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ABSTRACT: A highly regioselective copper-catalyzed 1,4-chloro-
and bromotrifluoromethylation of 1,3-enynes has been presented for
the first time, which affords an efficient transformation to access
halo- and CF3-containing tetrasubstituted allene derivatives with
good to excellent yield. This protocol is practical and convenient, in
which a wide range of functional groups are compatible.
Applications of this method for the gram-scale preparation and late-stage functionalization of biologically active molecules are
also demonstrated.

Owing to the high electronegativity and small atomic
radius (similar to hydrogen) of fluorine, as well as the

high dissociation energy of C−F bond, fluorine-containing
compounds are widely applied in pharmaceuticals, agro-
chemicals, nuclear imaging, and materials science.1 In
particular, the trifluoromethyl group (CF3) has gained
significant interest in drug discovery, mainly because the CF3
unit can dramatically improve the lipophilicity, metabolic
stability of lead compounds, and ability to cross the blood−
brain barrier.2 Therefore, several highly effective approaches
for the direct incorporation of a CF3 motif into organic
molecules have been developed using nucleophilic, electro-
philic, and free-radical trifluoromethylation strategies.3

Organic halogen has been identified as a versatile skeleton in
synthetic chemistry, which can be easily converted into
heteroatom functional groups (N, O, S, etc.), hydrocarbons,
alkenes, and hydrogen.4 Thus, it is of great value to construct
halogen-containing trifluoromethyl frameworks simultaneously
through a one-pot procedure. By the complementary use of
nucleophilic halide reagents and electrophilic CF3 reagents,
many elegant works have been well illustrated through a
difunctionalization strategy that allows convenient and efficient
access to the halogenated trifluoromethyl compounds.5−7 In
these reports, a variety of metal- or organocatalyzed systems
were proven to be efficient for the halotrifluoromethylation,
and their reactivity toward different multibond compounds,
such as alkenes,5 alkynes,5c,j,6 and other unsaturated com-
pounds,7 were investigated. In addition, for the terminal
alkenes or (hetero)arenes, a C(sp2)−H trifluoromethylation
may also occur.8 As a typical unsaturated compound, 1,3-
enynes were commonly used to construct valuable allenes.9 It
bears alkenyl and alkynyl residues, which could react with
electrophilic trifluoromethyl reagents independently. Thus,
when 1,3-enyne was employed as an unsaturated compound
for the halotrifluoromethylation, several potential side
reactions could occur, such as the competing premature

C(sp2)−H trifluoromethylation of the alkenyl moiety, 1,2-
difunctionalization, or 3,4-difunctionalization of the alkenyl
and alkynyl moieties, respectively (Scheme 1a). Obviously, a
significant challenge for this process is to control the reaction
regioselectivity and promote the formation of more favored
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Scheme 1. Potential Side Reactions and 1,4-
Halotrifluoromethylation of 1,3-Enynes
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1,4-difunctionalization. Given the potential issues associated
with 1,4-halotrifluoromethylation of 1,3-enynes, their slow
progress is fairly understandable and a practical strategy has
not yet been successfully established. On the other hand,
allenes are not only versatile building blocks for natural
products, drug candidates, and materials but also key synthetic
intermediates frequently found in various organic trans-
formations.9 In continuation of our research program to
develop difunctionalized fluoroalkylation,5f,10 we herein report
an unprecedented 1,4-halotrifluoromethylation of 1,3-enynes
with a nucleophilic halide reagent (SOX2) and an electrophilic
CF3 reagent. This tandem reaction facilitates the construction
of halo- and CF3-containing tetrasubstituted allene derivatives
with high regioselectivity and excellent functional-group
tolerance.
At the beginning of this study, 1,3-enyne 1a was used as a

model substrate to investigate reaction conditions (Table 1).

At first, SOCl2 was selected as the nucleophilic halide reagent,
and Togni’s reagent11 (2a) was chosen as the electrophilic CF3
source in the presence of a copper catalyst. When the reaction
was carried out in CH2Cl2 at room temperature under an argon
atmosphere for 12 h, the corresponding tetrasubstituted allene
3a was obtained in 21% yield with an almost equal amount of
byproduct 3a′ (Table 1, entry 1). Encouraged by this
preliminary result, various solvents were then investigated. It
was found that the solvent plays a crucial role in the
regioselectivity and reactivity of the reaction. Polar solvents
including DMF and DMSO only provided C(sp2)−H
trifluoromethylated product 3a′, albeit in poor yields (entries
2 and 3). In contrast, when THF or toluene was employed as
the solvent, only the expected 1,4-halotrifluoromethylation
occurred, affording 3a as the sole product in slightly increased
yields (entries 4 and 5). The yield and the regioselectivity did

