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Highlights 

 One pot synthesis of (4,5-diphenyl-2-(pyren-1-yl)-1H-imidazole (DPI)  

 Spectroscopic and photophysical investigations of DPI dye 

 Determine the critical micelle concentration (CMC) of CTAB and SDS 

 Frontier Molecular Orbitals (FMOs) study of DPI 

 

Abstract: 

A one-pot multi-component synthesis of 4,5,-diphenyl-2-(pyren-1-yl)-1H-imidazole 

(DPI) chromophore was performed by the reaction of benzil, pyrene-1-carboxaldehyde 

and ammonium acetate in acetic acid. Structure elucidation of DPI chromophore was 

confirmed by spectroscopic techniques (FT-IR, 1H-NMR, 13C-NMR and mass spectra). 

The physicochemical and photophysical parameters of DPI chromophore such as 

extinction coefficient, oscillator strength, dipole moment, stokes shift and fluorescence 

quantum yield were calculated experimentally and theoretically on the basis of the 

different solvents polarity to see the effect of the solvents on DPI chromophore. DPI 

chromophore was also applicable for determination of critical micelle concentration 

(CMC) of cationic and anionic surfactant such as cetyl trimethyl ammonium bromide 

(CTAB) and sodium dodecyl sulfate (SDS). 
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1. Introduction 

 

Over the last few decades, the synthesis of heterocyclic compounds has become a 

keystone of synthetic organic chemistry because of extensive multiplicity of 

applications of these heterocyclic compounds in the pharmaceutical and medicinal 

chemistry [1]. Five-member two nitrogen atoms including heterocyclic compound with 

special reference of imidazole normally found in many biological systems such as 

Olmesarten and Losartan [2]. IUPAC name of imidazole is 1,3-diaza-,2,4-

cyclopentadiene. It is a planar five-member heterocyclic compound having three carbon 

atoms and two nitrogen atoms in positions 1 and 3.  The imidazole moiety is an 

important pharmaphore that embraces a number of pharmacological behaviors such as 

antifungal, antibacterial [3], anticancer [4], anti-inflammatory and antitumor etc. [5, 6]. 

It is also significantly applicable in the chemical analytical field such as polymer 

stabilizer [7], laser dye [8], environmental probes in bio-molecules [9] and Raman 

filters [10]. The long π-bond conjugated system of the chromophores is responsible for 

their colour by absorbing the UV-light at certain wavelength. The Imidazole nucleus 

containing the long π-bond conjugated system are applicable in various fields of 

materials science such as Organic light-emitting diodes (OLED) [11, 12], dye-

sensitized solar cells (DSSC) [13], chemosensors for the detection of metal ions [14] 

and optoelectronic devices [15]. The photophysical and physicochemical parameters of 

the imidazole containing chromophore such as oscillator strengths, extinction 

coefficients, stokes shift, dipole moments and fluorescence quantum yields are 

important parameters that prove the physical behavior of the chromophores [16]. On 

the basis of literature survey, we found, lot of work have been done on imidazole 

derivative with their various biological applications and also in the area of material 
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sciences, but no one reported synthesis of imidazole as a donor-acceptor chromophore, 

our aim to design highly fluorescence and highly photostable long pi bond conjugated 

system containing with donor and acceptor chromophore can be use as organic light 

emitting diode. In this manuscript we are reporting synthesis of 4,5-diphenyl-2-(pyren-

1-yl)-1H-imidazole (DPI) chromophore by the one-pot reaction of benzil, pyrene-1-

carboxaldehyde and ammonium acetate. The physicochemical and photophysical 

properties such as extinction coefficients, stokes shifts, oscillator strengths, dipole 

moments and fluorescence quantum yields of the chromophore in different solvents on 

the basis of the polarity were determined experimentally. Density Functional Theory 

(DFT) was also used to accompaniment the experimentally physical behavior of the 

newly synthesized molecule.    

2. Experimental 

2.1. Chemicals and reagents 

All the chemical and reagents for this experiment like pyrene-1-carboxaldehyde, benzil, 

ammonium acetate and acetic acid were obtained from Acros Organic. All solvents 

were used HPLC grade.     

2.2. Apparatus 

The reaction was examined by 0.2 mm silica gel (60F-254) coated thin layer 

chromatography. Melting point of DPI dye was determined by using a Stuart Scientific 

Co. Ltd apparatus. The IR spectra of the compound (DPI) was measured by a Perkin 

Elmer FT-IR spectrometer. NMR spectra (1H & 13C) of the compound was measured 

by a 850MHZ Bruker AVANCE™ III HD. Mass spectra were measured by using Direct 

Analysis in Real Time (DART) on a JOEL AccuToF LC-plus JMS–T100LP, time-of-

flight mass spectrometer (DART-ToF MS). Absorption and emission spectra DPI dye 
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was recorded in different solvent by Shimadzu UV-1650 PC spectrophotometer and 

Shimadzu RF 5301 PC spectrofluorophotometer using a 1 cm rectangular quart cell.  

