

SCIENCE

Bioorganic & Medicinal Chemistry Letters 13 (2003) 1245–1248

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Synthesis and Pharmacological Activity of Fluorescent Histamine H₁ Receptor Antagonists Related to Mepyramine

Liantao Li,^a Julia Kracht,^b Shiqi Peng,^a Günther Bernhardt^b and Armin Buschauer^{b,*}

^aCollege of Pharmaceutical Sciences, Peking University, 100083 Beijing, PR China ^bInstitute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

Received 4 November 2002; revised 3 January 2003; accepted 29 January 2003

Abstract—Fluorescently labeled histamine H_1 receptor antagonists were synthesized starting from N-demethylmepyramine by introduction of ω -aminoalkyl chains (2–8 methylene groups in length) followed by derivatization of the terminal NH₂ group with various fluorophores (fluorescein, naphthofluorescein, rhodamine, tetramethylrhodamine, BODIPY, dansyl, and nitrobenzoxadiazole (NBD)). On the isolated guinea pig ileum and in a Ca²⁺ assay on U373MG human glioblastoma cells the highest H₁ antagonistic activities were found in 5- and 6-carboxyfluorescein labeled compounds with hexa- and octamethylene spacers and in an analogous NBD-aminohexanoyl derivative (p A_2 or p K_B values in the range: 8.3–9.0; compared to 9.3–9.4 for mepyramine). \mathbb{C} 2003 Elsevier Science Ltd. All rights reserved.

Fluorescent probes offer attractive alternatives to the application of radioligands, for example to detect receptors in cells and tissues, and to study drug receptor interactions on soluble or cell-bound targets.^{1,2} Recently, we have demonstrated by using cyanine 5-labeled neuropeptide Y, that the affinity of agonists and antagonists acting at G-protein coupled receptors (GPCRs) can be determined under equilibrium conditions by flow cytometry.^{3,4} Generally, this method cannot be easily transferred to small molecules as ligands of GPCRs since the labeling of such compounds, for example biogenic amines and their antagonists, with bulky fluorescent dyes usually leads to a much more pronounced decrease in activity than in the case of peptide ligands. Thus, suitable fluorescent probes are required to further develop the aforementioned fluorescence-based methods for the investigation of GPCRs. In continuation of our studies we selected histamine H_1 receptors⁵ as a model.

The design of the fluorescent H_1 antagonists followed an approach that has been successfully applied for the development of the high affinity radioligand [¹²⁵I]iodobolpyramine,^{6,7} a Bolton–Hunter-modified analogue of the H_1 receptor antagonist mepyramine (Scheme 1).⁵ To obtain fluorescent analogues, *N*-demethylmepyramine ((3), *N*-(4-methoxybenzyl)-*N'*-methyl-*N*-(2-pyridyl)-1,2-

Scheme 1.

ethanediamine, normepyramine) was selected as the active moiety to be conjugated with various fluorophores (**10A–I**) by different functional groups and through spacers of various lengths (Schemes 2 and 3).

Chemistry

2-(4-Methoxybenzylamino)pyridine 1 was treated with bromoacetyl bromide and then with methylamine to obtain amide 2 which was reduced with lithium-aluminium hydride to give the central building block 3 (Scheme 2). The phthalimidoalkanoic acids 4a-d, prepared from phthalic anhydride and ω -aminoalkanoic acids, were activated with carbonyldiimidazole (CDI) at room temperature in anhydrous THF and allowed to react with 3 to give the amides 5a-d. Deprotection with hydrazine hydrate gave the aminoalkanamides 6a-d, which were treated with LiAlH₄ to yield 7a-d (Scheme 2). The compounds 7a,b were also obtained from 3 by alkylation with the ω -bromonitriles 8a,b in toluene at 100 °C, followed by reduction of the nitriles 9a,b.