not improve when the reaction was performed in CH3CN or
dioxane (entries 6−7). Interestingly, when EtOAc was
employed as the solvent, the reaction system selectively
afforded the 1,4-halotrifluoromethylated product with a higher
yield (91%), while almost no C(sp2)−H trifluoromethylation
product 3a′ was detected (entry 8). Subsequently, other
commonly used copper salts, such as CuCl2, Cu2O, and CuI,
were also examined and the expected transformation also
occurred, but no superior reactivity was realized (entries 9−
11). To our surprise, PdCl2 could also drive the expected
reaction, although a lower yield was provided (entry 12). To
our delight, when 10 mol % of catalyst loading was employed,
the desired product 3a was obtained without obvious loss of
reactivity (entry 13). Finally, a reduction in the catalyst loading
to only 1 mol % along with a shorter reaction time (1 h) led to
3a in 82% yield (entry 14).
With the optimal reaction conditions developed (Table 1,

entry 14), we next studied the scope of 1,3-enynes derived
from different alkenyl moieties for this 1,4-difunctionalized
transformation, and the results are summarized in Scheme 2.
The reaction was performed on a 0.5 mmol scale and gave the
expected product 3a in slightly increased reactivity (95%). The
alkenyl moiety containing various substituents such as fluorine,
chlorine, and bromine at the aromatic ring’s para position
worked efficiently, resulting in tetrasubstituted allenes 3b−d in
80−87% yields. The alkenyl moiety bearing a methyl or
halogen substituent at the phenyl ring’s meta position tolerated
this trifluoromethylation and were transformed into the
expected products 3e−h in 77−92% yields. Likewise, the
alkenyl moiety with a sterically hindered ortho-substituted aryl
was well tolerated with the same reaction conditions, delivering
the targeted product 3i−l in 73−98% yields. A 1,3-enyne
bearing two substituents at the phenyl ring of the alkenyl
moiety was converted into the corresponding product 3m
efficiently. When fused ring-derived 1,3-enynes 1n,o (Ar = 1-
or 2-naphthyl) were subjected to this transformation, the
desired tetrasubstituted allenes were achieved in satisfactory
yields. To further benefit from the current method, the late-
stage halotrifluoromethylation of biologically active molecules
and natural products could be realized. 1,3-Enynes incorpo-
rated with L-menthol, polyethylene glycol (PEG), and propofol
were all suitable substrates, providing the corresponding
chlorotrifluoromethylated products 3p−s with good efficiency.
Even the 1,3-enyne-derived from complex natural product
vitamin E was also a suitable substrate. The desired
tetrasubstituted allene 3t was obtained as the sole adduct in
69% yield and 3:1 diastereoselectivity.
Inspired by the above halotrifluoromethylation reactions, we

turned our attention to the unique reactivity of 1,3-enynes and
performed the extensive exploration of this 1,4-difunctionalized
protocol by employing 1,3-enynes derived from different
alkynyl moieties. As displayed in Scheme 3, a wide range of
1,3-enynes were compatible with this transformation. The
electronical nature, positional change (para or meta), and steric
hindrance (ortho) of the phenyl ring did not have many
restrictions on the reaction efficiency; the expected adducts
5a−h were generated in satisfactory yields. When aliphatic
alkynes such as propyl, cyclopropyl, tert-butyl, and n-hexyl
were included in the 1,3-enynes and subjected to the standard
conditions, the reactions conducted smoothly to deliver the
corresponding products 5i−l in 75−86% yields. Indeed, the
alkynyl moiety containing a silyl group was also a suitable
substrate for the chlorotrifluoromethylation to afford the

Table 1. Optimization of the Reaction Conditionsa

entry catalyst solvent 3ab (%) 3a′b (%)

1 Cu(OAc)2 CH2Cl2 21 23
2 Cu(OAc)2 DMF trace 22
3 Cu(OAc)2 DMSO trace 19
4 Cu(OAc)2 THF 33 trace
5 Cu(OAc)2 toluene 33 trace
6 Cu(OAc)2 CH3CN 7 8
7 Cu(OAc)2 dioxane 7 6
8 Cu(OAc)2 EtOAc 91 trace
9 CuCl2 EtOAc 88 trace
10 Cu2O EtOAc 86 trace
11 CuI EtOAc 68 trace
12 PdCl2 EtOAc 19 trace
13c Cu(OAc)2 EtOAc 87 trace
14d Cu(OAc)2 EtOAc 82 trace

aReaction conditions: 1,3-enyne 1a (0.1 mmol), Togni’s reagent 2a
(1.5 equiv), SOCl2 (1.5 equiv), catalyst (20 mol %), solvent (1.0 mL),
rt, Ar, 12 h. bYields determined by 19F NMR spectroscopy using
trifluoromethylbenzene as an internal standard. cCu(OAc)2 (10 mol
%) was used. dCu(OAc)2 (1 mol %) was used; the reaction time was
1 h.
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expected product 5m in 84% yield. Noticeably, when TMSBr
was employed as a bromine source instead of SOCl2, the
resulting brominated adduct 5n was obtained in 50% yield.
When an internal 1,3-enyne 4o was investigated, the
corresponding product 5o was obtained in 89% yield and
good regioselectivity. Finally, the structure of trifluoromethy-
lated tetrasubstituted allene 5c was unambiguously confirmed
by an X-ray crystallographic analysis.
Chlorinated allenes are highly useful intermediates and