2.3.Synthesis of 4,5-diphenyl-2-(pyren-1-yl)-1H-imidazole (DPI)  

DPI chromophore was prepared by one-pot reaction of pyrene-1-carboxaldehyde (4.14 

g, 0.018 mol), benzil (3.0 g, 0.018 mol) and ammonium acetate (4.15 g, 0.018 mol) in 

acetic acid (20 ml) in a 50 ml round-bottom flask. Mixture was refluxed for 2 h at 150 

oC in an oil bath. Progress of the reaction was monitored by the TLC. After complete 

the reaction, the reaction mixture was cooled to room temperature and precipitate was 

removed by filtration and 200 ml of distilled water was added to the filtrate heavy 

precipitate obtained filtered off, washed with water several times, dry and recrystallized 

from methanol and chloroform (5:5) (Scheme 1) [17].           

Color: orange, shape: powder, Yield: 97%; m.p.: 299 oC; IR vmax/cm-1: 3435 (NH stretch), 

1579 (NH bend), 3036, 2953, 2923 (CHaromatic stretch), 1728 (C=N), 1603, 1443(C=C), 

1355 (C-N); 1H NMR (850 MHz, DMSO-d6, 𝛿ppm): 13.00 (s, 1H, NH), 9.56 (d, 4H, 

CHAromatic,  J = 8.9 Hz), 8.54 (d, 1H, CHAromatic, J = 7.4 Hz), 8.42 (d, 1H, CHAromatic,  J 

= 8.6 Hz), 8.36 (t, 4H, CHAromatic, J = 7.6 Hz), 8.32 (d, 2H, CHAromatic,  J = 9.6 Hz), 8.25 

(dd, 1H, CHAromatic,  J = 12.0 and 8.7 Hz), 8.12 (t, 2H, CHAromatic, J = 7.5 Hz), 7.69 (d, 

1H, CHAromatic, J = 7.1 Hz), 7.63 (d, 1H, CHAromatic, J = 7.1 Hz), 7.48 (t, 1H, CHAromatic, 

J = 7.05 Hz), 7.42-7.37 (m, 1H, CHAromatic); 
13C NMR (213 MHz, DMSO-d6, 𝛿ppm ): 

146.43 (C=N), 138.06, 135.73, 131.46, 131.43, 131.28, 130.87, 129.17, 129.01, 128.91, 

128.81, 128.48, 128.41, 128.39, 128.30, 127.80, 127.75, 127.15, 127.02, 126.40, 

126.05, 125.72, 125.25, 125.12, 124.89, 124.31 (C-aromatic); MS (DART-To FMS) 

m/z: exact mass 420.16 found 421.57 with a base peak at 231.08. 

 

3. Results and discussion  
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3.1.Characterization of DPI  

4,5-diphenyl-2-(pyren-1-yl)-1H-imidazole (DPI) chromophore was prepared by the 

one-pot reaction of benzil, pyrene-1-carboxaldehyde and ammonium acetate in acetic 

acid. The structure of novel DPI chromophore was confirmed by the FT-IR, 1H-NMR 

and 13C-NMR and mass spectroscopic techniques. FT-IR spectra of DPI chromophore 

show bands at 3435 and 1728 cm-1 which are characteristic to the N-H and C=N groups 

vibrations, respectively, with no any band 1658 cm-1 which is conformed that carbonyl 

groups of benzil and pyrene-1-carboxaldehyde are utilized for the formation of 

imidazole ring. The structure of DPI chromophore was further conformed by 1H-NMR 

spectra. The 1H-NMR spectra of DPI chromophore was measured in DMSO-d6, its 

shows a singlet peak at δ 13.00 due to presence of N-H group in imidazole ring. The 

1H-NMR spectra also showed doublet (d), doublet of doublets (dd), triplet (t) and 

multiplet (m) due to present of 19 aromatic protons (Fig. S1). 13C-NMR spectra also 

confirmed the formation of DPI chromophore, its shows signal at δ 146.43 due to 

prescence of azo-carbon of the imidazole ring and signal in range of δ124.31-138.06, 

due to aromatic carbon. The detailed 13C-NMR spectrum of the DPI chromophore is 

given in the experimental section. Finally, structure of DPI chromophore was 

confirmed by the mass spectra, its shows a molecular ion peak m/z at 421.57 with a 

base peak at 231.08 (Fig. S2). 

3.2. Spectra behavior of DPI chromophore in different solvents 

The absorbance spectra of the 4,5-diphenyl-2-(pyren-1-yl)-1H-imidazole (DPI) 

chromophore (1 x 10-5 M) were obtained in nine different polarity solvents. As shown 

in the Fig. 1, the polarities of the solvents have considerably affected the absorption 

maxima with a red shift 16 nm from n-Hexane (354 nm) to DMSO (370 nm), indicating 

the polar character of DPI chromophore in the ground state. As expected, red shift is 
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because of strong intramolecular charge transfer (ICT) from push to pull group (CNHC 

group to CNC moiety) as found in other related compounds [18]. 

As Fig. 2 shows, on excitation with 365 nm, the fluorescence spectrum of DPI 

chromophore displays a strong bathochromic shift on increasing the solvents polarity. 

