

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of alkoxy-phenylamides and alkoxy-phenylimidazoles as potent sphingosine-1-phosphate receptor subtype-1 agonists

Ghotas Evindar^{a,*}, Sylvie G. Bernier^b, Malcolm J. Kavarana^a, Elisabeth Doyle^b, Jeanine Lorusso^b, Michael S. Kelley^a, Keith Halley^b, Amy Hutchings^b, Albion D. Wright^b, Ashis K. Saha^a, Gerhard Hannig^b, Barry A. Morgan^a, William F. Westlin^b

^a Department of Medicinal Chemistry, Praecis Pharmaceuticals Incorporated, 830 Winter Street, Waltham, MA 02451, USA ^b Department of Preclinical Research, Praecis Pharmaceuticals Incorporated, 830 Winter Street, Waltham, MA 02451, USA

ARTICLE INFO

Article history: Received 5 September 2008 Revised 18 November 2008 Accepted 20 November 2008 Available online 24 November 2008

Keywords: S1P S1P agonist EDG1 FTY-720 Sphingosine-1-phosphate Alkoxy-phenylamides Alkoxy-phenylimidazoles

ABSTRACT

In the design of potent and selective sphingosine-1-phosphate receptor agonists, we were able to identify two series of molecules based on phenylamide and phenylimidazole analogs of FTY-720. Several designed molecules in these scaffolds have demonstrated selectivity for S1P receptor subtype 1 versus 3 and excellent in vivo activity in mouse. Two molecules PPI-4621 (**4b**) and PPI-4691 (**10a**), demonstrated dose responsive lymphopenia, when administered orally.

© 2008 Elsevier Ltd. All rights reserved.

The discovery of the sphingosine-1-phosphate (S1P) receptor class of G-protein coupled receptors (GPCRs) has opened up exciting and highly competitive areas of research and development. Signaling through members of this cluster of five receptors ($S1P_{1-5}$) with the endogenous natural ligand S1P can induce multiple effects on cardiovascular and immune system function and other yet poorly defined effects on additional physiological systems.¹

FTY-720 is a new molecular entity undergoing clinical evaluation. This prodrug is currently in phase III clinical studies for multiple sclerosis and has completed clinical trials in solid organ transplant rejection prevention.² The prodrug FTY-720, upon in vivo phosphorylation, converts to a potent non-selective S1P receptor agonist (S1P_{1,3-5}) that has profound immunomodulatory activity through direct modulation of in lymphocyte trafficking.³ This immunomodulatory activity is due to triggering of S1P receptor subtype 1 (S1P₁) signaling cascades.⁴ In contrast, it is postulated that agonists of S1P receptor subtype 3 (S1P₃) have been associated with deleterious side effects including bradycardia.⁵ We therefore sought to discover potent S1P₁ receptor agonists with low potency on S1P₃ (S1P₃-sparing) in order to retain the positive

E-mail address: ghotas.x.evindar@gsk.com (G. Evindar).

therapeutic properties and reduce the side effect profile of nonselective S1P receptor agonists like FTY-720.

Our effort to explore new chemical entities in the S1P agonist area started with investigations of S1P and FTY-720 based analogs. A preliminary exploration of S1P related structures has demonstrated that an amide insertion in the S1P structure is well tolerated (Fig. 1a).⁶ Most recently, Clemens and co-workers have demonstrated this by replacing the ethylene component of FTY-720 with an amide bond to allow for active molecules across S1P receptor subtypes 1, 3, 4, and 5 (Fig. 1b).⁷ We chose the amide inserted analog of FTY-720 as an entry point for medicinal chemistry and determination of a structure-activity relationship (SAR). With a simple synthetic strategy in hand (Scheme 1), one could envision the use of an aniline moiety to take advantage of the amino acid chiral pool as a potential agonist head-piece (Fig. 2) to establish a rapid SAR of the region. This allowed for utility of a mono alcohol species to avoid issues with mono phosphate synthesis from prochiral diols. We envisioned introduction of a phenolic oxygen at the lipophilic tail section to facilitate convergent synthesis and expedited tail modifications and thus it was important to gain a thorough understanding of the effects this modification would exert on the in vivo biological activity of these analogs. The ether insertion would allow for the utility of a commercial library of

^{*} Corresponding author. Tel.: +1 781 795 4423.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.11.072

Figure 1. (a) S1P and its corresponding amide analog; (b) phospho-FTY-720 and its corresponding amino acid based analog.