versatile building blocks in organic synthesis. This halotri-
fluoromethylation could easily be carried out on a gram scale,
showing the potential opportunity for further applications.
Under the standard reaction conditions, 1,3-enyne 1a (0.82 g)
reacted smoothly with Togni’s reagent 2a and SOCl2,

delivering the corresponding allene 3a without reactivity loss
while still maintaining an 81% isolated yield (Scheme 4a).
To demonstrate the utility of these transformations, further

derivatizations of the halotrifluoromethylation product were
investigated (Scheme 4b). Under basic conditions and the use
of Pd(PPh3)2Cl2 as a catalyst, a coupling reaction between 3a
and phenylboronic acid could occur in a mixture solvent of
dioxane and H2O, resulting in the formation of triphenyl-
substituted allene 6 in 85% yield. The chloro group of the
allene undergoes a nucleophilic attack by KSCN to generate
expected thiocyanate 7 with 60% yield. Treatment of 3a with
potassium phthalimide in DMF resulted in the elimination of
the chloro group, delivering the double bond migration
product 3a′ in good yield (71%) and geometric selectivity
(Z-alkene). Also, the chloro group could be readily removed
via a reduction with zinc powder in acetic acid, and the
reduced product 8 was detected in 59% yield.
Several control experiments were performed to gain more

mechanistic insight into the process (Scheme 5). When 2,6-di-
tert-butyl-4-methylphenol (BHT) was added as a radical
inhibitor, the chlorotrifluoromethylation was partly prohibited
(Scheme 5a). Furthermore, the reaction was almost sup-

Scheme 2. Scope with Respect to the Alkenyl Moiety of 1,3-
enynesa

aReaction conditions: 1,3-enyne 1 (0.5 mmol), Togni’s reagent 2a
(1.5 equiv), SOCl2 (1.5 equiv), Cu(OAc)2 (1 mol %), EtOAc (5.0
mL), rt, Ar, 1 h; yields are isolated yields. bDiastereoselectivity was
determined by HPLC analysis of the crude product.

Scheme 3. Scope with Respect to the Alkynyl Moiety of 1,3-
Enynesa

aReaction conditions: 1,3-enyne 4 (0.5 mmol), Togni’s reagent 2a
(1.5 equiv), SOCl2 (1.5 equiv), Cu(OAc)2 (1 mol %), EtOAc (5.0
mL), rt, Ar, 1 h; yields are isolated yields. bCH2Cl2 was used as
solvent, and TMSBr was used as bromine source. cDiastereoselectivity
was determined by HPLC analysis of the crude product.
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pressed, and no expected product 3a was observed in the
presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO,
Scheme 5b). Next, compound 9 was subjected to the standard
reaction conditions as a radical clock instead of 1,3-enyne 1a,
and the reaction proceeded smoothly to produce the ring-
opened product 10 in 85% yield (Scheme 5c). These
experimental results reveal that these transformations proceed-
ing through the free-radical pathway would be expected for the
classical electrophilic trifluoromethylation process. In addition,
a similar yield of 3a was also observed when CuOAc was
employed as the catalyst instead of Cu(OAc)2 (Scheme 5d).
On the basis of the previous observations and previous

literature data,5−7 a mechanism for the halotrifluoromethyla-

tion of 1,3-enynes has been proposed in Scheme 6. Initially, an
electrophilic trifluoromethyl radical (•CF3) was generated from

Togni’s reagent 2a via a single-electron-transfer (SET) caused
by the copper(II) complex with concomitant formation of
copper(III) species. The radical (•CF3) would then be
captured by the 1,3-enyne 1a to furnish the trifluoromethylated
allenyl radical intermediate A. The CF3-allenyl radical species
combined with another Cu(II) and SOCl2 to give a CF3-
allenyl-Cu(III)Cl2 species B, which would then undergo
reductive elimination to produce the final product 3a and
released Cu(I). Finally, the copper(I) species serves as the real
catalyst to recycle the reaction.
In conclusion, we have developed the first copper-mediated

1,4-halotrifluoromethylation of 1,3-enynes with an electrophilic
trifluoromethylating reagent and a nucleophilic halide reagent
(SOX2), an approach that previously presented a formidable
challenge.5−7 Various halo- and CF3-containing tetrasubsti-
tuted allenes were formed with high yield and regioselectivity,
which can be easily converted into some valuable molecules.
This process is readily scaled up, and diverse transformations
of 1,3-enynes are being pursued for the late-stage derivatization
of biologically relevant compounds. Further development of
other kinds of 1,4-difunctionalization of 1,3-enynes involving
fluorine chemistry is presently underway in this laboratory.
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