The emission profile undergoes a red-shift of 30 nm in emission maxima from n-

Hexane (440 nm) to DMSO (470 nm), indicating photoinduced intramolecular singlet 

excited state charge transfer (ICT); which occurs from the electron push group (CNHC 

group) to the electron pull group (CNC moiety). This indicates that the polarity of DPI 

chromophore enhances on excitation [19]. Hence, the fluorescence profile of DPI 

chromophore is more effective to the polarity of the solvents than in the absorption 

profile; signifying that the charge transfer is much significant in the excited state in 

comparison to the ground state; which means that the polar solvents stabilize highly 

dipolar excited states. 

Emission spectra of different concentrations of DPI chromophore in CHCl3 were also 

measured exhibited almost same fluorescence maxima, only emission intensity changed 

with the concentration (Fig. 3).    

The absorption and emission energy (Ea and Ef) of DPI chromophore in various solvents 

are associated with the empirical Dimroth polarity parameter ET(30) of the solvents 

(Fig. 4) [20].  Energy of the absorption and emission of DPI chromophore versus 

polarity of the various solvents was find linear correlation (Eqs. 1 and 2). Polar aprotic 

solvents such as DMSO and DMF shows away from the averaged line indicating that 

the nature of the emitting state is different for this class of solvents.   A linear association 

between the energy of the absorption and emission versus polarity of various solvent 

was obtained (Eqs. 1 and 2).       

Ea = 84.05 – 0.038 x ET(30)                                                      (1) 
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Ef = 66.82 – 0.083 x ET(30)                                                       (2) 

The solvatochromic behavior of the DPI chromophore based on the linear correlation 

between absorption and emission maxima (λab and λem) and polarity solvent functions 

is well-known for determining excited and ground state dipole moments. Lippert-

Mataga Eqs. (3) and (4), were used to determine the energy difference between the 

ground and excited states i.e. Stokes shift and change in dipole moment between the 

excited singlet and ground state [21].  

                                                            (3) 

      

                                                                             (4) 

 

where (vst) is the stokes shift, which increases with increasing the polarity of the 

solvents, h is Planck’s constant, c is the speed of light, a is the Onsager cavity radius, n 

is the refractive index of the solvent and ε is the dielectric constant. The Onsager cavity 

radius was taken as 5.6 Ao. Fig 5 shows the plot of the orientation polarizability of the 

solvents versus Stokes shift of DPI chromophore in different solvent (f). Change in 

dipole moments () were calculated between the singlet excited and ground states 

from the slop plot of orientation of polarizability of the different solvent and Stokes 

shift () of the DPI chromophore in different solvents and found 8.27 Debye, Positive 

value indicating that the excited sate is more polar than the ground state. 

The transition dipole moment (μ12) and oscillator strength (f) of electronic transition for 

DPI chromophore from ground to excited singlet state (So → S1) in different solvent 

were calculated  by using the following equations (5, 6) [22]. 
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                                                           (6) 

where v is the wavenumber measured in cm-1, ε is the numerical value for molar 

extinction coefficient is measured in dm-3 mol-1 cm-1 and Emax is the energy the 

maximum absorption band in cm-1. Calculated value of transition dipole moment and 

oscillator strength are listed in the table 1, which designate that the transition So → S1 

is strongly allowed.     

The empirical Dimroth polarity parameters, ET (30) and  of DPI chromophore were 

calculated according to the following equations [23].  

                                                                                      (7) 

                                                                                             (8) 

where (λmax) corresponds to the peak wavelength (nm) in the red region of the of the 

intramolecular charge transfer absorption of DPI chromophore.  The red 

(bathochromic) shift from n-Hexane to DMSO designates that the photoinduced 

intramolecular charge transfer (ICT) arises in the singlet state, and the polarity of DPI, 

chromophore therefore, increases on excitation.   

3.3.Fluorescence quantum yield 

The fluorescence quantum yield (Φf) of the DPI chromophore was calculated in 

different solvents with the reference of fluoresce dye solution (Φf 0.95 in 0.1 NaOH) as 

stranded dye. The following equation (Eq. 9) has been applied for the calculated of 

fluorescence quantum yield (Φf).    

                                                                    (9) 
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Where Φf is the fluorescence quantum yield of DPI chromophore, Φr is the fluorescence 

quantum yield of the reference dye (fluoresce), A is the absorbance at the excitation 

wavelength, I is the integrated fluorescence intensity and n is the refractive index of the 

solvent. The subscript r refers to the reference fluorescence of a known quantum yield 

[24].    

