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ABSTRACT: Herein, we present a selective synthesis of 2-substituted and 1,2-disubstituted benzimidazoles by acceptorless dehy-

drogenative coupling of aromatic diamine with primary alcohols. The reaction is catalyzed by phosphine free tridentate NNS ligand 

derived manganese (I) complex. 

Over the past few years, benzimidazoles and their derivatives 

have attracted significant attention due to their important bio-

logical as well as pharmacological properties.1 Several pharma-

ceutically important compounds having benzimidazole core are 

known for their antiallergic,2 antihistaminic,3 anti-ulcerative,4 

antihypertensive5 and antipyretic properties.6 Furthermore, ben-

zimidazole derivatives are also effective against HIV7 and hu-

man cytomegalovirus (HCMV).8 The classical approach to syn-

thesize benzimidazoles is the condensation of o-phenylenedia-

mine with carboxylic acids or carboxylic acid-derivatives under 

strong acidic conditions.9 Another widely used strategy in-

volves the condensation 1,2-phenelynediamine with alde-

hyde/alcohol in the presence of  different oxidizing agents.10 

Several other different catalytic approaches to synthesize ben-

zimidazoles are also reported.11-14 However many of these 

method suffers  either from the use of  stoichiometric amount 

of oxidizing agents or expensive catalysts. Another major prob-

lem is the selectivity during the synthesis of 2-substituted and 

1,2-disubstituted benzimidazoles. In recent times, acceptorless 

dehydrogenation strategies for synthesis of different heterocy-

cles directly from alcohols15 are becoming more and more im-

portant, as alcohols can be readily obtained from renewable lig-

nocellulose.16 Thus, the synthesis of benzimidazoles17 directly 

from primary alcohol and o-phenylenediamine has recently at-

tracted much attention and most of these methodologies use pre-

cious noble metals and/or acceptors.18 One of the earliest exam-

ple of such type of reaction was developed by Watanbe and 

coworkers.18a The reaction is catalyzed by ruthenium complex 

at elevated temperature (215 °C). Recently, Kempe and co-

workers developed an elegant method to synthesize 2-substi-

tuted benzimidazoles under relatively milder condition.18b The 

reaction is catalyzed by iridium pincer complex and does not 

involve any acceptor. Selective synthesis of 1,2-disubstituted 

imidazole from diamine and alcohol catalysed by Ir(III) com-

plexes was also accomplished recently.18c 

The replacement of costly noble-metal catalyst by inexpen-

sive environmentally benign earth-abundant metals is an im-

portant goal in homogenous catalysis. In the recent years, con-

siderable efforts were made towards the development of several 

different de(hydrogenative) reaction methodologies using base 

metal complexes.19 Although manganese is less expensive 

abundant and nontoxic metal, the catalytic de(hydrogenative) 

reactions with manganese is still in the nascent stage. The 

(de)hydrogenative reactions catalyzed by Mn-pincer complexes 

became a very important topic in the area of catalysis after the 

seminal works published independently by the group of Mil-

stein, Beller, Kempe and Kirchner in 2016.20 Subsequent to 

these reports a significant number of intriguing transformations 

catalyzed by Mn-complexes have been developed.21  

Very recently, the formation of 2-substituted benzimidazoles 

catalyzed by cobalt pincer22 complex has been reported by Mil-

stein and co-workers. However, selective synthesis of both 2-

substituted and 1,2-disubstituted benzimidazoles from 1,2-dia-

mino benzene and alcohol using earth-abundant, nontoxic metal 

catalyst is highly desirable. To the best of our knowledge the 

synthesis of benzimidazoles directly from 1,2-diaminobenzene 

and alcohol catalyzed by manganese has not been reported. 

Herein, we describe a general and selective method to synthe-

size both 2-substituted and 1,2-disubstituted benzimidazoles 

from 1,2-diamino benzene and alcohol using non-phosphine-

manganese complex. At the outset, we prepared new NNS-

Manganese (I) complex (1) by refluxing 2-(ethylthio)-N  
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Figure 1. Synthesis of tridentate NNS ligand based manganese (I) 

complex and molecular structure of 1 with thermal ellipsoid 30% 

probability level. (all the hydrogens except N2 and the counter ion 

are not shown for the clarity)  

-(pyridin-2-ylmethyl)ethanamine with MnBr(CO)5 in THF. 

Single crystal suitable for X-ray diffraction was made by layer-

ing THF solution of the complex 1 with toluene. The crystal 

structure of 1 is more like octahedral geometry around Mn-cen-

ter, which is formed by tridentate ligand and three carbonyl 

groups. The crystal structure reveals that both the N atoms and 

the S atom are cis to each other and the three carbonyls are cis 

to each other (Figure 1).  

  

Table 1. Optimization of the reaction conditions for the syn-

thesis of 1,2-disubstituted benzimidazolea, b 

 
aReaction conditions: 2a (0.5 mmol), 3b (1.5-2.0 mmol), tBuOK 

(0.75-2.0 mmol), Cat 1 (0.05 mmol), under argon. bNMR yield us-

ing CH3CN as internal standard. c0.025 mmol cat used. d80 °C 

 

 

Table 2. Scope of the reaction to synthesize 1,2-disubstituted 

benzimidazole a, b 

 

aReaction conditions: Diamine 2 (0.5 mmol), alcohol 3 (1.7 

mmol), tBuOK (1 mmol), Cat 1 (0.05 mmol), 20 h, under argon, 
bIsolated yield, c44 h, d26 h 

The catalytic applicability of complex 1 towards the synthesis 

of 1,2-disubstituted benzimidazole, directly from 1,2-phe-

nylenediamines and alcohols has been investigated. To find out 

the optimum conditions, the reaction between 1,2-phenylenedi-

amine and 4-methoxybenzylalcohol was studied under neat 

condition. It was found that the particular ratio of base and sub-

strate and specific ratio of amine and alcohol is important for 

good yield of the desired products. Potassium tert-butoxide was 

found to be more effective base than KOH or K2CO3 (Table 1 

entries 6, 12 and 13). MnBr(CO)5 gave only trace amount of 

the desired product under the similar reaction conditions. The 

control experiments were also performed and it was observed 

that in the absence of catalyst, no desired product was obtained 

and similarly without the presence of base, complex 1 failed to 

give any desired product (Table 1 entries 10, 11). 