0960-894X/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00113-6

^{*}Corresponding author. Tel.: +49-941-9434827; fax: +49-941-9434820; e-mail: armin.buschauer@chemie.uni-regensburg.de

The coupling reactions of **7a–d** (Scheme 3) with carboxyfluorescein were carried out with a commercially available mixture of the 5- and 6-isomers **10A,B** (succinimidyl ester) in anhydrous dichloromethane/ DMSO in the dark.⁸ The separation of the derivatives **11a–d** and **12a–d** was performed by HPLC on a semi-

Scheme 3.

preparative scale. Analogously, **7c** was labeled with the succinimidyl esters **10A–G** or chloronitrobenzoxadiazole (**10H**), and **7a** was derivatized with dansyl chloride (**10I**) to give the corresponding fluorescent ligands **13c–17c**, **18a** and **19c**, respectively (Scheme 3).⁹

Pharmacology

The fluorescent compounds were investigated for histamine H_1 -receptor antagonistic activity at the isolated guinea pig ileum according to known experimental protocols.¹⁰ Additionally, the histamine H_1 receptor antagonism was determined on Fura-2-AM loaded U373MG human glioblastoma cells with a fluorimetric calcium assay¹¹ (Fura assay) following the general procedure described elsewhere.^{12,13} The results are summarized in Table 1.

Results and Discussion

Small changes in the typical H_1 antihistamine structure of mepyramine may lead to compounds with considerably reduced H_1 antagonist activity on the guinea

Table 1. Histamine H_1 receptor antagonistic activities determined on the isolated guinea pig ileum and on U373MG human glioblastoma cells

Compd	λ _{max} Ex (nm) ^a	$\begin{array}{c} \lambda_{max} \\ Em \ (nm)^a \end{array}$	Guinea pig ileum ^b pA ₂ ±SEM	U373MG cells (Ca ²⁺ assay) ^c $pK_B \pm SEM$
Mepyramine 3 7a 7b 7c 7d 11a 11b 11c 11d 12a 12a 12b 12c 12d 13c 14c 15c 16c 17c 18a	493 493 493 496 494 494 500 499 501 555 501 nd 483 486	522 521 523 524 516 521 520 520 512 576 527 nd 536 540	$\begin{array}{c} 9.42\pm 0.15^{d}\\ 8.18\pm 0.07\\ 7.88\pm 0.19\\ 7.65\pm 0.19\\ 7.65\pm 0.19\\ 7.89\pm 0.09\\ 8.01\pm 0.35\\ 7.16\pm 0.13\\ 8.35\pm 0.29\\ 7.67\pm 0.02\\ 8.47\pm 0.10\\ 6.84\pm 0.05\\ 7.50\pm 0.06\\ 7.58\pm 0.04\\ 8.30\pm 0.08\\ 7.83\pm 0.17\\ 7.48\pm 0.06\\ 7.58\pm 0.13\\ 7.44\pm 1.33\\ 8.71\pm 0.26\\ 8.33\pm 0.24\\ \end{array}$	$\begin{array}{c} 9.30\pm 0.20\\ 8.12\pm 0.04\\ 7.84\pm 0.09\\ 7.61\pm 0.07\\ 8.03\pm 0.07\\ 8.06\pm 0.15\\ 7.21\pm 0.08\\ 8.47\pm 0.11\\ 8.17\pm 0.15\\ 8.94\pm 0.16\\ 6.93\pm 0.05\\ 7.81\pm 0.12\\ 8.40\pm 0.19\\ 8.53\pm 0.17\\ 7.85\pm 0.06\\ 7.54\pm 0.02\\ 7.68\pm 0.28\\ 7.18\pm 0.13\\ 9.05\pm 0.20\\ 8.12\pm 0.09\\ \end{array}$
190	521	530	1.15±0.15	7.70±0.33

^aLongest wavelength absorption and fluorescence emission maximum determined with a Kontron UV–visspectrometer and a Perkin–Elmer LS-50B spectrofluorimeter, using solutions of the compounds in a buffer (NaCl 120 mM, KCl 5 mM, MgCl₂ 2 mM, CaCl₂ 1.5 mM, Hepes 25 mM, glucose 10 mM, adjusted to pH 7.4 with NaOH), which was also used for the Ca²⁺ assay; nd: not determined.

^bp A_2 values: calculated from the rightward shift of isotonically recorded cumulative concentration-response curves (*n*: 6–12) for histamine in the absence and presence of the putative antagonist (15 min incubation at 30 °C).