The fluorescence quantum yields (Φf) of DPI chromophore have been calculated in 

different solvents and the values are mentioned in the table 1. The polarity of the 

solvents strongly affected on the value of the fluorescence quantum yields of DPI 

chromophore. Additionally, the fluorescence quantum yield of DPI chromophore in 

different solvents and their relationships with the ET(30) of the various solvents are 

shown in Fig 6, where ET(30) is the solvent polarity factor recognized by Reichardt. As 

presented in the table 1, the fluorescence quantum yield of DPI chromophore increases 

with increasing polarity of the solvent; which increases from 0.40 in n-Hexane to 0.68 

in DMSO (a non-polar solvent to highly polar solvent). This result is associated to the 

prevalence of negative solvatokinetic effect (n-Hexane to DMSO) [25]. One main 

reason for the negative solvatokinetic (the increase of Φf is accompanied by a 

appropriate enhancement of intramolecular charge transfer) could be due to the 

biradicaloid charge transfer involving the un-bridged double bonds and the other cause 

could be related to the proximity effect for a chromophore with n-π* and π-π* electron 

configuration. In other words, in non-polar solvents, these effects will result in effective 

non-radiative decay of the excited states.  

 

 

3.4.Effect of surfactant on emission spectrum of DPI 
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Due to pyrene carboxaldehyde well-known probes for the deamination of the CMC of 

CTAB, pyrene containing imidazole (DPI) can be applicable to determine the CMC of 

the surfactants. Two surfactants namely sodium dodecyl sulphate (SDS) and cetyl 

trimethyl ammonium bromide (CTAB) surfactants as an anionic and cationic surfactant 

were chosen for estimated the emission behavior of the DPI chromophore. The two 

specified surfactants were selected because the ionic charges possessed by DPI 

chromophore can be influenced by the negatively charged SDS and the positively 

charged CTAB. Thus, the charge attraction accounts for the DPI chromophore 

fluorescence behavior. The fluorescence emission spectra of DPI chromophore in the 

absence and presence of SDS and CTAB were measured. The fluorescence intensity of 

DPI chromophore decreases with an increase of the SDS concentration (2 x 10-3 up to 

1.8 x 10-2 M). Moreover, reductions that are more significant, noticed in fluorescence 

intensities of DPI with SDS. The quenching of emission intensity of DPI chromophore 

upon increasing SDS concentration can likely be recognized to the association of DPI 

chromophore with SDS. It can be observed that there was a successive decrease in the 

relative fluorescence intensity of DPI chromophore with an increase in the SDS 

concentration, strongly providing that there was an interaction between DPI and SDS 

Fig. 7. The emission intensity of DPI chromophore increases with increasing the 

concentration of CTAB from 2 x 10-4 up to 1.8 x 10-3 M. Such enhancement in the 

emission intensity of 1 x 10-5 M DPI chromophore at fixed concentrations with an 

increase in the CTAB concentration may likely be ascribed to the association 

mechanism of DPI chromophore with CTAB Fig. 8. It seems that the DPI dye molecule 

are located in the hydrocarbon core of CTAB aggregates, while in SDS they are located 

at the micelle-water interface, with quenching role of water [26]. The emission intensity 

of DPI chromophore decreases with increasing concentration of surfactant SDS and 
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increases with increasing concentration of surfactant CTAB, with an abrupt change in 

emission intensity occurring at surfactant concentration of 6.79 x 10-3 and 9.51 x 10-4 

mo dm-3 which are very close to the critical micelle concentration (CMC) of SDS and 

CTAB (Fig. 9 and 10) [27]. Thus, DPI chromophore can be employed as a probe and 

quencher to determine the CMC of the surfactants.  

3.5. Fluorescence quenching of DPI with ethylene glycol   

The fluorescence quenching of DPI chromophore in dioxan was studied by using polar 

protic solvent ethylene glycol as quenchers Fig. 11. As follows from these figure, the 

fluorescence spectra undergo very complex changes on adding different concentration 

of ethylene glycol, i.e., the emission intensity of DPI chromophore decreases with 

increasing the concentration of ethylene glycol and also shifted to longer wavelength, 

possess changed half widths and band profiles of the emission spectrum. This behavior 

indicates, that in such a solution an extra factor contributes to the well-known dipole-

dipole interaction, i.e., hydrogen-bonding interactions between the ethylene glycol 

molecule and  imidazole group of DPI chromophore, not only in the molecule and 

ethylene glycol, not only in the S0 state, but also in the excited, S1, state [28]. The Stern–

Volmer constants (KSV) was calculated from the Stern– Volmer plots shown in Fig 12. 

The KSV constant was determined as 0.40 M-1 in ethylene glycol. The dependence of 

fluorescence characteristics on ethylene glycol properties suggest a potential 

application of DPI chromophore to probe of the polarity and hydrogen bonding 

properties of its local microenvironment. 

 

][1/0 QKII svf                                                                                   (10) 
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where Io and If are the relative integrated fluorescence intensities without and with the 

quencher concentration [Q] and Ksv (Stern-Volmer constant). 