Here, a wide range of 1-benzyl-2-aryl-1H-benzo[d]imidazole 

derivatives were also synthesized from 1,2-diaminobeznene 

and primary alcohol (Table 2). Differently substituted benzylic 

alcohols as well as 2-naphthalenemethanol reacted well with o-

phenylenediamine to give good yield of the desired products. 

Moderate to good yield of the desired 1,2-disubstituted benzim-

idazoles were achieved when heterocyclic alcohols such as 2-

pyridinemethanol, furfural or 2-thiophenemethanol have been 

employed as substrates. A small amount of bis N-alkylated  
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Table 3. Synthesis of 2-substituted benzimidazole a, b 

 

aReaction conditions: Diamine (1.0 mmol), alcohol (1.3 mmol), 

KOH (0.27 mmol), Cat 1 (0.05 mmol), 20 h, under air. bIsolated 

yield, c72 h 

product of the o- phenylenediamine was also observed in some 

cases, which might be due to the hydrogenation of bis-imines 

formed in-situ during the reaction. Furthermore, 4,5-Dimethyl-

1,2-phenylenediamine, 4,5-Dichloro-o-phenylenediamine and 

3,4-diaminotoluene reacted smoothly under the optimized reac-

tion condition. 3,4-diaminotoluene gave mixture of two iso-

meric 1-benzyl-2-aryl-1H-benzo[d]imidazole derivatives. It is 

important to note that synthesis of 2-aryl-1H-benzo[d]imidaz-

ole derivatives could also be achieved just by tuning the reac-

tion conditions (Table 3).  

 

Table 4. Synthesis of 1-benzyl-2-aryl-1H-benzo[d]imidaz-

olesa, b 

 
aReaction conditions: N-Benzyl-1,2-diaminobenzene (1.0 

mmol), alcohol (1.3 mmol), KOH (0.27 mmol), Cat 1 (0.05 

mmol), 20 h, under air. bIsolated yield.  

Excellent yield of the desired products were obtained with the 

benzyl alcohols having both electron donating and electron 

withdrawing group in the aromatic ring. For example,                   

4-methylbenzyl alcohol and 4-methoxybenzyl alcohol gave 

81% and 82% yield of the desired benzimidazole respectively, 

which is even higher than the yield reported by Ru18a or cobalt 

catalyst.22 However, the reaction is slower with aliphatic alco-

hols. Thus, when 1-octanol was used as substrate, 35% of the 2-

ethyl-1H-benzo[d]imidazole was obtained after 72 hours. To 

our delight, complex 1 also able to catalyse the dehydrogenative 

coupling of N-Benzyl-1,2-diaminobenzene (6) with different 

benzyl alcohols to afford 1-benzyl-2-aryl-1H-benzo[d]imidaz-

ole derivatives (7) in good yield (Table 4). 

In addition, three possible mechanistic pathways are pro-

posed which are depicted in the (Scheme 1). At first, the alde-

hyde was formed by the assistance of Mn-complex 1. The dia-

mine can react with the aldehyde A to form monoamine B 

which can further undergo nucleophilic addition to the imine 

carbon to form benzimidazoline intermediate C. This interme-

diate benzimidazoline C either undergoes oxidation leading to 

the formation of 2-substituted benzimidazole 5a or reacts fur-

ther with the aldehyde A to generate intermediate D which will 

finally transform to 1,2-disubstituted imidazole 4a (Path II). 

There is also a possibility of N-alkylation of 2-substituted ben-

zimidazole23 by primary alcohol through borrowing hydrogen 

strategy, which will eventually transform 5a, to 4a (Path I). Fur-

thermore, diamine also can lead to the formation of bis-imine F 

which undergoes rearrangement to afford 1,2-disubstituted ben-

zimidazole (Path III).17i 

 

Scheme 1. Plausible mechanistic pathway 

 Although the exact pathway is not fully clear at this point, yet 

we tried to shed light on the mechanism by controlling experi-

ment. First of all, when 2-(4-methoxyphenyl)-1H-benzo[d]im-

idazole 5b was treated with 4-methoxybenzyl alcohol 3a in 

presence of Cat 1 and tBuOK, no N-alkylated product, 1-(4-

methoxybenzyl)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole 

4b was observed (Scheme 2). Thus, it is clear that the reaction 

is not following Path I. MS analysis of the crude reaction mix-

ture of o-phenylenediamine and 4-methoxybenzyl alcohol after 

2 h, showed peak which corresponds either to bisimine (F, Ar=  
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Scheme 2. Study of N-alkylation of 2-substituted benzimid-

azole By Cat 1 

 

 

 

p-C6H4OMe) or 1,2 disubstituted benzimidazole 4b (as the mo-

lecular weight of both the compound are same) while the ion 

peak corresponds to intermediate (D, Ar = p-C6H4OMe) was not 

observed. We have also isolated small amount bis-amine H dur-

ing the synthesis of 1-benzyl-2-aryl-1H-benzo[d]imidazole de-

rivatives which finally validate the involvement of bis-imine in-

termediate F and formation of 1,2 disubstituted imidazole de-

rivatives via Path III. 

In Summary, we have synthesized a new tridentate NNS-

ligand based manganese (I) complex, which catalyzes the dehy-

drogenative coupling of diamine and primary alcohol to synthe-

size a wide range of benzimidazole derivatives. The main ad-

vantage of this methodology is 3-fold: selectively 2-substituted 

and 1,2 di-substituted benzimidazoles are synthesized using a 

single catalyst just by tuning the reaction conditions,  the reac-

tions are catalyzed by earth abundant metal and catalytic reac-

tions are performed under phosphine free condition. 

EXPERIMENTAL SECTION  

General Considerations: Unless otherwise mentioned, all 

the chemicals were purchased from common commercial 

sources and used as received. All solvents were dried by using 

standard procedure. The preparation of catalyst was carried out 

under argon atmosphere with freshly distilled dry THF. All cat-

alytic reactions were carried out with air and/or under argon at-

mosphere using dried glassware and standard syringe/septa 

techniques. DRX-400 Varian spectrometer and Bruker Avance 

III 600 and 400 spectrometers were used to record 1H and 13C 

NMR spectra using CDCl3 and DMSO-d6 as solvent and TMS 

as an internal standard. Chemical shifts (δ) are reported in ppm 

and spin-spin coupling constant (J) are expressed in Hz, and 

other data are reported as follows: s = singlet, d = doublet, t = 

triplet, m = multiplet, q = quartet, and br s = broad singlet. X-

ray crystallographic data were collected using Agilent Super 

Nova (Single source at offset, Eos) diffractometer. FTIR were 

collected on PerkinElmer IR spectrometer. Q-Tof ESI-MS in-

strument (model HAB 273) was used for recording mass spec-

tra. SRL silica gel (100-200 mesh) were used for column chro-

matography. 

