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Since the CB1 receptor antagonist SR141716 (rimonabant) was reported to modulate food intake, CB1
antagonism has been considered as a new therapeutic target in the treatment of obesity. Several series
of derivatives based on diarylimidazolyl oxadiazole and thiadiazole scaffolds were synthesized and tested
for CB1 receptor binding affinity. SAR studies directed toward the optimization of imidazole scaffolds
resulted in the discovery of 10s which showed highest potency for CB1 receptor binding affinity
(IC50 = 1.91 nM) prepared to date.

� 2008 Elsevier Ltd. All rights reserved.
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The CB1 cannabinoid receptor belongs to the G-protein-coupled
receptor (GPCR) type and is coupled to inhibitory G proteins (G(i/
o)) to inhibit certain adenylyl cyclase isozymes, leading to de-
creased cAMP production, decreased Ca2+ conductance, increased
K+ conductance, and increased mitogen-activated protein kinase
activity.1 The major physiological effect of cannabinoids is the
modulation of neurotransmitter release via activation of presynap-
tic CB1 receptors located on distinct types of axon terminals
throughout the brain.2

D9-Tetrahydrocannabinol (D9-THC) has been known as active
ingredient of Marijuana which has ability to stimulate appetite
by activating the cannabinoid receptor, CB1 in the brain.3

The CB1 receptor antagonists/inverse agonists have shown to be
useful in the suppression of food intake and the reduction of body
weight.4 Food intake suppression mediated by the CB1 inverse ago-
nists has been demonstrated in animal5 and human studies.6 The
first published studies with rimonabant (SR141716) in both
rodents7 and primates8 showed clear differentiation, that is,
marked effects on sweet food intake vs. marginal effects on regular
chow intake or water drinking.

The first specific cannabinoid CB1 receptor antagonist or inverse
agonist, rimonabant, was discovered in a high-throughput screen-
ing program at Sanofi-Synthelabo in 1994.9 Several CB1 receptor
antagonists including rimonabant, SLV319 (ibipinabant),10

CP-945,598 (otenabant)11 and MK-0364 (taranabant)12 have been
reported to be late phase of clinical trials. A pharmacophore model
for the binding of a low energy conformation of rimonabant in the
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CB1 receptor has been well-documented.13,14 The crucial receptor–
ligand interaction is known to be a hydrogen bond between the
carbonyl group of rimonabant and the Lys192–Asp366 residue of
the CB1 receptor, thereby exerting a stabilizing effect on the
Lys192–Asp366 salt bridge in Figure 1.15

Bioisosteric replacement forms a rational medicinal chemistry
approach for the discovery of new leads or series, based on existing
key ligands. The three-dimensional structure of imidazole main-
tains a high similarity to that of the pyrazole. As a consequence,
they can be regarded as isosteres thereof and have been applied
in order to discover pyrazole bioisosteres.16 Also, we demonstrated
a successful replacement of the key carbonyl group of rimonabant
with imine-type functionality, tetrazole group.17 Among many het-
erocycles involving ‘imine-type’ functionality other than tetrazole,
we were particularly interested in oxadiazole23 or thiadiazole as a
viable surrogate of amide, since modifying the key carbonyl group
of rimonabant into oxadiazole or thiadiazole could furnish a favor-
able balance of potency and physicochemical properties to allow
for further in vivo efficacy evaluation. Herein, we wish to disclose
Trp356
Phe200

Figure 1. Rimonabant and its receptor–ligand interaction.
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Table 1
Structures and binding affinities of selected ligands for rat CB1 receptors

N

N

CH3

Cl

ClCl

Z

NN

R2

Compound Z IC50 (nM) for rCB1Ra,b Z

O S R2 O S

9a 10a Cyclobutyl 38.7 42.3
9b 10b Cyclopentyl 35.3 10.8
9c 10c Cyclohexyl 115 46.0
9d 10d Cycloheptyl 27.6 21.6
9e 10e i-Pr 25.8 22.2
9f 10f i-Bu 39.4 28.1
9g 10g t-Bu 13.2 20.2
9h 10h Pentan-2-yl 14.2 12.7
9i 10i Pentan-3-yl 22.3 19.7
9j 10j Hexan-2-yl 12.9 15.0
9k 10k 1-Phenylethyl 31.4 16.9
9l 10l 1-(Triflluoromethyl)cyclopropyl 55.1 33.5
9m 10m 1-(Triflluoromethyl)cyclobutyl 16.7 9.66
9n 10n 1-(4-Chlorophenyl)cyclopropyl 15.2 9.41

Rimonabant 5.0 ± 1.0c

a CB1 receptor was collected from brain tissue of SD rat.24

b These data were obtained by single determinations.26

c These data were obtained by in-house assay.
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the synthesis and evaluation of the oxadiazole–diarylimidazole
and thiadiazole–diarylimidazole as novel CB1 receptor antagonists.