3.6.DFT Calculations 

The molecular structure of DPI chromophore was optimized using the long-range 

corrected (LC) column-attenuating (CAM) method of the hybrid Becke's three 

parameter Lee-Young-Parr correlation functional (CAM-B3LYP) [29] of the density 

functional theory (DFT) with double-zeta and polarization functions on heavy atoms 

basis set [6-31+G*]. A global minimum on the potential energy profile of DPI was 

located and evidenced by the absence of any imaginary vibrational wavenumber. Time-

Dependent density functional theory (TD-DTF) [30] and the polarizable continuum 

model (PCM) method [31] with the 6-31+G* basis set were applied to simulate the 

Ultra-Violet spectra of DPI in n-Hexane (C6H12), chloroform (CHCl3), tetrahydrofuran 

(THF), ethanol (C2H5OH), methanol (CH3OH), acetonitrile (CH3CN) and dimethyl 

sulphoxide (DMSO). All these calculations were performed using the Gaussian09 

Suites of program [32] together GaussView [33] for monitoring the geometry of DPI 

chromophore. Version 3.1 of natural bond orbital (NBO) program [34] was applied to 

compute the electric charges and hyperconjugative energies of DPI chromophore.   

3.7.Geometry 

Table 2 lists a few bond lengths and angles of the optimized structure of the gas-phase 

molecule DPI chromophore that is depicted by Fig.13. They are computed by using 

CAM-B3LYP/6-31+G* level of theory.  It is worth extracting some geometrical 

remarks from Table 2 in conjunction with Fig.13: (1) the pyrene and imidazole rings 

are out-of-plane by ca. 37O as shown by the dihedral angle N5-C1-C7-C8, (2) the 

dihedral angles N5-C4-C32-C33 and C4-C3-C43-C45 indicate that the two benzene 

rings are off-plane with the imidazole ring by ca. 30O and 44O, respectively, (3) All 
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carbon-carbon bonds are doubly bonded or partially multiply bonded. This feature does 

not exclude even C1-C7, C3-C4, C3-C43 and C4-C32 bond lengths being shorter than 

expected by 0.064, 0.065, 0.065 and 0.061Å, respectively, compared to the typical C-

C single bond of ethane [35], (4) the computed bond angles of 105O-129O show clearly 

the sp2 hybridization scheme over the entire macromolecule.    

3.8.UV-Visible Spectra 

The π→π* and n→π* electronic transitions from the higher occupied molecular orbitals 

(HOMO) to the lower unoccupied molecular orbitals (LUMO), collectively called 

frontier molecular orbitals (FMOs) lead to UV-Vis. absorption spectra of π-conjugated 

organic molecules [36].  The macromolecule DPI has many double bonds and lone pairs 

on the nitrogen atoms. Table 3 lists the experimental UV-Vis. absorption and emission 

electronic transitions of DPI chromophore in different solvents as mention in table 3 

together with their theoretical peers computed by using PCM/TD-CAM-B3LYP/6-

31+G* level of theory. Overall, excellent agreement between the experimental and 

simulated absorption and emission wavelength maxima is obtained. On the one hand, 

the absorption maximum wavelengths are theoretically underestimated. The 

discrepancy between the experimental and estimated maximum wavelengths increases 

from ca. 7nm in n-Hexane to ca. 24nm in DMSO. On the other hand, the emission 

wavelength maxima are overvalued compared to their measured analogues.  The 

variance between them does not exceed ca. 25nm. It is worth mentioning that the 

estimated maximum absorption wavelengths are gradually blue-shifted while the 

emission wavelength maxima are progressively red-shifted with the increase of solvent 

polarity. The non-linear dependence of solvatochromic shifts of the absorption maxima 

and their oscillator strengths on the dielectric constant of the solvents could be 

explained in terms of the intermolecular hydrogen bonds between solute and solvent 
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[37]. The interaction between the solvent and solute could explain the slight fluctuations 

in the computed absorption wavelength maxima [38].  

In Table 4 are registered the property parameters [39] of the solvents used for the 

solvation of DPI chromophore together with the calculated absorption maxima in these 

solvents. It is clear that the calculated absorption wavelengths do not correlate with the 

solvent polarity scale [ET(30)] as the later does not include the hydrogen-bond acceptor 

(HBA) beside both the hydrogen–bond donor (HBD) and solvent dielectric constants 

[40]. Likewise the solvent polarity parameter (Δf) alone is not adequate for pinpointing 

the solvatochromic behaviour of DPI in the elected solvents. These two observations 

indicate that specific solute-solvent interactions prevail in the solvation of DPI 

chromophore [41]; which necessitate the use of a multiparametric solvatochromic scale 

of Kamlet and Taft [42,43].  

As shown in Table 4, the absorption wavelength is blue-shifted of 3.2nm in going from 

a nonpolar n-hexane (α=0.00, β=0.00, π*=-0.4) to the acetonitrile (α=0.19, β=0.40, 

π*=0.75) as the latter being highly polar and a good HBA, on the one hand. On the 

other hand, a blue shift of 3.4nm occurs in going from n-hexane to methanol (α=0.98, 

β=0.66, π*=0.60) as a result of a large HBD ability and moderate HBA and polar 

abilities. The anomalous solvatochromic behaviour of DPI chromophore in DMSO 

(α=0.00, β=0.76, π*=1.00) is attributed to its high ability as a HBA together with its 

relatively high polarity.  

The mapped electrostatic potential for excited and ground states of the DPI 

chromophore applying HF/321G level of theory is depicted in Fig.14. The figure shows 

clearly that around the CNC moiety (acceptor) an intensive negative charge is built up; 

while around the CNHC group (donor) a denser positive charge is intensified in both 

the ground and excited states. These theoretical judgments support our experimental 
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findings that DPI chromophore could be used for the determination of the critical 

micelle concentrations of both SDS and CTAB surfactants.    