    Synthesis and characterization of NNS-Mn-complex 1: 

Ligand24 [(PyCH2)HN(CH2CH2SEt)] (0.302g, 1.54 mmol) was 

taken in 4 mL dry THF and was added dropwise to the orange-

yellow suspension of [MnBr(CO)5] (0.423g, 1.54 mmol) in 8 

mL degassed dry THF. Then, the suspension was refluxed for 

overnight under argon atmosphere. After cooling it down to the 

room temperature, the solvent was evaporated to obtain the res-

idue, which was further washed with hexane and dried under 

vacuum to get yellow solid of Mn-complex 1 (yield 0.610g, 

95%). The single crystal was grown by slow diffusion of tolu-

ene in the THF solution of the complex. 1H NMR (600 MHz, 

CDCl3) δ 8.69 (s, 1H), 8.26 (br s, 1H), 7.87 (br s, 1H), 7.71 (br 

s, 1H), 7.40 (br s, 1H), 4.81(br s, 1H),  4.58 (br s, 1H),  3.39-

3.35 (m, 2H), 2.98-2.87 (m, 2H), 2.05 (br s, 2H), 1.45 (s, 3H); 
25  13C NMR (150 MHz, CDCl3) δ 218.92, 216.57, 161.90, 

152.64, 139.58, 125.25, 122.70, 60.41, 54.57, 33.07, 31.85, 

13,42. IR (cm-1): 3059, 2920, 2875, 2030, 1946, 1920, 1609, 

1462, 1286, 1196, 1083, 949, 910, 821, 769, 689, 637. HRMS 

(ESI) calcd for C13H16MnN2O3S [M]+: 335.0262; found, 

335.0263. 

    General experimental procedure for the synthesis of 

1,2-disubstituted benzimidazoles: A mixture of o-phenylene-

diamine (0.5 mmol), primary alcohol (1.7 mmol), KOtBu (1.0 

mmol) and complex 1 (0.05 mmol) was stirred at 140 °C for the 

specified time under solvent free condition in an open system 

under argon. Then the reaction mixture was cooled to room tem-

perature and was diluted with chloroform. Then it was filtered 

through celite and the filtrate was concentrated under vacuum. 

The residue obtained was further purified by column chroma-

tography on silica gel using 10%-30 % ethyl acetate in hexane 

as an eluent. 

     General experimental procedure for the synthesis of 2-

substituted benzimidazoles: A mixture of 1,2-diaminoben-

zene (1.0 mmol), primary alcohol (1.3 mmol), KOH (0.27 

mmol) and catalyst 1 (0.05 mmol) was stirred under neat con-

dition at 140 °C for 20 h in open air. After cooling, MeOH was 

added to dilute the mixture and filtered through celite. The fil-

trate was concentrated under reduced pressure and the residue 

was purified by silica gel column chromatography using 10% -

30 % ethyl acetate in hexane as an eluent to get pure compound. 

    General experimental procedure for the synthesis of 1-

benzyl-2-aryl-1H-benzo[d]imidazoles: A mixture of N-Ben-

zyl-1,2-diaminobenzene (1.0 mmol), primary alcohol (1.3 

mmol), KOH (0.27 mmol) and catalyst 1 (0.05 mmol) was 

stirred under neat condition at 140 °C  for 20 h in open air. After 

cooling, CHCl3 was added to dilute the mixture and then it was 

filtered through celite. The filtrate was concentrated under vac-

uum and the residue was purified by silica gel column chroma-

tography using 10% -30 % ethyl acetate in hexane as an eluent 

to get pure compound. 

1-Benzyl-2-phenyl-1H-benzo[d]imidazole (4a).17a White 

solid, (0.113mg, 79% yield). 1H NMR (600 MHz, CDCl3) δ 7.80 

(d, J = 8.04 Hz, 1H), 7.62-7.60 (m, 2H), 7.40- 7.36 (m, 3H), 

7.27-7.21 (m, 4H), 7.18-7.13 (m, 2H), 7.03 (d, J = 7.02 Hz, 2H), 

5.39 (s, 2H); 13C NMR (150 MHz, CDCl3) δ 154.3, 143.3, 

136.5, 136.2, 130.2, 130.0, 129.4, 129.2, 128.9, 127.9, 126.1, 

123.2, 122.8, 120.1, 110.7, 48.5. 

    1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1H-

benzo[d]imidazole (4b).17a   White solid, (0.129mg, 83% yield).  
1H NMR (600 MHz, CDCl3) δ 7.75 (d, J = 7.98 Hz, 1H), 7.55 

(d, J = 8.7 Hz, 2H), 7.22-7.18 (m, 1H), 7.15-7.12 (m, 2H), 6.94 

(d, J = 8.52 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.7 

Hz, 2H), 5.29 (s, 2H), 3.75 (s, 3H), 3.69 (s, 3H); 13C NMR (150 

MHz, CDCl3) δ 161.0, 159.2, 154.2, 143.2, 136.2, 130.8, 128.6, 

127.3, 122.8, 122.6, 122.5, 119.8, 114.5, 114.3, 110.5, 55.5, 

55.4, 48.0. 

    1-(3-methoxybenzyl)-2-(3-methoxyphenyl)-1H-

benzo[d]imidazole (4c).18c   White solid, (0.156mg, 91% yield). 

1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 5.32Hz, 1H), 7.29-

7.23 (m, 2H), 7.19-7.16 (m, 5H), 6.95-6.96 (m, 1H), 6.75 (dd, J 

= 7.2 Hz, 1.14 Hz, 1H), 6.62 (d, J = 5.12 Hz, 1H), 6.58 (s,1H), 

5.36 (s, 2H), 3.66 (s, 3H), 3.65 (s, 3H);13C NMR (100 MHz, 

CDCl3); δ 160.3, 159.8, 154.1, 143.1, 138.3, 136.3, 131.3, 
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130.3, 130.0, 123.2, 122.8, 121.5, 120.1, 118.3, 116.7, 114.1, 

113.0, 112.0, 110.6, 55.4, 55.3, 48.4. 

