	CH ₃ CN	49
15	CuI	0.1	Cs_2CO_3		CH ₃ CN	52
16	CuI	0.1	K ₂ CO ₃	-	DMSO	59
17	CuI	0.1	K ₂ CO ₃	-	DMF	63
18	CuI	0.1	K ₂ CO ₃	-	NMP	50
19 ^c	CuI	0.1	K ₂ CO ₃	-	CH ₃ CN	78

^a Reaction conditions: **1a** (0.1 mmol), AgSCF₃ (0.15 mmol, 1.5 equiv.), copper salt, base (0.2 mmol, 2.0 equiv.), additive (0.2 mmol, 2.0 equiv). solvent (1 mL), ^b Yields were determined by ¹⁹F NMR spectroscopy based on 1a using 4,4'-difluorobiphenyl as an internal standard. ^c under N₂.

Initially, the model substrate **1a** of trifluoromethylthiolation reaction was screened to investigate the effects of different copper salts, bases, solvents, and additives (Table 1). There is only 13% yield of trifluoromethylthiolated product to be obtained, using 0.01 mmol CuCl as the catalyst. Investigating copper catalyst such as CuCl, CuBr, CuI, CuSCN, CuBr₂, Cu(OAc)₂, Cu(OTf)₂ and Cu(MeCN)₄BF₄ (entries 1–8), CuI was suggested to be best choice for the reaction with the highest yield. With increasement of the amount of CuCl, the improved significantly yield of 2a show that catalytic amounts of copper salt were insufficient to achieve high yields. Surprisingly, a slightly higher yield of 82% was achieved in the absence of n-Bu₄NI (entry 12). Several bases such as Na₂CO₃, NaHCO₃, Cs₂CO₃ and K₂CO₃ were also examined to further optimize the reaction conditions. Obviously, K₂CO₃ is most suitable for achievement of corresponding product 2a in the highest yield (entries 12-15). The influence of solvents was also investigated in such solvents as DMSO, DMF and NMP (entries 16-18)

besides CH₃CN. Furthermore, the reaction was carried out under nitrogen to gain the expected product. A slightly higher yield in air shows that the reaction proceeds can be carried through in an easy-to-handle approach. (entry 19).

Based on the optimized reaction conditions (Table 1, Entry 12), the substrate scope of oxidative trifluoromethylthiolation for arenediazonium salts was investigated as summarized in Table 2. With the electron-donating substituent in aromatic ring as aryl, alkyl, alkoxy and methylthio, the arenediazonium salt derivatives reacted smoothly to give the corresponding trifluoromethylthiolated products (2a-2i) in reasonable yields of 58-72%. The 2-naphthyl diazonium salt was also suitable for the reaction system to give product 2j in 60% yield. Examined the substrate with electron-withdrawing substituent in aromatic ring, such as halogen (1k and 1l), acetyl (1m and 1n), carbomethoxy (10 and 1p) and cyano (1q and 1r), the arenediazonium salt derivatives can tolerate this reaction system more efficiently with slightly higher yields (2k-2u, 73-92%, Table 2) than the electrondonating substituent. Comparing with aromatic substrates with in nitro substituent in ortho (2t, 89%) and meta- (2u, 90%) position, the pretty higher yield of the electron-withdrawing nitro in para (2s, 92%) position indicated that electronic effect rather than steric effects remains to be the most important influence to the reaction system. Contrary to other SCF₃ or CF₃ sources, the trifluoromethylthiolated vield of electron-deficient substrates is overall higher than the electron-rich substrates using AgSCF₃. In addition, some arenediazonium salt derivatives, bearing pyridine moiety (1v) and electron-withdrawing substituent, can be converted to the corresponding trifluoromethylthiolated products in higher yields to the reported.11-16

Table 2.