3.9.Frontier Molecular Orbitals (FMOs) 

Fig.15 depicts the gas-phase DPI frontier molecular orbitals (FMOs). CAM-B3LYP/6-

31+G* level of theory was applied to compute them. On the one hand, the HOMO is 

localized mainly over the imidazole ring and the two adjacent phenyl groups as π-

bonding orbitals (donor orbital). On the other hand, the LUMO extends entirely over 

the pyrene ring as π*-antibonding orbital (acceptor orbital). This situation facilitates the 

intramolecular charge transfer (ICT) within the macromolecule. A detailed description 

of the ICT will be presented in a separate section devoted to natural bond orbital (NBO) 

analysis. 

Table 5 lists the HOMO and LUMO energies of the solvated DPIs, together with their 

energy gaps (E.G.). The later parameters could be used as measures for the 

intermolecular solute-solvent charge transfer. As Table 4 shows energy gaps of 5.648-

5.681eV which could easily ease the π→π* and n→π* charge transfer and, therefore, 

could evidently generate UV-Vis. spectra. It is noteworthy that the energy gaps of the 

solvated DPI chromophore a directly related to their nature (protic or aprotic) and/or 

polarities, i.e. their dielectric constants. These effects steadily stabilize both the 

HOMOs and LUMOs by varying degrees and, therefore, result in incremental small 

increases of the energy gaps.     

The electronic chemical potential (µ) that indicates the motion of electrons in a 

chemical species [44], the chemical hardness (η) that examines the stability and 

reactivity of a chemical species [45] and the global electrophilicity index (ω) that 

estimates the stabilizing energy when a chemical species accepts additional electronic 

charge from the medium [46] are listed in Table 5.  As Table 5 shows the magnitudes 
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of η and µ indicate that DPI chromophore in DMSO is the hardest, most stable and least 

reactive amongst the solvated chromophore, while being the softer, least stable and 

most reactive in n-Hexane.  In addition, the ω values show that the solvation of DPI by 

DMSO fabricates the strongest electrophile amongst the solvated DPIs, compared to 

being the weakest electrophile (or a nucleophile) when solvated by n-Hexane [47].  

3.10. Natural Bond Orbital Analysis 

The Natural Bond Orbital (NBO) analysis [48] has gained wide endorsement in dealing 

with hyperconjugative interactions [49]. This is accomplished through analyzing 

second order perturbation energies (E(2)) given by the relation: 

E(2) = ∆Eij = qi (Fij)
2/∆ε                                                      (11) 

where Fij is the NBO Kohn-Sham off-diagonal matrix elements, qi is the occupancy of 

the donor orbital(i), and ∆ε is difference between the energies of the donor orbital (i) 

and an acceptor orbital (j). Table 6 registers the second order perturbation (E(2)) 

hyperconjugative energies of DPI chromophore in the gas-phase that trace the charge 

transfer from the donor imidazole ring to the pyrene ring acceptor. They were computed 

by employing HF/321G/CAM-B3LYP/6-31+G* level of theory. They are classified as 

π→π*, σ→σ* and n→π* electronic charge transfer interactions. The π→π* and n→π* 

hyperconjugative interactions are most effective and availed totals of 174.24 and 148.61 

kcal/mol, respectively; whereas the σ→σ* transitions are extremely weak and 

contributed only 18.04 kcal/mol to the stabilization of the DPI chromophore.   The DPI 

chromophore substrate intramolecular weak charge transfers from the imidazole moiety 

toward the phenyl groups are shown by the σC4-N5→σ*C32-C34, σC4-N5→σ*C3-C43, πC3-

C4→π*C32-C34 and πC3-C4→π*C43-C44 interactions which stabilized DPI chromophore by 

1.44, 4.66, 11.72 and 9.26 kcal/mol, respectively. Comparatively, large charge is also 

transferred from the imidazole ring at the pyrene moiety. These are symbolized by the 
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πC1-N5 →π*C7-C9, πC7-C9 →π*C8-C10, πC8-C10 →π*C14-C19 and πC14-C19 →π*C20-C24 transitions 

which availed 8.64, 36.46, 31.62 and 37.99 kcal/mol to the stabilization of the studied 

macromolecule. These results are in excellent agreement with our observed UV-Vis. 

spectra and are properly correlated with our theoretical predictions mentioned earlier.  