    2-(naphthalen-2-yl)-1-(naphthalen-2-ylmethyl)-1H-

benzo[d]imidazole (4d).17a White solid, (0.155mg, 81% yield). 

1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1H), 7.88-7.75 (m, 6H), 

7.67-7.63 (m, 2H), 7.49-7.39 (m, 5H), 7.30-7.16 (m, 4H), 5.59 

(s, 2H); 13C NMR (100 MHz, CDCl3) δ 154.4, 143.4, 136.5, 

134.1, 133.8, 133.5, 133.02, 132.9, 129.4, 129.2, 128.7, 128.7, 

128.0, 127.9, 127.4, 126.8, 126.8, 126.4, 126.2, 124.9, 124.0, 

123.4, 123.0, 120.2, 110.7, 48.9. 

    1-(4-methylbenzyl)-2-(p-tolyl)-1H-benzo[d]imidazole 

(4e).17a   White solid, (0.126mg, 81% yield).   1H NMR (600 

MHz, CDCl3) δ 7.78 (d, J = 8.04 Hz, 1H), 7.51 (d, J = 8.16 Hz, 

2H), 7.23-7.21 (m, 1H), 7.19 -7.17 (m, 2H), 7.16- 7.11 (m, 2H), 

7.06 (d, J = 7.92 Hz, 2H), 6.92 (d, J = 8.04 Hz,  2H), 5.33 (s, 

2H), 2.33 (s, 3H), 2.26 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 

154.5, 143.3, 140.1, 137.5, 136.2, 133.6, 129.8, 129.6, 129.3, 

127.3, 126.0, 122.9, 122.7, 119.9, 110.6, 48.3, 21.6, 21.2. 

    1-(3-phenoxybenzyl)-2-(3-phenoxybenzyl)-1H-

benzo[d]imidazole (4f).26   Brown liquid, (0.186mg, 80% 

yield). 1H NMR (600 MHz, CDCl3) δ 7.75 (d, J = 7.98 Hz, 1H), 

7.34 -7.29 (m, 2H), 7.24-7.21 (m, 6H), 7.19-7.16 (m, 1H), 7.14-

7.12 (m, 2H), 7.05-7.0 (m, 3H), 6.92 (dd, J = 8.58 Hz, 1.02 Hz, 

2H), 6.86 (dd, J =8.46 Hz, 1.02 Hz, 2H), 6.80 (d, J = 6.72 Hz, 

1H), 6.64 (d, J = 6.84 Hz, 2H); 5.31 (s, 2H); 13C NMR (150 

MHz, CDCl3); δ 158.1, 157.9, 156.6, 153.5, 143.1, 138.3, 136.0, 

131.7, 130.5, 130.3, 130.0, 129.9, 129.8, 123.9, 123.9, 123.8, 

123.4, 122.9, 120.6, 120.2, 120.2, 119.4, 119.3, 119.2, 117.9, 

116.3,110.6, 48.2. 

    2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-

benzo[d]imidazole (4g).17a White solid, (0.121mg, 81% yield).  
1H NMR (600 MHz, CDCl3) δ 7.76 (d, J = 7.08 Hz, 1H), 7.45 

(dd, J = 5.37 Hz, 1.02 Hz, 1H), 7.40 (dd, J = 3.75 Hz, 1.02 Hz, 

1H), 7.31-7.29 (m, 1H), 7.25-7.19 (m, 2H), 7.17 (dd, J = 5.1 Hz, 

1.14 Hz, 1H), 7.08-7.06 (m, 1H), 6.88-6.87 (m, 1H), 6.80-6.79 

(m, 1H), 5.63 (s, 2H); 13C NMR (150 MHz, CDCl3); δ 147.7, 

143.1, 138.9, 136.0, 132.0, 129.1, 128.1, 128.1, 127.4, 125.6, 

125.5, 123.4, 123.1, 120.1, 110.0, 44.2. 

    2-(pyridin-2-yl)-1-(pyridin-2-ylmethyl)-1H-

benzo[d]imidazole (4h).17a   White solid, (0.113mg, 79% 

yield).    1H NMR (CDCl3, 400 MHz) δ 8.50 (t, J=5.02 Hz, 2H), 

8.39 (d, J = 8.0 Hz, 1H), 7.80-7.74 (m, 2 H), 7.42-7.38 (dt, J = 

7.74, 1.68 Hz, 1H), 7.29 (d, J = 7.92  Hz, 1H), 7.25-7.16 (m, 

3H), 7.07-7.04 (m, 1H), 6.82 (d, J = 7.92 Hz, 1H), 6.22 (s, 2H); 
13C NMR (100 MHz, CDCl3) δ 157.6, 150.5, 150.0, 149.3, 

148.8, 142.8, 137.0, 137.0, 136.9, 124.7, 124.0, 123.8, 123.1, 

122.4, 121.1, 120.2, 110.9, 51.2. 

    2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzo[d]imid-

azole (4i).17a   White solid, (0.089mg, 67% yield).    1H NMR (400 

MHz, CDCl3) δ 7.72-7.69 (m,1H), 7.57 (d, J =0.96 Hz, 1H), 

7.44-7.40 (m,1H), 7.25-7.18 (m, 3H),7.14 (d, J = 3.44 Hz, 1H), 

6.54-6.53 (m, 1H), 6.21-6.16 (m, 2H), 5.57 (s, 2H); 13C NMR 

(100 MHz, CDCl3); δ 149.7, 145.5, 144.1, 144.0, 143.1,142.8, 

135.6, 123.4, 123.1, 119.9, 113.1, 112.2, 110.7, 110.1, 108.5, 

41.8. 

    1-(4-chlorobenzyl)-2-(4-chlorobenzyl)-1H-benzo[d]im-

idazole (4J).17a   White solid, (0.137mg, 78% yield).  1H NMR 

(400 MHz, CDCl3) δ 7.79 (d, J =7.92 Hz, 1H), 7.51 (d, J = 8.52 

Hz, 2H), 7.37 (d, J = 8.52 Hz, 2H), 7.30 - 7.22 (m, 3H), 7.20-

7.12 (m, 2H), 6.95 (d, J = 8.44 Hz, 2H), 5.33 (s, 2H); 13C NMR 

(100 MHz, CDCl3) δ  153.0, 143.2, 136.5, 136.1, 134.8, 134.0, 

130.6, 129.5, 129.3, 128.5, 127.4, 123.6, 123.2, 120.3, 110.4, 

47.9. 