Trifluoromethylthiolation of Arenediazonium salts under the optimized reaction conditions.^{*a,b*}

^a Reaction conditions: 1a-1w (0.5 mmol), AgSCF₃ (0.75 mmol, 1.5 equiv.), CuI (0.5 mmol, 1.0 equiv.), K₂CO₃ (1.0 mmol, 2.0 equiv.), CH₃CN (5 mL), air, rt, 12 h. b Isolated yields.

Secondarily, this reaction system is feasible particularly for large-scale applications due to its irreplaceable advantages as easily available raw material, air insensitivity and mild reaction conditions. To illustrate the practical application of this transformation, the reaction was scaled up using 5 mmol of the substrate 1s. The corresponding trifluoromethylthiolated product

ACCEPTED MANUSCRIPT

2s was also obtained in isolated yield of 85% through this reaction proceeds under the optimal conditions.

To elucidate a plausible reaction mechanism, some control experiments were carried as shown in Table 3. Without copper salt in the reaction system, only 10% desired product 2a was detected. Obviously, the reactivity of metallic silver is low without copper salt. Using 1.0 equivalents of Cu(MeCN)₄BF₄ as catalyst instead of CuI, the yield of 2a was apparently declined to 40%. Added 1.0 equivalents of KI to the above reaction system, the improved yield 78% of 2a indicated that iodine anion (I-) play a significant role in this reaction system. As the previous reported,²¹ the active species [Ag(SCF₃)I]⁻ can generate through this reaction system with the stronger nucleophilicity than AgSCF₃. The result of the above investigation show further that CuSCF₃ species will generate on site in the presence of AgSCF₃ or [Ag(SCF₃)I]⁻ with copper salt.²² Added 4.0 equivalents of the radical-trapping reagent TEMPO (2,2,6,6-tetramethyl-1oxylpiperidine), the reaction was obviously suppressed to give only 8% products under the optimal conditions. It indicates that the reaction may proceed via a radical pathway. The investigations of reaction temperature suggest that the yield of product 2a decreases significantly by increase of the reaction temperature, along with the augment of the iodobenzene as main by-product (See the Supporting Information).

Table 3

Control experiments

indicit experiments.								
$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \\ \\ \end{array} } \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$								
	1a		2	a				
Entry	Cu salt	KI	TEMPO	2a Yield (%) ^c				
1^a	-	-	-	10%				
2^a	Cu(MeCN) ₄ BF ₄ (1.0)	-	-	40%				
3 <i>a</i>	Cu(MeCN) ₄ BF ₄ (1.0)	1.0	-	78%				
4^b	CuI (1.0)	-	2.0	21%				
5^b	CuI (1.0)	-	4.0	8%				

Reaction conditions: **1a** (a 0.1 mmol, 1 equiv; b 0.5 mmol, 1 equiv.), AgSCF₃ (1.5 equiv.), K₂CO₃ (2.0 equiv.), CH₃CN (5 mL), air, rt, 12 h, Cu salt, KI, and TEMPO (equiv.). ^cYield was determined by ¹⁹F NMRspectroscopy using 4,4'- diffuorobiphenyl as an internal standard.

Based on the above experimental results, a plausible mechanism was proposed about the copper(I)-promoted trifluoromethylthiolation process *via* $[Ag(SCF_3)I]^{-}$ as shown in Scheme 2. Firstly transferred a single electron (SET) to arenediazonium salts 1, Cu(I) afford aryl radicals and Cu(II) species. Then, Cu(II)SCF₃ species will generate on-site quickly through combination of Cu(II) and active species $[Ag(SCF_3)I]^{-}$ from the reaction of $AgSCF_3$ and iodine anion. The desired product **2a** can achieve by aryl radicals with Cu(II)SCF₃.

Scheme 2. Plausible mechanism.

In summary, we have developed an efficient preparation method through copper(I)-promoted trifluoromethylthiolation for the various arenediazonium salts, using a stable and inexpensive AgSCF₃ in moderate to good yields and mild reaction conditions. A preliminary mechanistic investigation suggests that this reaction process *via* a radical pathway. With the extensive reaction tolerance, mild reaction condition and the easy-to-get raw material, this method achieve a useful and practical strategy in the synthesis of aryl trifluoromethyl sulfides, for great

potential application of synthetic, medicinal, and agrochemical research.