Scheme 1. Reagents: (i) alkyl bromide, Cs₂CO₃, Nal, DMF; (ii) alkyl bromide, KO^IBu, Nal, acetone; (iii) *N*-Boc-amino acid, EDC, HOBt, DIPEA, CH₂Cl₂; (iv) *N*-Boc-amino acid, HATU, DIPEA, DMF; (v) TFA, CH₂Cl₂.

Figure 2. Structure–activity relationship study based on in vivo efficacy: p = 0 or 1; \mathbb{R}^1 and \mathbb{R}^2 were selected from H or Me (chiral center *S* or *R*); \mathbb{R}^3 or \mathbb{R}^4 are selected from H, F, Cl, Me, OMe, or CO₂Me, X is selected from CH₂ or O; and n = 1-6.

substituted 4-aminophenols or precursors to develop an extensive SAR around both the linker and lipophilic tail sections. Furthermore, we envisioned replacement of the amide bond with a more rigid imidazole ring (Fig. 2) as a potential alternative scaffold with the goals of establishing SAR around the linker section and ultimately achieving an active S1P₁ agonist with in vivo potency and a moderate degree of selectivity for S1P receptor subtype 1 over 3.

In pursuit of obtaining a preliminary SAR in phenylamide derivatives of FTY-720 we have generated a number of compounds

Table 1

Percent lymphopenia obtained upon 10 mg/kg oral (PO) administration of the alcohol at 6 h post-dosing in mice 11

	H₂N
⁰ 7 ^{Π15} χ	0

Alcohol	Х	R ¹	Percent lymphopenia
5a	-CH ₂ -	Н	36
4a	-0-	Н	72
4b	-CH ₂ O-	Н	78
4c	-CH ₂ O-	2-F	65
4d	-CH ₂ O-	3-F	66

based on synthetic (Scheme 1). Alkylation of the hydroxyl group of a substituted aminophenol **1** was achieved using alkyl bromide and a catalytic amount of NaI in the presence of either Cs_2CO_3 in DMF (60 °C) or KO^rBu in acetone (50 °C). The amino group of the desired intermediate was then acylated with the desired Boc-protected amino acid using either *N*-ethylcarbodiimide (EDC), 1-hydroxybenzotriazole (HOBt), and *N*,*N*-diisopropylethylamine (DIPEA) or O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and DIPEA. The final compound was obtained in good yields from Boc deprotection of the intermediate with 30% trifluoroacetic acid (TFA).

Based on the short synthetic strategy (Scheme 1), commercial availability of the starting material, and in vivo lymphopenia, a preliminary SAR was obtained as illustrated in Figure 1. This SAR demonstrated that the S-chirality of the amine was essential for compound activity with α -methyl-serine providing better in vivo activity than serine, *homo*-serine or threonine.⁸ Incorporation of an oxygen in the alkyl tail section of the molecule provided better in vivo activity in comparison to the des-oxy analog (Table 1). Further investigation of alkyl ether tail modifications (C5 through C10) provided moderate to good in vivo activity. Fluorine substitution on the aromatic linker was the only tolerated substitution.