^cFura-2-loaded U373MG cells^{11,12} were incubated with varying concentrations of the antagonists (n = 2-4) for 1 min prior to stimulation with 30 µM histamine (producing submaximal increase in [Ca²⁺]_i). pK_B values: calculated from IC₅₀ values with the Cheng–Prusoff equation.¹⁴ ^dRef. 7: pA₂=8.89. pig illeum.⁷ The removal of a methyl group from the tertiary amino group in mepyramine, as well as the replacement of the methyl with an aminoalkyl group, results in a pronounced decrease in activity (3, 7a-d). However, compared to the non-labeled building blocks **7a–d**, some of the fluorescent probes are more potent H_1 blockers, for example, depending on the chain length of the spacer, suitable fluorophores may confer additional H_1 receptor affinity. Comparing the activities of 5- and 6-carboxyfluorescein-labeled H1 antagonists 11a-d and **12a–d** on the ileum there is a spacer-dependent increase with highest activity residing in the compounds with more than 2 methylene groups. Though the pA_2 or pK_B values of mepyramine were not achieved, a number of the fluorescent probes listed in Table 1 were found to have H₁ antagonistic activities in the range of commercially available drugs such as pheniramine or diphenhydramine (p A_2 values in the range of 8.1–9.0). The derivatives 13–16c and 19c, which have the same chain length but are labeled with different dyes, were found to be less active than mepyramine by 1 to 2 orders of magnitude. Compound 18a, which contains only a short chain (CH₂CH₂) connecting the affinity-conferring partial structure and the NBD dye, was found to be about half as potent as 17c, which contains a long spacer group ((CH) $_6$ NHCO(CH $_2$) $_5$).

The H₁ antagonistic activities found on the guinea pig ileum are in rather good agreement with the results from U373MG human glioblastoma cells for the non-labeled compounds and for most of the fluorescent ligands. There are only a few exceptions among the investigated compounds showing discrepancies between the two pharmacological test models $> 0.6 \log$ units, which may be associated with the distinct incubation periods (15 min (ileum) vs 1 min (U373MG)) or the different accessibility of the H₁ receptor (diffusion and/or enrichment of the compounds in the tissue and the cells). Fortunately, the Fura assays (ratiometric method, λ_{ex} : 340 and 380 nm, λ_{em} : 510 nm) was not impaired by the fluorescent H_1 antagonist, which have excitation maxima at longer wavelengths. This finding is of particular importance with respect to the development of multiparametric cellular assays for the determination of receptor binding and functional data.

Bulky fluorophores are tolerated when linked to the affinity-conferring partial structure by an appropriate spacer group. It is conceivable that the various bulky dyes are not interacting with amino acids of the transmembrane H_1 receptor domains but are extending into the extracellular space. The contribution of the fluorophore to the receptor affinity could result from its interaction with extracellular loop regions.

Conclusions

The results summarized in Table 1 show that rather potent fluorescence-labeled H_1 antagonists are obtained by connecting normepyramine and fluorescein or NBD via spacer groups of appropriate length. In principle, high affinity fluorescent ligands of biogenic amine receptors may be obtained by this approach, however, predictions of the best suited fluorophore are difficult. The fluorescent properties of the H₁ antagonists are not detrimental to the application of the Fura assay. This gives further support to the idea that it may be possible to combine fluorescence-based methods for (a) functional studies (e.g., Ca^{2+} assay) and (b) the determination of binding constants of GPCR ligands. The combination of both may be potentially useful in highthroughput screening to get information on affinities and agonistic/antagonistic properties of potential drug candidates in one assay. Moreover, fluorescent probes such as the fluorescein-labeled mepyramine analogues may be useful to study the GPCRs in tissue preparations and on cells.

Acknowledgements

The authors are grateful to the DAAD for a scholarship to L. Li (DAAD 'sandwich PhD program') and to the Fonds der Chemischen Industrie for grants to A. B. and G. B.

References and Notes

1. McGrath, J. C.; Arribas, S.; Daly, C. J. *Trends Pharmacol. Sci.* **1996**, *17*, 393.

2. Mellentin-Michelotti, J.; Evangelista, L. T.; Swartzman, E. E.; Miraglia, S. J.; Werner, W. E.; Yuan, P.-M. *Anal. Biochem.* **1999**, *272*, 182.

3. Mayer, M.; Li, L.; Kracht, J.; Bernhardt, G.; Buschauer, A. Arch. Pharm.-Pharm. Med. Chem. 2000, 333 (Suppl. 2), 51.

- 4. Mayer, M. PhD Thesis, University of Regensburg, 2002.
- 5. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L. *Pharmacol. Rev.* **1997**, *49*, 253.

6. Körner, M.; Bouthenet, M. L.; Ganellin, C. R.; Garbarg, M.; Gros, C.; Ife, R. J.; Sales, N.; Schwartz, J. C. *Eur. J. Pharmacol.* **1986**, *120*, 151.