Acknowledgments

We acknowledge the financial support for this work from the National Natural Science Foundation of China (Nos. 21562041 and 21502070) and the Fundamental Research Funds for the Central Universities.

References

- (a) X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731-764.
 (b) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513–1522;
 (c) D. C. Remy, S. F. Britcher, S. W. King, P. S. Anderson, C. A. Hunt, W. C. Randall, P. Bélanger, J. G. Atkinson, Y. Girard, C. S. Rooney, J. J. Fuentes, J. A. Totaro, J. L. Robinson, E. A. Risley, M. Williams, J. Med. Chem. 1983, 26, 974-980;
 (d) B. Manteau, S. Pazenok, J.-P. Vors, F. R. Leroux, J. Fluorine Chem. 2010, 131, 140-158;
 (e) V. N. Boiko, Beilstein J. Org. Chem. 2010, 6, 880-921;
 (f) T. Nguyen, W.-L. Chiu, X.-Y. Wang, M. O. Sattler, J. A. Love, Org. Lett. 2016, 18, 5492-5495;
 (g) P. Nikolaienko, T. Yildiz, M. Rueping, Eur. J. Org. Chem. 2016, 1091-1094.
 (a) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor, X. Liu, Chem. Soc.
- (a) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor, X. Liu, Chem. Soc. Rev., 2015, 44, 291-314;
 (b) F. Larger, Observation, Chem. Proc. 2005, 105, 827-857

(b) F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827-856;
(c) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem., Int. Ed. 2013, 52, 8214-8264;

- (d) A. Tlili, T. Billard, Angew. Chem., Int. Ed. 2013, 52, 6818-6819;
 (e) F. Toulgoat, S. Alazet, T. Billard, Eur. J. Org. Chem. 2014, 2415-2428.
- (a) E. A. Nodiff, S. Lipschutz, P. N. Craig, M. Gordon, J. Org. Chem. 1960, 25, 60-65;

(c) J. M. Kremsner, M. Rack, C. Pilger, C. O. Kappe, Tetrahedron Lett. 2009, 50, 3665-3668.

(a) C. Wakselman, M. Tordeux, J. Org. Chem. 1985, 50, 4047-4051;
(b) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 2007, 46, 754-757;

(c) A. Harsanyi, E. Dorko, A. Csapo, T. Bako, C. Peltz, J. Rabai, J. Fluorine Chem. 2011, 132, 1241;

(d) J.-J. Ma, W.-B. Yi, G.-P. Lu, C. Cai, Catal. Sci. Technol. 2016, 6, 417-421;
(e) J. J. Ma, Q. R. Liu, G. P. Lu, W. B. Yi, J. Fluorine Chem. 2017, 193,

(e) J. J. Ma, Q. K. Liu, G. P. Lu, W. B. Yi, J. Fluorine Chem. 2017, 193, 113-117.

5. (a) T. Billard, S. Large, B.R. Langlois, Tetrahedron Lett. 1997, 38, 65-68;

(b) S. Potash, S. Rozen, J. Fluor. Chem. 2014, 168, 173-176;
(c) K. Jouvin, C. Matheis, L. J. Goossen, Chem. Eur. J. 2015, 41, 14324-14327.

(d) B. Exner, B. Bayarmagnai, F. Jia, L. J. Goossen, Chem. Eur. J. 2015, 48, 17220-17223;

(e) B. Bayarmagnai, C. Matheis, K. Jouvin, L. J. Goossen, Angew. Chem. Int. Ed. 2015, 54, 5753-5756.