The carboxylic acid derivative 6 was prepared by a conventional
method, for example, by reacting a benzonitrile 1 with an aniline
derivative 2 using sodium bis(trimethylsilyl)amide (NaHMDS) to
produce a corresponding arylbenzamidine 3. Subsequent reaction
of the resulting arylbenzamidine 3 with a-bromoketone 4 gave
an intermediate ethyl 1,2-diaryl-5-alkyl-1H-imidazole-4-carboxyl-
ate 5. An acid form 6 was transformed from the intermediate 5
using lithium hydroxide, followed by acidification, as shown in
Scheme 1.16

The target compounds 9 and 10 were prepared by reaction of a
carboxylic acid derivative 6 with hydrazide compound 7 in the
presence of EDCI and HOBt in DCM, and cyclization of the resulting
acyl hydrazide compound 8 using Burgess reagent18 to provide an
1,3,4-oxadiazole compound 9, or Lawesson’s reagent19 to yield a
1,3,4-thiadiazole compound 10 as shown in Scheme 2. The hydra-
zide derivative 7 was prepared by treating an ester or a carboxylic
acid with hydrazine.

The target compounds of structures 9 and 10 were evaluated
in vitro in a rat CB1 binding assay.20,24 The results are shown in
Table 1. Since there are a number of literature precedents describ-
ing the importance of lipophilic groups at the C domain of rimo-
nabant as shown in Figure 1, various lipophilic groups have
been focused for investigation. These data demonstrate that the
size of carbocycle appears to affect binding affinity. Thus, 7-mem-
bered ring (9d) is slightly better than the 4- or 5-membered ring,
suggesting that there might be a size requirement for the oxadiaz-
ole alkyl region to attain good binding to CB1 receptor. In the case
of thiadiazole, 5-membered ring (10b) is more active in 2- to 4-
fold than the corresponding oxadiazole (9b). Longer branched ali-
phatic chains are usually better, showing IC50 = 12.9 nM for 9j.
Introduction of additional methyl group at the branch such as t-
butyl 9g elevated CB1 binding affinity of i-propyl 9e in 2-fold. In-
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stead of gem-dimethyl group, cyclopropyl at the position can be
replaced without impeding in vitro CB1 receptor binding affinity,
displaying similar level of binding affinity (9m, 9n). Interestingly,
altering oxadiazoles to the corresponding thiadiazoles improved
CB1 receptor binding affinity in approximately 2-fold, showing
IC50 = 9.66 nM for 10m and IC50 = 9.41 nM for 10n, respectively.
It was encouraging to notice that a considerable CB1 receptor
binding affinity was already observed in a number of compounds.
At this juncture, we decided to proceed to explore R1, X and Y sub-
stituents of the imidazole core by using t-butyl oxadiazole as a
tentative lead scaffold, since (i) our previous research23c on diary-
limidazolyl oxadiazoles as the CB1R antagonists showed that the
t-butyl group is beneficial for the moiety. (ii) The t-butyl group
Table 2
Structures and binding affinities of selected ligands for rat CB1 receptors

N

N

R1
X

ClY

Z

NN

Compound Z IC50 (nM) for rCB1Ra,b Z

O S X Y R1 O S

9g 10g Cl Cl Me 13.2 20.2
9o 10o Cl Cl Et 18.1 15.8
9p 10p Cl Cl n-Pr 18.9 7.94
9q 10q Cl Cl Cyclopropyl 79.9 58.0
9r 10r Br Cl Me 5.81 3.45
9s 10s Br Cl Et 3.15 1.91
9t 10t Br Cl n-Pr 71.5 13.5
9u 10u Br Cl i-Pr 21.2 6.49
9v 10v Cl H Me 5.29 12.7
9w 10w Cl H Et 21.3 –c

9x 10x Br H Me 31.7 10.7
9y 10y Br H Et 14.7 –c

Rimonabant 5.0 ± 1.0c

a CB1 receptor was collected from brain tissue of SD rat.
b These data were obtained by single determinations.
c These data were obtained by in-house assay.