7. Blakemore, R. C.; Ganellin, C. R.; Garbarg, M.; Gros, C.; Ife, R. J.; Körner, M.; Ruat, M.; Schartz, J.-C.; Tertiuk, W.; Theobald, C. J. *Eur. J. Med. Chem.* **1987**, *22*, 91.

8. General procedure for preparation of the N'- $[\omega$ -(fluorescein - 5(and - 6) - carbonyl)aminoalkyl] - N - (4 - methoxybenzyl)-N'methyl-N-(pyridin-2-yl)-1,2-ethanediamines 11a-d and 12a-d. To the solution of 7a-d (0.02 mmol) in 2 mL anhydrous dichloromethane, the solution of 10.0 mg (0.021 mmol) of 5- and 6-carboxyfluorescein succinimidyl ester (commercially available mixture of 10A/10B with 10A as the main isomer) in 600 μL of anhydrous DMSO was added. The mixture was stirred at room temperature in the dark for 24 h. After concentration in vacuo the residue was chromatographed analytically (column (250×4 mm, 5 µm) and precolumn: Eurospher 100-C18 (Knauer); Kontron Instruments: HPLC Pump 420; UV-detector: HPLC Detector 430; Fluorescence detector: Merck-Hitachi F1000) eluent: MeOH/0.1% TFA (50/50), flow rate: 1 mL/ min; UV detection: 254 nm, fluorescence detection: λ_{ex} : 490 nm, λ_{em} : 520 nm). Then portions of the crude mixture of isomers (sufficient for pharmacological investigations) were purified with HPLC on a semipreparative scale (column (500×16 mm, 7 µm): Nucleosil-100-C18 (Macherey & Nagel), ALTEX Model 110A pump, Merck-Hitachi UV Monitor 655A-22; eluent: MeOH/0.1% TFA, 50:50 (11a,c, 12a,c), 55:45 (11b, 12b), 60:40 (11d, 12d), flow rate 6 mL/min; UV detection: 254 nm; retention times (min): **11a**: 106/12a: 71/11b: 72/12b: 59, **11c**: 41/12c: 37, **11d**: 41/12d: 36). Yields: **11a/12a** 26%, **11b/12b**: 30%, **11c/12c**: 47%, **11d/12d**: 37%; 5- to 6-isomer ratio ca. 2:1. The obtained solution was concentrated in vacuo (<40 °C) and lyophilized to obtain the 5-isomers **11a–d** and 6-isomers **12a–d** as yellow powder.

11a: +FAB-MS (Varian MAT 95, +FAB-MS, xenon, MeOH/glycerol): m/z (%) = 673 ([M + H]⁺, 10) 241 (20), 121 (100); +FAB-HRMS: C₃₉H₃₇N₄O₇; calcd: 673.2662 found: 673.2668; **11b**: $^{+}$ FAB-MS: m/z (%) = 701 ([M + H]^{+}, 10), 241 (24), 121 (100); +FAB-HRMS: C₄₁H₄₁N₄O₇, calcd: 701.2975, found: 701.2960; **11c**: $^{+}$ FAB-MS: m/z (%) = 729 ([M + H]^+, 100); ¹H NMR (250 MHz; CD₃OD): δ (ppm) = 8.43 (d, J=1.6 Hz, 1H), 8.19 (dd, J = 7.9 and 1.6 Hz, 1H), 8.13 (dd, J = 5.2and 1.9 Hz, 1H), 7.68 (dd, J=7.1 and 1.8 Hz, 1H), 7.31 (d, J=8.1 Hz, 1H), 7.17 (d, J=8.7 Hz, 2H), 6.93 (d, J=8.7 Hz, 1H), 6.90 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 5.5 Hz, 1H), 6.75 (s, 2H), 6.64 (d, J=8.7 Hz, 2H), 6.57 (dd, J=8.7 and 2.4 Hz, 2H), 4.70 (s, 2H), 3.97 (t, J=5.9 Hz, 2H), 3.75 (s, 3H), 3.43 (t, J=6.9 Hz, 2H), 3.20 (t, J=7.9 Hz, 2H), 2.95 (s, 3H), 1.82– 1.60 (m, 4H), 1.53–1.36 (s, 4H); 11d: +FAB-MS: m/z (%) = 757 ($[M + H]^+$, 7), 241 (39), 121 (100); +FAB-HRMS: C₄₅H₄₉N₄O₇: calcd: 757.3601, found: 757.3580; **12a**: +FAB-MS: m/z (%) = 673 ([M+H]⁺, 10), 241 (17), 121 (100). **12b**: ⁺FAB-MS: m/z (%) = 701 ([M+H]⁺, 11), 241 (26), 121 (100). **12c**: $^{+}$ FAB-MS: m/z (%) = 729 ([M + H]^{+}, 66), 241 (100); ⁺FAB-HRMS: C₄₃H₄₅N₄O₇: calcd: 729.3288, found: 729.3259. **12d**: FAB-MS: m/z (%) = 757 ([M + H]⁺, 7), 241 (28), 121 (100). 9. The compounds 13-17c and 19c were obtained by analogy with the procedure described for 11a-d, 12a-d⁸: 7c was labeled with either BODIPY 493/503 SE (10C), 5(6)-TAMRA SE (10D), Rhodamine GreenTM carboxylic acid succinimidyl ester (5(6)-CR110, SE, (10E)), 5(6)-carboxynaphthofluorescein SE (10F) (10D-F: commercially available mixtures of the 5- and 6-isomer; 14c-16c (the main isomers) were obtained after chromatographic separation by analogy with the method described for 11a-d), NBD-x SE (10G), or dansyl chloride (101). 18c was obtained by treating a solution of 7c (20 mg, 0.06 mmol) and 100 μ L of triethylamine in 2 mL of abs. chloroform with NBD-Cl (10H; 12 mg, 0.06 mmol). The mixture was stirred at room temperature in the dark for 2 h. After concentration of the solution 18c was purified chromatographically (Chromatotron 8294; (Harrison Research), rotors with 4 mm layers of silica gel PF₂₅₄, containing gypsum (Merck), eluent CHCl₃: MeOH, 3:1).