Our next approach was modification of the amide linker region to apply a rigid imidazole ring to explore the SAR relative to the azole series of molecules. The designed compounds were synthesized as described in Scheme 2. Substituted phenols were alkylated with the appropriate alkyl bromide using KO^rBu in acetone and a catalytic amount of NaI at 50 °C, or in a microwave at 80 °C using KO^rBu in THF. Friedel-Crafts acylation of the corresponding phenyl ether provided the bromoacetophenone precursor. Reaction of the bromoacetophenone with *N*-protected-amino acid provided the

Scheme 2. Reagents and conditions: (i) alkylbromide, KO^tBu, NaI, acetone; (ii) alkylbromide, KO^tBu, THF, microwaved, 45 min, 80 °C; (iii) 1–bromoacetyl bromide, AlCl₃, CH₂Cl₂; (iv) *N*-Boc-amino acid, Cs₂CO₃, DMF; (v) AcONH₄, toluene or xylenes, reflux; (vi) TFA, CH₂Cl₂.

 $\mbox{Scheme 3.}$ Reagents: (i) diethyl phosphorochloridate, Et_3N, CH_2Cl_2; (ii) TMSBr, CH_2Cl_2.

amino acid ester intermediate which, upon intramolecular cyclization in the presence of excess ammonium acetate, produced the desired phenylimidazole. The phenylimidazole was either deprotected to remove the Boc group using 30% TFA in CH₂Cl₂, or was phosphorylated as illustrated in Scheme 3.

The imidazole analogs of FTY-720 showed excellent in vivo activity analogous to the corresponding amide analogs (Table 2). The C8 analog (**10a**, PPI-4691) showed slightly better in vivo activity than the C7 analogs. Similar to the amide counter-part, only fluoro substitution was tolerated on the phenyl group.

In order to determine the binding activity and compound selectivity against human $S1P_1$ and $S1P_3$ receptors, the desired phosphates were synthesized based on the synthetic strategy illustrated in Scheme 3. Reaction of Boc-protected amino-alcohol with excess diethyl chlorophosphate in the presence of triethylamine gave phospho-triester **11** which upon treatment with excess bromotrimethylsilane afforded the desired final phosphate **12**.

Binding activity of S1P and synthesized phosphate agonists were measured using a modified version of the $[^{33}P]S1P$ binding assay described by Davis and co-workers.⁹ S1P and compound **12a** showed similar binding activity at S1P₁ as reported in Table 3. Compounds **12b–12e** showed similar binding activity at S1P₁ with two- to threefold improvement over **12a**. This demonstrated

the change from amide to imidazole allowed for SAR information transfer to obtain potent S1P agonists. Compounds 12a-12e demonstrated weaker but similar binding activity at S1P₃, allowing for moderate to good selectivity of eight- to 42-fold. Overall, relatively weaker binding activity was observed for the amide series at receptor subtypes 4 and 5. The $[^{35}S]GTP\gamma S$ functional assay was used to further investigate the receptor subtype selectivity of both series of molecules. The functional assay binding activity was measured as described by Davis and co-workers.¹⁰ Agonist **12e** was observed to be three times more potent than S1P itself with a relatively moderate selectivity of eightfold for S1P1 over S1P3 (Table 4). Fluoro-substitution on the phenyl ring appeared to have little or no effect on the agonist activity or selectivity. A further three- to fivefold improvement in S1P₁ receptor activity was observed when the amide group was replaced with an imidazole moiety (compounds **12d** and **12e**). Even though the $S1P_3$ activity for the amide and imidazole analogs remained the same, the improved activity at S1P₁ for the corresponding imidazole analogs led to three- to fivefold improvement in agonist selectivity for S1P₁ over S1P₃. Therefore, based on the functional assay against human S1P₁ and S1P₃ receptors, both amide and imidazole series of the S1P agonist demonstrated excellent S1P₁ receptor agonist activity with moderate to good overall selectivity for S1P receptor subtypes 1 over 3.