4. Conclusion  

Novel 4, 5-diphenyl-2-(pyren-1-yl)-1H-imidazole (DPI) chromophore was prepared by 

one-pot equimolar reaction of benzil, pyrene-1-carboxaldehyde and ammonium acetate 

in acetic acid. Structure of the synthesized DPI chromophore was confirmed by 

spectroscopic techniques and elemental analysis together with DFT study, 

Experimental and theoretical absorbance and emission spectra of DPI chromophore 

showed bathochromic shifts with increasing polarities of the solvents (n-Hexane to 

DMSO) to gather with the polar protic and aprotic solvents. Photophysical parameters 

such as extinction coefficient, dipole moment, stokes shift, oscillator strength and 

fluorescence quantum yield of the DPI chromophore was estimated. Its affected by the 

polarities and types of the solvents. The DPI chromophore can be use as probe or 

quencher to determine the critical micelle concentration of SDS and CTAB surfactants.             
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Scheme 1:  Synthesis of 4,5-diphenyl-2-(pyren-1-yl)-1H-imidazole (DPI) 
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Table 1. Spectral data and fluorescence quantum yield (f) of dye (DPI) in different 

solvents 

Solvent 

 
f 

 

N

TE (30) TE 

Kcal 
1-mol 

(nm)ab 

 

(nm)em 

 

  ε 
1-cm1- M 

 

f 
 

12μ  

Debye 

 

 

st 

)1-(cm 

 

 

 

Φf 

 

DMSO 0.263 0.441 45.1 370 470 27290 0.63 7.02 5751 

 

0.68 

DMF 0.274 0.404 43.8 368 466 27430 0.62 6.95 5714 0.56 

EtOH 0.288 0.654 51.9 365 450 24000 0.49 6.15 5715 0.61 

MeOH 0.308 0.762 55.4 366 453 22500 0.47 6.03 5421 0.68 

CHCl3 0.148 0.259 39.1 361 453 24100 0.54 6.43 5625 0.53 

CN3CH 0.304 0.472 45.6 367 461 22600 0.53 6.40 5555 0.54 

Dioxan 0.021 0.164 36 358 448 23250 0.51 6.21 5511 0.48 

THF 0.10 0.210 37.4 356 222 40000 0.44 5.76 5551 0.43 

n-Hexane 0.0014 0.006 31.1 354 439 19400 0.42 5.61 5469 0.40 

 n-Heptane 0.0004 0.006 31.1  353  438 19080 0.41 5.47 5497 0.38 
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Table 2: Selected bond lengths (Å), bond angles and dihedral angles (degrees) of DPI 

which have been estimated by applying CAM-B3LYP/6-31+G* level of theory. 

 

Bond Angle Parameter Bond length Parameter 

128.5 N5-C1-C7 1.471 C1-C7 

121.4 N6-C1-C7 1.315 C1-N5 

110.1 N5-C1-N6 1.367 C1-N6 

107.0 C1-N5-C4 1.379 N6-C3 

108.5 C1-N6-C3 1.382 C3-C4 

109.8 N5-C4-C3 1.376 C4-N5 

104.7 N6-C3-C4 1.470 C3-C43 

-36.8 N5-C1-C7-C8 1.474 C4-C32 

30.1 N5-C4-C32-C33 1.399 C32-C34 

43.7 C4-C3-C43-C45 1.400 C7-C9 
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Table 3: The experimental UV-Vis. maximum absorption (λabs/nm) and emission 

(λem/nm) wavelengths for DPI in different solvents compared with the simulated ones 

and oscillator strengths applying TD-CAM-B3LYP/6-31+G* level of theory. Dielectric 

constants of solvents were also included as estimates of the polarity of solvents. 

Dielectric 

Constant 

Emission Wavelengths  Absorption Wavelengths Solvent       

f theor.λ expt.λ f theor.λ expt.λ 

1.9 1.329 440.7 440 1.040 346.5 354 n-Hexane 

4.8 1.499 460.7 451 1.052 345.8 362 3CHCl 

7.6 1.544 466.6 444 1.033 344.8 356 THF 

24.5 1.601 474.7 450 1.011 343.6 365 OH5H2C 

32.7 1.607 475.6 453 0.998 343.1 366 OH3CH 

37.5 1.609 475.8 461 1.003 343.3 367 CN3CH 

46.7 1.613 476.4 470 1.032 344.4 370 DMSO 
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Table 4:  The property parametersa of the solvents used to solvate DPI showing the 

polarity ET(30), the solvent polarity function (Δf), the hydrogen-bond donor (HBD) 

ability (α), the hydrogen-bond acceptor (HBA) ability (β), and polarity/polarizability 

(π*) that affect the absorption wavelengths (λtheor.) calculated by using TD-CAM-

B3LYP/6-31+G* level of theory. 

theor.λ *π β α Δf (30) TE 
1-Kcal mol 

Solvent       

346.5 -0.40 0.00 0.00 0.0014 31.1 n-Hexane 

345.8 0.58 0.10 0.20 0.148 31.7 3CHCl 

344.8 0.58 0.55 0.00 0.210 37.4 THF 

343.6 0.54 0.75 0.86 0.288 51.9 OH5H2C 

343.1 0.66 0.66 0.98 0.308 55.4 OH3CH 

343.3 0.75 0.40 0.19 0.304 45.6 CN3CH 

344.4 1.00 0.76 0.00 0.263 45.1 DMSO 

a: Marcus, Y. The properties of organic liquids that are relevant to their use as solvating 

solvents. Chem. Soc. Rev. 1993, 22, 409–416 
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Table 5: The HOMO (eV), LUMO (eV) the energy gap (E.G./eV), the electronic 

chemical potential (µ/eV), the chemical hardness (η/eV), the global electrophilicity 

index (ω/eV), and the Dipole Moments (D.M./Debye) for the ground state DPI in 

different solvents. They have been estimated applying CAM-B3LYP/6-31+G* level of 

theory. 