    1-(4-chlorobenzyl)-2-(4-chlorophenyl)-5,6-dimethyl-

1H-benzo[d]imidazole (4k).27 White solid, (0.145mg, 76% 

yield).    1H NMR (400 MHz, CDCl3) δ 7.61 (s, 1H), 7.56 (d, J = 

8.48 Hz, 2H), 7.41 (d, J = 8.48 Hz, 2H), 7.31 (d, J = 8.40 Hz, 

2H), 7.01 (d, J = 8.24 Hz, 2H), 6.95 (s, 1H), 5.34 (s, 2H), 2.39 

(s, 3H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 152.2, 

141.9, 136.2, 135.1, 134.7, 133.9, 132.9, 132.2, 130.5, 129.5, 

129.2, 128.8, 127.3, 120.3, 110.5, 47.8, 20.7, 20.5. 

    1-benzyl-5,6-dimethyl-2-phenyl-1H-benzo[d]imidazole 

(4l).28  White solid, (0.121mg, 77% yield).   1H NMR (600 MHz, 

CDCl3) δ 7.67-7.65 (m, 2H), 7.63 (s, 1H), 7.45-7.40 (m, 3H), 

7.35-7.28 (m, 3H), 7.10 (d, J = 7.08 Hz, 2H), 6.97 (s, 1H), 5.41 

(s, 2H), 2.39 (s, 3H), 2.32 (s, 3H); 13C NMR (150 MHz, CDCl3) 

δ 153.5, 141.9, 136.8, 134.8, 132.4, 131.7, 130.4, 129.8, 129.3, 

129.2, 128.8, 127.8, 126.0, 120.1, 110.7, 48.4, 20.7, 20.5. 

    5,6-Dimethyl-1-(4-methylbenzyl)-2-(4-methylphenyl)-

1H-benzimidazole (4m).27  White solid, (0.122mg, 72% yield).   
1H NMR (600 MHz, CDCl3) δ 7.61 (s, 1H), 7.55 (d, J = 8.04 

Hz, 2H), 7.22 (d, J = 7.92 Hz, 2H), 7.13 (d, J = 7.86 Hz, 2H), 

6.99 (d, J = 7.92 Hz, 2H), 6.96 (s, 1H), 5.36 (s, 2H), 2.39 (s, 

3H), 2.38 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H); 13C NMR (150 

MHz, CDCl3) δ 153.6, 141.8, 139.8, 137.4, 134.8, 133.9, 132.1, 

131.5, 129.8, 129.5, 129.2, 127.5, 125.9, 120.0, 110.7, 48.2, 

21.5, 21.2, 20.7, 20.5.  

    5,6-dimethyl-2-(naphthalen-2-yl)-1-(naphthalen-2-

ylmethyl)-1H-benzo[d]imidazole (4n).28 White solid, 

(0.187mg, 91% yield).   1H NMR (CDCl3, 600 MHz) δ 8.18 (s, 

1H), 7.90-7.82 (m, 5H), 7.74-7.70 (m, 3H), 7.57 (s, 1H), 7.53-

7.46 (m, 4H), 7.33 (d, J = 8.46 Hz, 1H), 7.05 (s, 1H), 5.63(s, 

2H), 2.42 (s, 3H), 2.33(s, 3H); 13C NMR (150MHz, CDCl3) δ 

153.6, 142.1, 135.1, 134.4, 133.7, 133.6, 133.0, 132.9, 132.6, 

131.9, 129.2, 129.1, 128.7, 128.6, 128.1, 127.9, 127.9, 127.7, 

127.2, 126.7, 126.7, 126.3, 126.3, 124.7, 124.0, 120.2, 110.7, 

48.8, 20.8, 20.5. 

    5,6-dimethyl-2-(pyridin-2-yl)-1-(pyridin-2-ylmethyl)-

1H-benzo[d]imidazole (4o).29 Orange solid, (0.137mg, 87% 

yield).   1H NMR (600 MHz, CDCl3) δ  8.59 (d, J = 4.56 Hz, 

1H), 8.53 (d, J = 4.56 Hz, 1H), 8.44 (d, J = 8.04 Hz, 1H), 7.81 

(dt, J =7.83 Hz, 1.56 Hz, 1H), 7.62 (s, 1H), 7.47 (dt, J = 7.71 

Hz, 1.68 Hz, 1H), 7.27-7.25 (m, 1H), 7.15-7.13 (m, 1H), 7.11 

(s, 1H), 6.83 (d, J = 7.92 Hz, 1H), 6.25 (s, 2H), 2.38 (s, 3H), 

2.33 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 157.8, 150.6, 

149.2, 149.2, 148.7, 141.4, 137.0, 136.9, 135.5, 133.3, 132.1, 

124.4, 123.7, 122.3, 120.9, 120.1, 110.8, 51.2, 20.8, 20.5. 

    5,6-dichloro-1-(4-methoxybenzyl)-2-(4-methoxy-

phenyl)-1H-benzo[d]imidazole (4p).17d White solid, 

(0.122mg, 64% yield).    1H NMR (400 MHz, CDCl3) δ 7.89 (s, 

1H), 7.62 (d, J = 8.64 Hz, 2H), 7.28 (s, 1H), 6.99 (t, J = 8.24 

Hz, 4H), 6.88 (d, J =8.52Hz, 2H), 5.34 (s, 2H), 3.86 (s, 3H), 

3.80 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.4, 159.5, 

156.2, 142.7, 135.5, 130.8, 127.6, 127.2, 126.7, 126.7, 121.7, 

121.0, 114.8, 114.5, 111.9, 55.6, 55.5, 48.2. 