The lead compounds **4b** (PPI-4621) and **10a** (PPI-4691) were further investigated for in vivo dose response when orally administered at doses between 0.3 and 10 mg/kg. Both compounds showed excellent lymphopenia at 10 and 3 mg/kg (Fig. 3). At 0.3 mg/kg both compounds showed little or no response while at 1 mg/kg both compounds showed good to moderate response with

Table 4

 $[^{35}S]$ GTP γ S binding activity on human S1P_{1,3-5} receptor subtypes

Table 2

Percent lymphopenia obtained upon 10 mg/kg oral (PO) administration of the alcohol at 6 h post-dosing in mice 9

Alcohol	R ¹	R ²	Percent lymphopenia
10a	Н	C ₈ H ₁₇	83
10b	Н	C ₇ H ₁₅	74
10c	2-F	C ₈ H ₁₇	70
10d	3-F	C ₈ H ₁₇	81

C₈H₁₇O1²3NH₂ R¹Q^{Me}O_PO HOOH

Agonist	Q	R ¹	hS1P ₁ EC ₅₀ (nM)	hS1P ₃ EC ₅₀ (nM)	S1P ₃ /S1P ₁
S1P	-	_	7.9	3	0.4
12a	Amide	Н	2.4	16.3	6.9
12b	Amide	2-F	1.1	10.1	9.2
12c	Amide	3-F	2.1	9.8	4.7
12d	Imidazole	Н	0.55	14.8	26.9
12e	Imidazole	2-F	0.45	10.8	24

Table 3

[³³P]S1P binding activity on human S1P_{1,3-5} receptor subtypes

Agonist	Q	\mathbb{R}^1	hS1P ₁ IC ₅₀ (nM)	hS1P ₃ IC ₅₀ (nM)	hS1P ₄ IC ₅₀ (nM)	hS1P5 IC50 (nM)	S1P ₃ /S1P ₁
S1P	-	-	0.47	0.66	2.4	1.1	-
12a	Amide	Н	0.73	5.9	4.0	8.8	8.1
12b	Amide	2-F	0.14	5.9	3.5	6.9	42
12c	Amide	3-F	0.35	3.6	1.8	3.2	10.2
12d	Imidazole	Н	0.26	5.3	1.1	1.4	20.3
12e	Imidazole	2-F	0.35	5.8	1.9	1.1	16.5

Compounds 10a (left) and 4b(right) (mg/kg)

Figure 3. Dose responsive lymphopenia for lead compounds 10a (PPI-4691) and 4b (PPI-4621) relative to the vehicle.

compound **10a** showing better in vivo activity. Overall, both compounds **4b** and **10a** demonstrated excellent dose responsiveness when administered orally at doses between 0.3 and 10 mg/kg.

In summary, we have generated a robust SAR around two different scaffolds of S1P₁ receptor agonists. We have demonstrated excellent S1P₁ receptor binding potency with moderate to good selectivity in both series of molecules, with the phenyl-imidazole series of molecules giving further improvement in receptor selectivity and in vivo potency. Our lead molecules from these series, **4b** (PPI-4621) and **10a** (PPI-4691), demonstrated that both alkoxy-phenylamide and alkoxy-phenylimidazole analogs have excellent in vivo oral activity. These new chemical entities provide a solid foundation for further structural modifications and exploration to enhance agonist selectivity.

References and notes

- (a) Spiegel, S.; Milstein, M. Nat. Rev. Mol. Cell Biol. 2003, 4, 397; (b) Spiegel, S.; Milstein, S. Biochem. Soc. Trans. 2003, 31, 1216.
- (a) Salvadori, M.; Budde, K.; Charpentier, B.; Klempnauer, J.; Nashan, B.; Pallardo, L. M.; Eris, J.; Schena, F. P.; Eisenberger, U.; Rostaing, L.; Hmissi, A.; Aradhye, S.FTY720 0124 Study Group. Am. J. Transplant. 2006, 6, 2912; (b)

Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O'Connor, P.; Polman, C. H.; Haas, T.; Korn, A. A.; Karlsson, G.; Radue, E. W.FTY720 D2201 Study Group *N. Eng. J. Med.* **2006**, 355, 1124; (c) Khoury, S. *J. Watch Neurol.* **2006**, 1, 1.

