

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Photoinduced Copper-Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes

Authors: Hai-Dong Xia, Zhong-Liang Li, Qiang-Shuai Gu, Xiao-Yang Dong, Jia-Heng Fang, Xuan-Yi Du, Li-Lei Wang, and Xin-Yuan Liu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202006317

Link to VoR: https://doi.org/10.1002/anie.202006317

WILEY-VCH

RESEARCH ARTICLE

WILEY-VCH

Photoinduced Copper-Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes

Hai-Dong Xia,* Zhong-Liang Li,* Qiang-Shuai Gu,* Xiao-Yang Dong,* Jia-Heng Fang, Xuan-Yi Du, Li-Lei Wang, and Xin-Yuan Liu*

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.XXXXX.

Abstract: We describe a photoinduced copper-catalyzed asymmetric decarboxylative alkynylation of bench-stable radical Nhydroxyphthalimide(NHP)-type esters of racemic alkyl carboxylic acids with terminal alkynes, providing a flexible platform for the construction of chiral C(sp3)-C(sp) bonds. Critical to the success of this process are not only the use of the copper catalyst as a dual photo- and cross-coupling catalyst but also the tuning of NHP-type esters to inhibit the easily-occurring homodimerization of alkyl radical and terminal alkyne, respectively. Owing to the use of stable and easily available NHP-type esters, the reaction features a broader substrate scope compared with their alkyl halide counterparts, covering (hetero)benzyl-, allyl-, and aminocarbonyl-substituted carboxylic acid derivatives, and (hetero)aryl and alkyl as well as silyl alkynes, thus constituting a vital complementary approach for the previous methodology.

Introduction

Transition-metal-catalyzed cross-coupling reactions have evolved into a powerful tool to forge carbon-carbon bonds and revolutionized every aspect of chemistry.^[1] While tremendous progress has been made in the cross-coupling of aryl or vinyl (pseudo)halides, the cross-coupling of alkyl (pseudo)halides remains unexplored for a long time due to the difficult oxidative addition and the facile β -H elimination of alkyl metal complexes.^[2] Indeed, such transformations would potentially open up new vistas in organic synthesis, especially when the stereochemistry of the sp³-hybridized carbon centers can be controlled. In this scenario, transition-metal-catalyzed enantioconvergent C(sp³)-C cross-coupling of racemic alkyl halides has received much attention over the past two decades.[3,4] In particular, Fu and others have pioneered this field by utilizing the chiral first-row transition metal catalysis for the construction of stereogenic

carbon centers via the prochiral alkyl radical intermediates.[3,4] Recently, our group has discovered a copper-catalyzed enantioconvergent radical C(sp³)-C(sp) cross-coupling of racemic secondary alkyl halides and terminal alkynes (Scheme 1a).^[5] During this course, a chiral alkaloid-derived multidentate N,N,P-ligand is used for enhancing the reducing capability of copper catalyst, thus converting alkyl halides to prochiral alkyl radical species via a single electron transfer (SET) process. However, the reaction has suffered from two major restrictions: (1) Many alkyl halides require tedious synthesis; (2) some of the alkyl halides are instable and do not provide the corresponding

- readily available and stable alkyl electrophiles
- inhibition of the homodimerization of alkyl radical and terminal alkyne, respectively broad scope compared with alkyl halide counterparts

Scheme 1. Asymmetric radical decarboxylative alkynylation.

RESEARCH ARTICLE

chiral alkynes. These apparent limitations would thwart the wide application of this methodology in organic synthesis. Given the importance of chiral alkynes as versatile synthetic intermediates and medicinally relevant molecules, the development of easily available and stable alkyl electrophiles as alkyl halide surrogates to enrich the synthetic toolbox for enantioconvergent $C(sp^3)$ –C(sp) cross-coupling of terminal alkynes is highly desirable.