    5-methyl-1-(4-methylbenzyl)-2-(p-tolyl)-1H-

benzo[d]imidazole & 6-methyl-1-(4-methylbenzyl)-2-(p-

tolyl)-1H-benzo[d]imidazole (4q & 4q′).17f White solid, 

(0.127mg, 78% yield).    1H NMR (600 MHz, CDCl3) δ 7.72 (d, 

J = 8.16 Hz, 1H), 7.63 (s, 1H), 7.58-7.55 (m, 4H), 7.25-7.22 (m, 

4H), 7.15-7.11 (m, 5H), 7.07-7.02 (m, 2H), 7.00-6.98 (m, 5H), 

5.36 (s, 4H), 2.48 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H), 2.39 (s, 
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3H), 2.34 (s, 3H), 2.33 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 

154.3, 154.0, 143.5, 141.3, 140.0, 139.9, 137.5, 137.4, 136.5, 

134.3, 133.7, 133.7, 133.0, 132.3, 129.8, 129.8, 129.5, 129.5, 

129.2, 129.2, 127.4, 126.0, 125.9, 124.4, 124.3, 119.7, 119.4, 

110.4, 110.1, 48.3, 48.1, 22.0, 21.7, 21.5, 21.5, 21.2, 21.2. 

    5-methyl-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-

1H-benzo[d]imidazole & 6-methyl-2-(thiophen-2-yl)-1-(thi-

ophen-2-ylmethyl)-1H-benzo[d]imidazole (4r & 4r′).17f Yel-

low solid, (0.091mg, 59% yield).    1H NMR (600 MHz, CDCl3) 

δ 7.70 (d, J = 8.22, 1H), 7.61 (s, 1H), 7.51-7.49 (m, 2H), 7.45-

7.42 (m, 2H), 7.26-7.23 (m, 3H), 7.15-7.09 (m, 5H), 6.96-6.93 

(m, 2H), 6.86-6.85 (m 2H), 5.67 (s, 2H), 5.66 (s, 2H), 2.48 (s, 

3H), 2.47 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 147.6, 147.2, 

143.4, 141.2, 139.1, 139.1, 136.2, 134.1, 133.6, 132.9, 132.1, 

132.1, 128.9, 128.8, 128.0, 128.0, 127.8, 127.4, 127.3, 125.5, 

125,5, 125.4, 124.9, 124.8, 119.8, 119.5, 109.8, 109.5, 44.2, 

44.1, 22.1, 21.7. 

     1-benzyl-2-(p-tolyl)-1H-benzo[d]imidazole (7a).17b 

White solid, (0.201mg, 67% yield).  1H NMR (400 MHz, 

CDCl3) δ 7.78 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.08Hz, 2H), 

7.25-7.19 (m, 4H), 7.16 (d, J = 8.0 Hz, 2H), 7.13-7.09 (m, 2H), 

7.01 (d, J = 6.84 Hz, 2H), 5.35 (s, 2H), 2.31 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 154.4, 143.3, 140.1, 136.6, 136.2, 129.5, 

129.2, 129.1, 127.8, 127.2, 126.1, 123.0, 122.7, 120.0, 110.5, 

48.5, 21.5. 

    1-benzyl-2-(4-methoxyphenyl)-1H-benzo[d]imidazole 

(7b).17b   White solid, (0.219mg, 70% yield).   1H NMR (600 

MHz, CDCl3) δ 7.86 (d, J = 8.04 Hz, 1H), 7.63 (d, J = 8.82 Hz, 

2H), 7.34- 7.28 (m, 4H), 7.23-7.18 (m, 2H), 7.11(d, J = 7.38 Hz, 

2H), 6.96 (d, J = 8.76 Hz, 2H), 5.43 (s, 2H), 3.83 (s, 3H); 13C 

NMR (150 MHz, CDCl3) δ 161.0, 154.2, 143.2, 136.6, 136.2, 

130.7, 129.1, 127.8, 126.0, 122.8, 122.6, 122.4, 119.8, 114.3, 

110.5, 55.4, 48.4. 

    1-benzyl-2-(4-fluorophenyl)-1H-benzo[d]imidazole 

(7c).17b   White solid, (0.184mg, 61% yield).   1H NMR (600 

MHz, CDCl3) δ 7.86 (d, J = 8.04 Hz, 1H), 7.68-7.65(m, 2H), 

7.35-7.31(m, 4H), 7.26-7.22 (m, 2H), 7.14 (t, J = 8.58 Hz, 2H), 

7.09 (d, J = 7.2, 2H), 5.43 (s, 2H); 13C NMR (150 MHz, CDCl3) 

δ 163.8 (d, J=249 Hz), 153.3, 143.1, 136.3, 136.2, 131.4, 131.3, 

129.3, 128.0, 126.3 (d, J=3 Hz), 126.0, 123.1 (d, J=55.5 Hz), 

120.1, 116.1 (d, J=21 Hz), 110.6, 48.4. 

    1-benzyl-2-(4-chlorophenyl)-1H-benzo[d]imidazole 

(7d).17b   White solid, (0.202mg, 64% yield).     1H NMR (400 

MHz, CDCl3) δ 7.79 (d, J = 7.96 Hz, 1H), 7.55 (d, J = 8.56 Hz, 

2H), 7.35 (d, J = 8.56 Hz, 2H), 7.29-7.23 (m, 4H), 7.20-7.15 

(m, 2H), 7.01 (d, J = 6.52 Hz, 2H), 5.36 (s, 2H); 13C NMR (100 

MHz, CDCl3) δ 153.1, 143.2, 136.3, 136.3, 136.3, 130.7, 129.3, 

129.2, 128.7, 128.1, 126.0, 123.4, 123.0, 120.2, 110.6, 48.5. 

    1-benzyl-2-(4-bromophenyl)-1H-benzo[d]imidazole 

(7e).17b White solid, (0.240mg, 66% yield).    1H NMR (400 

MHz, CDCl3) δ 7.86 (d, J = 7.96 Hz, 1H), 7.59-7.53(m, 4H), 

7.36-7.30(m, 4H), 7.27-7.21(2H), 7.08 (d, J = 6.52 Hz, 2H), 

5.42 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 153.1, 143.2, 

136.3, 132.1, 130.8, 129.3, 129.1, 128.0, 126.0, 124.6, 123.5, 

123.0, 120.2, 110.6, 48.5. 

    1-benzyl-2-(pyridin-2-yl)-1H-benzo[d]imidazole (7f).30 

White solid, (0.226mg, 79% yield).   1H NMR (400 MHz, 

CDCl3) δ 8.50 (d, J = 4.72 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 

7.77 (d, J = 8.08 Hz, 1H), 7.69 (t, J = 7.92 Hz, 1H), 7.25-7.05 

(m, 9H), 6.08 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 150.6, 

150.0, 148.7, 142.8, 137.5, 136.9, 136.9, 128.6, 127.4, 

126.9,124.7, 123.9, 123.6, 122.9, 120.2, 110.8, 49.0. 