- (a) Sugiyama, A.; Yatomi, Y.; Ozaki, Y.; Hashimoto, K. Cardiovasc. Res. 2000, 46, 119; (b) Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C. A.; Zollinger, M.; Lynch, K. R. J. Biol. Chem. 2002, 277, 21453; (c) Mandala, S.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie, J.; Milligan, J.; Thornton, R.; Shei, G.-J.; Card, D.; Keohane, C. A.; Rosenbach, M.; Hale, J.; Lynch, C. L.; Rupprecht, K.; Parsons, W.; Rosen, H. Science 2002, 296, 346.
- (a) Matloubian, M.; Lo, C. G.; Cinamon, G.; Lesneski, M. J.; Xu, Y.; Brinkmann, V.; Allende, M. L.; Proia, R. L.; Cyster, J. G. *Nature* **2004**, 427, 355; (b) Goetzl, E. J.; Graler, M. H. *J. Leukocyte Biol.* **2004**, *76*, 30.
- (a) Forrest, M.; Sun, S.-Y.; Hajdu, R.; Bergstrom, J.; Card, D.; Hale, J.; Keohane, C. A.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosenbach, M.; Shei, G.-J.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.; Rosen, H.; Proia, R.; Doherty, G.; Mandala, S. *J. Pharmacol. Exp. Ther.* **2004**, *309*, 758; (b) Sanna, M. G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.-Y.; Peterson, M. S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H. *J. Biol. Chem.* **2004**, *279*, 13839.
- Im, D.-S.; Clemens, J.; Macdonald, T. L.; Lynch, K. R. Biochemistry 2001, 40, 14053.
- Clemens, J. J.; Davis, M. D.; Lynch, R. K.; Macdonald, T. L. Bioorg. Med. Chem. Lett. 2003, 13, 3401.
- 8. In order to induce in vivo activity, that is, lymphopenia, mice were treated with the indicated compounds described herein as follow: Male C57BI/6 mice were divided into groups of three. A control group received the 3% BSA vehicle only. The other groups received a specified dose of test compound in vehicle administered orally (PO). After 6 h, the mice were anesthetized with isoflurane and approximately 250 µl of blood was removed from the retroorbital sinus and collected in an EDTA microtainer, mixed with an anticoagulant and placed on a tilt table until complete blood count (CBC) analysis.
- FTY-720 was used as the control in these experiments. Upon 1.0 mg/kg oral (PO) administration of FTY-720 generally 80% lymphopenia was observed.
- 10. The IC₅₀ of a compound was determined using a modified version of the [³³P]sphingosine-1-phosphate binding assay described by Davis, M. D.; Clemens, J. J.; Macdonald, T. L.; Lynch, R. K. J. Biol. Chem. 2005, 280, 9833' as follows: For the binding assay, [³³P]sphingosine-1-phosphate (obtained from American Radiolabeled Chemicals, Inc) was added to membranes in 200 µl in 96-well plates with assay concentrations of 2.5 pM [³³P]sphingosine-1-phosphate, 4 mg/ml BSA, 50 mM Hepes, pH 7.5, 100 mM NaCl.5 mM MgCl₂, and 5 µg of protein. Binding was performed for 60 min at room temperature with gentle mixing and terminated by collecting the membranes onto GF/B filter plates. After drying the filter plates for 10 min, 50 µl of Microscint 40 was added to each well, and filter-bound radionuclide was measured on a Packard Top Count. Non-specific binding was defined as the amount of radioactivity remaining in the presence of excess of unlabeled S1P.
- 11. Davis, M. D.; Clemens, J. J.; Macdonald, T. L.; Lynch, R. K. J. Biol. Chem. **2005**, 280, 9833.