Table 3
Structures and binding affinities of selected ligands to rat CB1 and human CB2 receptors, and CB2/CB1 selectivity of the ligands

N

N

Et
Br

ClCl

Z

NN

R2

Compound R2 Z IC50 (nM) for rCB1Ra,c IC50 (nM) for hCB2Rb,c

9z 1-Phenylcyclopropyl O 9.14 –
9aa 1-(4-Methoxyphenyl)cyclopropyl O 18.6 –
9ab 1-(4-Methylphenyl)cyclopropyl O 8.38 >10,000
9ac 1-(2,4-Dichlorophenyl)cyclopropyl O 8.05 >10,000
9ad 1-(4-Chlorophenyl)cyclopropyl O 9.05 –
9ae 1-(4-Chlorophenyl)cyclobutyl O 13.6 >10,000
10z 1-Phenylcylcopropyl S 8.29 >10,000
10aa 1-(4-Methoxyphenyl)cyclopropyl S 9.21 >10,000
10ab 1-(4-Methylphenyl)cyclopropyl S 5.72 >10,000
10ac 1-(2,4-Dichlorophenyl)cyclopropyl S 6.57 >10,000
10ad 1-(4-Chlorophenyl)cyclopropyl S 4.53 >10,000
10ae 1-(4-Chlorophenyl)cyclobutyl S 4.79 >10,000

Rimonabant 5.0 ± 1.0d 1760d

a CB1 receptor was collected from brain tissue of SD rat.
b CB2 receptor was recombinant human receptor expressed in CHO cell.
c These data were obtained by single determinations.
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has played an outstanding role in the field of medicinal chemistry
due to its unique properties.21

The binding affinity data of selected key diarylimidazolyl oxadi-
azoles and thiadiazoles for the CB1 receptor are shown in Table 2.

When methyl was replaced by ethyl 9o or n-propyl 9p, it
showed similar level of CB1 receptor binding affinity, respectively,
but binding potency for cyclopropyl 9q deteriorated in 4-fold, indi-
cating that even small ring such as cyclopropyl is not tolerated for
the region. This is also observed in the thiadiazole 10q. Replace-
ment of 1-(4-chlorophenyl) 9g (IC50 = 13.2 nM) with 1-(4-bromo-
phenyl) 9r (IC50 = 5.81 nM) improved CB1 receptor binding
affinity in more than 2-fold. This phenomenon is clearly demon-
strated by comparing 9o (IC50 = 18.1 nM) versus 9s
(IC50 = 3.15 nM). However, this effect is not observed any longer
as the number of carbon on imidazole core is increased beyond
ethyl as shown in n-propyl 9t (IC50 = 71.5 nM).

As observed previously, thiadiazoles turned out to be more ac-
tive than the corresponding oxadiazoles. Of note is that among our
compounds tested, 2-(1-(4-bromophenyl)-2-(2,4-dichlorophenyl)-
5-ethyl-1H-imidazol-4-yl)-5-t-butyl-1,3,4-thiadiazole 10s was
shown to be most potent in vitro CB1 diarylimidazolyl heterocycle
receptor ligand (IC50 = 1.91 nM) prepared to date.27

The binding affinity data of selected key 2-(1-(4-bromophenyl)-
2-(2,4-dichlorophenyl)-5-ethyl-1H-imidazol-4-yl)-1,3,4-oxa(thia-
)diazole for the CB1 receptor is shown in Table 3. Cyclopropanes or
cyclobutanes at the benzylic position are also well tolerated with-
out detriment to in vitro CB1 receptor binding affinity as displayed
in Table 3. Chlorine or methoxy substitution on the phenyl ring
also maintained similar receptor binding affinity, indicating that
a halogen atom or methoxy group appears to be well tolerated at
this position. Binding affinity was also measured for the CB2 recep-
tor expressed in CHO cells, employing [3H]WIN-55,212-2 as a
radio-ligand.22,24 Virtually all of our imidazole-based compounds
were devoid of activity in this CB2 receptor binding assay, indicat-
ing high selectivity for CB1 over CB2 for these analogs. Selected
examples of the above analogs are summarized in Table 3.

In conclusion, we investigated a series of diarylimidazolyl oxa-
diazole and thiadiazole derivatives as antagonists to the cannabi-
noid CB1 and CB2 receptors. Several of the compounds in these
series exceeded or maintained the potency of known CB1 antago-
nists,25 validating that (i) a 1,3,4-oxadiazole/thiadiazole ring could
act as a bioisostere of the amide moiety and (ii) an imidazole ring is
interchangeable with a pyrazole ring in rimonabant as shown in
Refs. 15 and 16. Importantly, these analogs also display good selec-
tivity for CB1R over CB2R. Thus, the diarylimidazolyl oxadiazole or
thiadiazole class of compounds possesses promising therapeutic
possibility as a CB1 receptor antagonist for the treatment of
obesity.
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