- (a) C. Wakselman, M. Tordeux, J.-L. Clavel, B. Langlois, J. Chem. Soc., Chem. Commun. 1991, 993-994;
 - (b) B. Quiclet-Sire, R. N. Saicic, S. Z. Zard, Tetrahedron Lett. 1996, 37, 9057-9058;
 - (c) N. Roques, J. Fluorine Chem. 2001, 107, 311-314;
 - (d) G. Blond, T. Billard, B. R. Langlois, Tetrahedron Lett. 2001, 42,
 - 2473-2475; (e) C. Pooput, M. M'edebielle, W. R. Dolbier, Org. Lett. 2004, 6, 301-303[.]
 - (f) C. Pooput, W. R. Dolbier, M. M'edebielle, J. Org. Chem. 2006, 71, 3564-3568.
- 7. (a) C. Zhang, D. A. Vicic, J. Am. Chem. Soc. 2012, 134, 183-185;
- (b) C. Zhang, W. W. Brennessel, D. A. Vicic, J. Fluor. Chem. 2012, 140, 112-115;
 - (c) Z. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. Lai, D. Kong, Y. Yuan, K.-W. Huang, Angew. Chem. Int. Ed. 2013, 52, 1548-1552;
 - (d) W. Zhong, X. Liu, Tetrahedron Lett. 2014, 55, 4909-4911;
 - (e) G. Yin, I. Kalvet, F. Schönebeck, Angew. Chem. Int. Ed. 2015, 54, 6809-6813;
 - (f) G. Yin, I. Kalvet, U. Englert, F. Schönebeck, J. Am. Chem. Soc. 2015, 137, 4164-4172;

ACCEPTED MANUSCRIP

Tetrahedron

(g) P. Saravanana, P. Anbarasana, Adv. Synth. Catal. 2015, 357, 3521-3528;

(h) Y. Yang, L. Xu, S. Yu, X. Liu, Y. Zhang, D. A. Vicic, Chem. Eur. J. 2016, 22, 858-863;

(i) I. Kalvet, Q. Guo, G. J. Tizzard, F. Schönebeck, ACS Catal. 2017, 7, 2126-2132.

- (a) C. Chen, Y. Xie, L. Chu, R.-W. Wang, X. Zhang, F.-L. Qing, Angew. Chem. Int. Ed. 2012, 51, 2492-2495;
 (b) C. Chen, L. Chu, F. Qing, J. Am. Chem. Soc. 2012, 134, 12454-
 - (b) C. Chen, E. Chu, F. Ging, J. Ani. Chem. Soc. 2012, 154, 12454-12457; (c) C. P. Zhang, D. A. Viaia, Chem. Eur. I. 2012, 7, 1756, 1758;
 - (c) C. P. Zhang, D. A. Vicic, Chem. Eur. J. 2012, 7, 1756-1758;
 - (d) X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 2013, 52, 3457-3460;
 - (e) L. Zhai, Y. Li, J. Yin, K. Jin, R. Zhang, X. Fu, C. Duan, Tetrahedron 2013, 69, 10262-10266;
 - (f) R. Pluta, P. Nikolaienko, M. Rueping, Angew. Chem. Int Ed. 2014, 53, 1650-1653;
 - (g) K. Kang, C. Xu, Q. Shen, Org. Chem. Front. 2014, 1, 294-297;
 - (h) Q. Glenadel, S. Alazet, A. Tlili, T. Billard, Chem. Eur. J. 2015, 21, 14694-14698;
 - (i) M. Zhao, X. Zhao, P. Zheng, Y. Tian, J. Fluorine Chem. 2017, 194, 73-79;
- (a) L. D. Tran, I. Popov, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18237-18240;
- (b) A. Ferry, T. Billard, E. Bacqué, B. R. Langlois, J. Fluorine Chem. 2012, 134, 160-163.
- 10. (a) F. Baert, J. Colomb, T. Billard, Angew. Chem. Int. Ed. 2012, 51, 10382-10385;
- (b) Q. Glenadel, S. Alazet, T. Billard, J. Fluorine Chem. 2015, 179, 89-95.
- 11. (a) J. Wu, Y. Gu, X. Leng, Q. Shen, Angew. Chem. Int. Ed. 2015, 54, 7648–7652;
 - (b) C. Matheis, B. Bayarmagnai, K. Jouvin, L. J. Goossen, : Org. Chem. Front., 2016, 3, 3, 949-952.
- (c) Y. Liu, X. Xu, F. Qing, Tetrahedron 2018, 74, 5827-5832;
 12. D. J. Adams, A. Goddard, J. H. Clark, D. J. Macquarrie, Chem. Commun. 2000, 987-988.
- G. Danoun, B. Bayarmagnai, M. F. Gruenberg, L. J. Goossen, Chem. Sci. 2014, 5, 1312-1316.