13c: yield: 72% + FAB-MS: m/z (%) = 673 ([(M + H]⁺, 100); ⁺FAB-HRMS: $C_{38}H_{52}BF_2N_6O_2$, calcd: 673.4249, found: 673.4245. **14c**: yield: 42%; ⁺FAB-MS: m/z (%) = 783 ([(M + H]⁺, 100); ⁺FAB-HRMS: $C_{47}H_{55}N_6O_5$, calcd: 783.4234, found: 783.4202. 15c: yield: 35%; FAB-MS: m/z (%)=727 $([(M+H]^+, 100); +FAB-HRMS: C_{43}H_{47}N_6O_5, calcd:$ 727.3608, found: 727.3607. **16c**: FAB-MS: m/z (%) = 829 $([(M + H]^+, 100); + FAB-HRMS: C_{51}H_{49}N_4O_7: calcd: 829.3601,$ found: 829.3623. 17c: yield: 31%; FAB-MS: m/z (%)=647 $([(M + H]^+, 54), 241 (58), 121 (100); +FAB-HRMS:$ C₃₄H₄₇N₈O₅, calcd: 647.3669, found: 647.3685. **18c**: yield: 23%; FAB-MS: m/z (%) = 478 ([M + H]⁺, 1), 241 (32), 121 (100); ¹H NMR (CDCl₃): δ (ppm) = 8.43 (d, J = 8.7 Hz, 1H), 8.11 (dd, J=5.2 and 2.0 Hz, 1H), 7.41 (dd, J=7.1 and 2 Hz, 1H), 7.10 (d, J=8.7 Hz, 2H), 6.81 (d, J=8.7 Hz, 2H), 6.65–6.54 (m, 2H), 7.12 (m, 1H), 4.61 (s, 2H), 4.40-3.60 (m, 11H), 3.37 (s, 3H). 19c: yield: 69%; +FAB-MS: m/z (%)=604 ([(M+H]⁺, 100); +FAB-HRMS: C₃₄H₄₆N₅O₃S: calcd: 604.3312; found: 604.3320.

10. Buschauer, A.; Friese-Kimmel, A.; Baumann, G.; Schunack, W. Eur. J. Med. Chem. 1992, 27, 321.

11. Kracht, J.; Meister, A.; Bernhardt, G.; Buschauer, A. Arch. Pharm.-Pharm. Med. Chem. 2000, 333 (Suppl 2), 48.

- 12. Kracht, J. PhD Thesis, University of Regensburg, 2001.
- 13. Müller, M.; Knieps, S.; Gessele, K.; Dove, S.; Bernhardt, G.; Buschauer, A. Arch. Pharm. Pharm. Med. Chem. 1997, 330, 333.
- 14. Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.