    2-phenyl-1H-benzo[d]imidazole (5a).17c Pale yellow 

solid, (0.149mg, 77% yield).   1H NMR (600 MHz, DMSO-d6) 

δ 12.95 (br s, 1H), 8.19 (d, J = 7.14 Hz, 2H), 7.67(d, J = 6.96 

Hz, 1H), 7.57-7.54 (m, 3H), 7.50-7.48 (m, 1H), 7.23-7.19 (m, 

2H), 13C NMR (150 MHz, DMSO-d6) δ 151.3, 143.8, 135.0, 

130.2, 129.9, 129.0, 126.5, 122.6, 121.8, 118.9, 111.4. 

    2-(4-methoxyphenyl)-1H-benzo[d]imidazole (5b).17c 

White solid, (0.184mg, 82% yield).   1H NMR (600 MHz, 

DMSO-d6) δ 12.76 (s, 1H), 8.11 (d, J = 8.76 Hz, 2H), 7.61 (d, J 

= 7.5 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.19 - 7.14 (m, 2H), 

7.11(d, J = 8.76 Hz, 2H), 3.84 (s, 3H); 13C NMR (150 MHz, 

DMSO-d6) δ 160.6, 151.4, 143.9, 135.0, 128.1, 122.7, 122.2, 

121.5, 118.5, 114.4, 111.1, 55.4. 

    2-(3-methoxyphenyl)-1H-benzo[d]imidazole (5c).17c    

White solid, (0.189mg, 85% yield). 1H NMR (400 MHz, 

DMSO-d6) δ 12.90 (s, 1H), 7.77-7.75 (m, 2H), 7.67 (d, J = 7.44 

Hz, 1H), 7.53 (d, J = 7.36 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 

7.24-7.17 (m, 2H), 7.07-7.05 (m, 1H), 3.86 (s, 3H); 13C NMR 

(100 MHz, DMSO-d6) δ 159.7, 151.1, 143.7, 135.0, 131.5, 

130.1, 122.6, 121.7, 118.9, 118.8, 115.9, 111.4, 111.3, 55.3. 

    2-(naphthalen-2-yl)-1H-benzo[d]imidazole (5d).17c    

Yellow solid, (0.179mg, 73% yield). 1H NMR (400 MHz, 

DMSO-d6) δ 13.08 (s, 1H), 8.75 (s, 1H), 8.32 (d, J = 8.04 Hz, 

1H), 8.09-7.99 (m, 3H), 7.70 (d, J = 6.64 Hz, 1H), 7.61-7.59 

(m, 3H), 7.23 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ 151.3, 

143.9, 135.2, 133.5, 132.8, 128.6, 128.5, 127.8, 127.62, 127.1, 

126.9, 125.8, 124.0, 122.7, 121.8, 118.9, 111.4. 

    2-(p-tolyl)-1H-benzo[d]imidazole (5e).17c White solid, 

(0.169mg, 81% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.82 

(s, 1H), 8.07 (d, J = 8.12 Hz, 2H), 7.64 (d, J = 6.12 Hz, 1H), 

7.51 (d, J = 6.24 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 

3.76 Hz, 2H), 2.38 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 

151.4, 143.8, 139.6, 135.0, 129.5, 127.5, 126.4, 122.3, 121.6, 

118.7, 111.2, 21.0.  

     2-(3-phenoxyphenyl)-1H-benzo[d]imidazole (5f).31 

Yellow solid, (0.246mg, 86% yield).  1H NMR (400 MHz, 

DMSO-d6) δ 12.94 (s, 1H), 7.96 (d, J = 7.72 Hz, 1H), 7.81 (s, 

1H), 7.65 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 7.96 Hz, 1H), 7.52 (d, 

J = 7.56 Hz, 1H), 7.45 (t, J = 8.04 Hz, 2H), 7.24-7.11 (m, 6H); 
13C NMR (100 MHz, DMSO-d6) δ 157.4, 156.3, 150.5, 143.6, 

135.0, 132.0, 130.8, 130.2, 123.9, 122.7, 121.8, 121.4, 120.0, 

119.0, 119.0, 116.0, 111.4. 

    2-(thiophen-2-yl)-1H-benzo[d]imidazole (5g).17c    Yel-

low solid, (0.150mg, 75% yield). 1H NMR (400 MHz, DMSO-

d6) δ 12.94 (s, 1H), 7.83 (d, J = 3.6 Hz, 1H), 7.72 (d, J = 4.92 

Hz, 1H), 7.55(s, 2H), 7.24-7.18 (m, 3H). 13C  NMR (100 MHz, 

DMSO-d6) δ 147.0, 133.7, 128.8, 128.3, 126.7, 122.6, 122.5, 

121.9, 118.5, 111.3, 111.1.  

    2-(pyridin-2-yl)-1H-benzo[d]imidazole (5h).17c  Yellow 

solid, (0.176mg, 90% yield).  1H NMR (400 MHz, DMSO-d6) δ 

13.10 (s, 1H), 8.72 (d, J = 4.68 Hz, 1H), 8.33 (d, J = 7.88 Hz, 

1H), 7.99 (dt, J = 7.76 Hz, 1.48 Hz, 1H), 7.70 (d, J = 7.6 Hz, 

1H), 7.56-7.50 (m, 2H), 7.26-7.19 (m, 2H); 13C NMR (100 

MHz, DMSO-d6) δ 150.8, 149.4, 148.5, 143.9, 137.6, 134.9, 

124.7, 123.2, 121.9, 121.4, 119.3, 112.1.  

    2-(4-bromophenyl)-1H-benzo[d]imidazole (5i).17c  Yel-

low solid, (0.219mg, 80% yield).  1H NMR (400 MHz, DMSO-

d6) δ 12.99 (s, 1H), 8.12 (d, J = 8.48 Hz, 2H), 7.76 (d, J = 8.48 

Hz, 2H), 7.67 (d, J = 6.96 Hz, 1H), 7.53 (d, J = 6.84 Hz, 1H), 
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7.22 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 150.2, 143.7, 

135.0, 132.0, 129.4, 128.4, 123.3, 122.8, 121.9, 119.0, 111.4. 