Graphical Abstract

Copper(I)-Promoted

Trifluoromethylthiolation of

- B. Bayarmagnai, C. Matheis, E. Risto, L. J.Goossen, Adv. Synth. Catal. 2014, 356, 2343-2348.
- 15. C. Matheis, V. Wagner, L. J. Goossen, Chem. Eur. J. 2016, 22, 79-82.
- G. Bertoli, B. Exner, M. V. Evers, K. Tschulik, L. Goossen, J. Fluorine Chem. 2018, 210, 132-136.
- D. Koziakov, M. Majek, A. Jacobi von Wangelin, Eur. J. Org. Chem. 2017, 6722-6725;
- 18. D. J. Adams, J. H. Clark, J. Org. Chem. 2000, 65, 1456-1460.
- (a) G. Teverovskiy, D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 7312-7314;
 (b) J. Xu, X. Mu, P. Chen, J. Ye, G. Liu, Org. Lett. 2014, 16, 3942-3945;
 (c) W. Wu, B. Wang, X. Ji, S. Cao, Org. Chem. Front. 2017, 4, 1299-
- 1303.
 20. (a) Danoun, G.; Bayarmagnai, B.; Grünberg, M. F.; Goossen, L. J. Angew. Chem., Int. Ed. 2013, 52, 7972;
 (b) K. Zhang, X. Xu, F. Qing, J. Org. Chem. 2015, 80, 7658.
 (c) J. Hong, G. Wang, L. Huo, Zheng, Chin. J. Chem. 2017, 35, 1761-1767.
- (a) C. Chen, X. H. Xu, B. Yang, F. Qing, Org. Lett. 2014, 16, 3372-3375;
 (b) M. Jiang, F. Zhu, H. Xiang, X. Xu, L. Deng, C. Yang, Org. Biomol. Chem. 2015, 13, 6935-6939;
 (c) J. Liu, X. Xu, Z. Chen, F. Qing, Angew. Chem. Int. Ed. 2015, 54, 897-900
- (a) M. Hu, J. Rong, W. Miao, C. Ni, Y. Han, J. Hu, Org. Lett. 2014, 16, 2030-2033;
 (b) X. Wang, Y. Zhou, G. Ji, G. Wu, M. Li, Y. Zhang, J. Wang, Eur. J.
 - (b) X. Wang, Y. Zhou, G. Ji, G. Wu, M. Li, Y. Zhang, J. Wang, Eur. J. Org. Chem. 2014, 3093-3096.

Supplementary Material

Supplementary material for this article is available online at http://dx.doi.org/10.1016/j.tetlet.

Click here to remove instruction text...

An efficient method with a stable and convenient AgSCF₃ provides an additional way for the synthesis of trifluoromethylthiolated compound with arenediazonium salts, in very mild conditions and good yield.

Leave this area blank for abstract info.

Highlights

The first example of the stable AgSCF₃ for trifluoromethylthiolation of arenediazonium salts.

An efficient method for trifluoromethylthiolation of arenediazonium salts was developed.

The mild reaction condition.

The trifluoromethylthiolated products with electron-withdrawing substituent were obtained in higher yields.