Parameter Gas Phase n-Hexane CHCl3 THF C2H5OH CH3OH CH3CN DMSO 

HOMO -6.513 -6.585 -6.645 -6.661 -6.683 -6.685 -6.686 -6.687 

LUMO -0.901 -0.937 -0.975 -0.987 -1.002 -1.004 -1.005 -1.006 

E.G. 5.612 5.648 5.670 5.674 5.681 5.681 5.681 5.681 

µ -3.707 -3.761 -3.810 -3.824 -3.843 -3.845 -3.846 -3.847 

η 2.806 2.824 2.835 2.837 2.841 2.841 2.841 2.841 

ω 2.449 2.504 2.560 2.577 2.599 2.602 2.603 2.605 

D.M.(g) 3.205 3.837 4.446 4.624 4.863 4.889 4.896 4.914 
D.M.(ex) --- 3.418 4.045 4.233 4.483 4.510 4.518 4.537 
Diff. --- 0.419 0.401 0.391 0.380 0.379 0.378 0.377 
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Table 6: The second order perturbation (E(2)) estimation of the hyperconjugative 

energies (kcal/mol) of DPI that follow that charge transfer from the donor imidazole 

ring to the pyrene and phenyl rings acceptor. They were calculated using CAM-

HF/321G/B3LYP/6-31+G* level of theory. 

Interaction Energy Interaction Energy 

πC43-C44 →π*C3-C4 11.43  

                 

174.24              

         

σC1-N5 →σ*C1-C7 3.13              

18.04               

πC3-C4 →π*C1-N5 27.12 σC1-C7 →σ*C7-C8 4.87 

πC1-N5 →π*C7-C9 8.64 σC1-C7 →σ*C7-C9 3.94 

πC7-C9 →π*C8-C10 36.46 σC4-N5 →σ*C32-34 1.44 

πC8-C10 →π*C14-C19 31.62 σC4-N5 →σ*C3-C43 4.66 

πC14-C19 →π*C20-C24 37.99 n1N5→σ*C1-N6 10.72                       

148.61 πC3-C4 →π*C32-C34 11.72 n1N6→π*C1-N5 81.64 

πC3-C4 →π*C43-C44 9.26 n1N6→π*C3-C4 56.25 
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Fig. 1. Electronic absorption spectra of 1  10-5 mol dm-3 of DPI in different solvents. 
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Fig. 2. Emission spectra of 1  10-5 mol dm-3 of DPI in different solvents. 
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Fig. 3. Emission spectra of different concentration of DPI in CHCl3.  
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Fig. 4.  Plot of energy of absorption (Ea) and emission (Ef) versus ET(30) of different 

solvents 
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Fig.5. Plot of ∆f versus Stokes shift ()  
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Fig.6.Plot of f  versus ET (30) of different solvents. 
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Fig. 7. Emission spectrum of 1x10-5 mol dm-3 of DPI at different concentrations of SDS, 

the concentrations of SDS at increasing emission intensity are 0.0, 2 x 10-3, 4 x 10-3 , 6 

x 10-3, 8 x 10-3, 10 x 10-3, 12 x 10-3, 16 x 10-3 and 18 x 10-3 mol dm-3. 
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Fig 8. Emission spectrum of 1x10-5 mol dm-3of DPI at different concentrations of 

CTAB, the concentrations of CTAB at increasing emission intensity are 0.0, 2 x 10-4, 4 

x 10-4
,6 x 10-4, 8 x 10-4, 10 x 10-4, 12 x 10-4, 16 x 10-4 and 18 x 10-4 mol dm-3. 
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Fig. 9.  Plot of If versus the concentration of SDS 
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Fig. 10. Plot of If versus the concentration of CTAB 
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Fig. 11. Fluorescence quenching of 1x10-5 mol dm-3 DPI in dioxan by ( ex = 365 nm) 

by ethylene glycol, the concentration of ethylene glycol at decreasing emission intensity 

are 0, 0.35, 0.71, 1.06, 1.42, 1.72, 2.11, 2.49 and  2.84 mol dm-3.  
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Fig. 12. Stern–Volmer plot of fluorescence quenching of 1x10-5 mol dm-3 of DPI in 

Dioxan by ethylene glycol  
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Fig.13 The atom numbering of DPI macromolecule. 
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(a) Excited State 

 
(b) Ground State 

 

Fig.14 The mapped electrostatic potential for (a) excited and (b) ground states of gas-

phase DPI which have been obtained by using HF/321Glevel of theory. They show the 

relatively negative values around the carbonyl group and the positive charges around 

the hydroxyl group. 
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                                                              LUMO 

 

 
HOMO 

Fig.15 The HOMO and LUMO of DPI which have simulated by using CAM-

B3LYP/631+G* level of theory. 
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