    2-(4-chlorophenyl)-1H-benzo[d]imidazole (5J).17c  

White solid, (0.187mg, 82% yield).   1H NMR (400 MHz, 

DMSO-d6) δ 12.99 (s, 1H), 8.19 (d, J = 8.4 Hz, 2H), 7.62 (d, J 

= 8.56 Hz, 4H), 7.23-7.20 (m, 2H); 13C NMR (100 MHz, 

DMSO-d6) δ 150.2, 143.7, 134.6, 129.1, 129.1, 128.2, 122.7, 

122.1, 119.0, 111.5. 

    2-(4-fluorophenyl)-1H-benzo[d]imidazole (5k).17c  Yel-

low solid, (0.151mg, 71% yield). 1H NMR (400 MHz, DMSO-

d6) δ 12.92 (s, 1H), 8.25-7.21 (m, 2H), 7.67 (d, J = 7.24 Hz, 1H), 

7.53 (d, J = 7.28 Hz, 1H), 7.40 (t, J = 8.88 Hz, 2H), 7.24-7.17 

(m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 162.6 (d, J=246 

Hz), 150.4, 143.8, 135.0, 128.7 (d, J=9 Hz), 126.8 (d, J=3 Hz), 

122.6, 121.7, 118.9, 116.0 (d, J=22 Hz), 111.3. 

    2-(2,5-difluorophenyl)-1H-benzo[d]imidazole (5l).17f  

Orange liquid, (0.143mg, 62% yield). 1H NMR (400 MHz, 

DMSO-d6) δ 12.70 (s, 1H), 8.00-7.96 (m, 1H), 7.66 (s, 2H), 

7.54-7.48 (m, 1H), 7.44-7.39 (m, 1H), 7.26-7.24 (m, 2H); 13C 

NMR (100 MHz, DMSO-d6) δ 158.3 (dd, J= 239 Hz, 2 Hz), 

155.9 (d, J= 245 Hz, 2 Hz), 145.3 (t, 3 Hz), 122.8-122.3 (m), 

119.5 (dd, J=14.5, 9Hz), 118.7, 118.6, 118.6, 118.5, 118.5, 

118.4, 118.3, 118.2, 115.8 (dd,  J= 23 Hz, 3Hz). 

    5-methyl-2-(p-tolyl)-1H-benzo[d]imidazole (5m).32  

White solid, (0.162mg, 74% yield). 1H NMR (400 MHz, CDCl3) 

δ 7.99 (d, J = 8.08 Hz, 2H), 7.48 (d, J = 7.56 Hz, 1H), 7.34 (s, 

1H), 7.17 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.24 Hz, 1H), 2.42 (s, 

3H), 2.33 (s, 3H); 13C NMR (150 MHz, DMSO-d6) δ 151.2, 

139.5, 131.3, 129.6, 127.6, 126.5, 126.4, 123.5, 117.9, 111.3, 

21.4, 21.1.  

    2-(4-chlorophenyl)-5-methyl-1H-benzo[d]imidazole 

(5n).32 White solid, (0.180mg, 74% yield). 1H NMR (400 MHz, 

DMSO-d6) δ 8.16 (d, J = 8.12 Hz, 2H), 7.60 (d, J = 8.08 Hz, 

2H), 7.51-7.31 (m, 2H), 7.03 (d, J = 6.96 Hz, 1H), 2.42 (s, 3H); 
13C NMR (100 MHz, DMSO-d6) δ 149.8, 141.9, 135.3, 134.3, 

132.1, 129.2, 129.0, 128.0, 123.5, 118.6, 111.1, 21.3. 

    5-methyl-2-(thiophen-2-yl)-1H-benzo[d]imidazole 

(5o).24   White solid, (0.148mg, 69% yield).  1H NMR (400 

MHz, DMSO-d6) δ 12.79 (s, 1H), 7.81 (d, J = 3.24 Hz, 1H), 

7.69 (d, J = 4.8 Hz, 1H), 7.47-7.29 (m, 2H), 7.21 (t, J = 4.72 

Hz, 1H), 7.01 (s, 1H), 2.41 (s, 3H); 13C NMR (100 MHz, 

DMSO-d6) δ  146.6, 141.7, 135.0, 133.9, 132.0, 128.4, 128.2, 

126.4, 123.3, 118.1, 110.8, 21.3. 

    5,6-dichloro-2-(4-methoxyphenyl)-1H-benzo[d]imidaz-

ole (5p).32   White solid, (0.223mg, 76% yield).  1HNMR (400 

MHz, DMSO-d6) δ 13.07 (s, 1H), 8.09 (d, J = 8.84 Hz, 2H), 

7.78 (s, 2H), 7.11 (d, J = 8.88 Hz, 2H), 3.83 (s, 3H). 13C NMR 

(100 MHz, DMSO-d6) δ 161.1, 154.0, 128.4, 124.1, 121.8, 

114.5, 55.4. 

    5,6-dimethyl-2-(pyridin-2-yl)-1H-benzo[d]imidazole 

(5q).33  Orange solid, (0.194mg, 87% yield).  1H NMR (400 

MHz, DMSO-d6) δ 12.85 (s, 1H), 8.68 (d, J = 4.68 Hz, 1H), 

8.28 (d, J = 7.92 Hz, 1H), 7.96 (dt, J= 7.56 Hz, 1.52 Hz 1H), 

7.46 (t, J = 6.16 Hz, 2H), 7.31 (s, 1H), 2.31 (s, 6H); 13C NMR 

(100 MHz, DMSO-d6) δ 149.9, 149.3, 148.8, 142.6, 137.4, 

133.5, 132.0, 130.3, 124.4, 121.2, 119.2, 112.0, 20.1, 20.1. 

    2-heptyl-1H-benzo[d]imidazole (5r).18b White solid, 

(0.076mg, 35% yield).  1H NMR (400 MHz, CDCl3) δ 7.48-7.46 

(m, 2H), 7.17-7.11 (m, 2H), 2.88(t, J = 7.8 Hz, 2H), 1.82-1.74 

(m, 2H), 1.30-1.22 (m, 2H), 1.20-1.11 (m, 6H), 0.74 (t, J = 7.08 

Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 155.8, 138.7, 122.2, 

114.7, 31.8, 29.5, 29.4, 29.1, 28.5, 22.7, 14.1. 
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