Alkyl carboxylic acids are cheap, highly stable and easily available building blocks, and are among the most ubiquitous organic molecules found in nature.^[6] Great progress has been recently made in the utility of carboxylic acids or their redox-active esters (e.g., N-hydroxyphthalimide (NHP) ester) as radical precursors in transition metal-catalyzed radical decarboxylative cross-coupling reactions.^[6,7] Despite these advances, the exploration of the asymmetric variants for expedite access to chiral C–C/X bonds has been few and far between.^[8] In 2016, Fu and MacMillan jointly disclosed the first asymmetric decarboxylative arylation by a cooperative photo- and nickel catalysis.^[8a] Subsequently, Reisman and Liu independently developed the asymmetric decarboxylative vinylation and cvanation of NHP esters utilizing either a nickel catalysis^[8b] or a cooperative photo- and copper catalysis,^[8c] respectively. In light of the urgent demand of new catalysis for asymmetric decarboxylation, we wondered if our developed copper/N,N,Pligand catalyst^[5] could be used for realizing an asymmetric decarboxylative alkynylation of racemic carboxylic NHP esters. Although Baran and others^[9] have elegantly achieved the racemic variants with prefunctionalized alkynylation partners, the asymmetric transformation with easily available terminal alkynes has never been reported, probably due to the challenging stereocontrol over the highly reactive prochiral alkyl radical intermediates (Scheme 1b). Another problem associated terminal alkynes is the easily-occurring Glaser homocoupling of terminal alkynes.^[10] The success of this approach would provide a new platform for the enantioconvergent radical decarboxylative alkynylation reactions.

At the beginning, we speculated that the chiral copper(I) acetylide complex in situ generated from copper(I), terminal alkyne and chiral ligand might directly reduce NHP esters to afford alkyl radicals. Unfortunately, the initial attempts indicated very low reaction efficiency, possibly due to the weak reducing capacity of copper(I) acetylide. Notably, recent studies have demonstrated that the copper(I) acetylide complex can be excited under visible light irradiation, transforming to a long-lived and strong reductant.[11-13] We questioned whether the chiral copper(I) acetylide complex could act as both the photocatalyst and the cross-coupling catalyst to realize the asymmetric transformation. As our continuous interest in Cu(I)-catalyzed asymmetric reactions involving radicals,^[5,14] we herein describe а copper-catalyzed photoinduced asymmetric radical decarboxylative C(sp³)-C(sp) cross-coupling of racemic NHP esters with terminal alkynes (Scheme 1c). Noteworthy is that this strategy exhibits unique features in terms of tolerating substrates that are challenging or even inapplicable to our previous Sonogashira coupling of alkyl halides,[5] rendering it a valuable alternative to the previous approach.

Results and Discussion

Based on the above-mentioned proposal, we began to investigate the cross-coupling of racemic ester **1aa**, prepared in one step from commercially available 2-phenylpropanoic acid, with phenylacetylene **2a** (Table 1). However, screening of different solvents and bases under blue LED irradiation in the

2	(±)-1ab	83%	12%	~30%	19%
3	(±)-1ac	85%	14%	~30%	5%
4	(±)-1ad	80%	21%	~30%	17%
5	(±)-1ae	90%	12%	~30%	11%
6	(±)-1af	47%	20%	~10%	5%
7	(±)-1ag	49%	30%	trace	trace
8	(±)-1ah	53%	37%	trace	trace
9 ^[b]	(±)-1ah	50%	21%	trace	trace
10 ^[c]	(±)-1ah	55%	30%	trace	trace
11 ^[d]	(±)-1ah	65%	37%	trace	trace
12 ^[e]	(±)-1ah	87%	58%	trace	trace
13 ^[f]	(±)-1ah	95%	70%	trace	trace
14 ^[g]	(±)-1ah	92%	64%	trace	trace

[a] Reaction conditions: (±)-1a (0.050 mmol), 2a (0.075 mmol.), Cul (10 mol%), L1 (12 mol%), and Cs₂CO₃ (0.10 mmol, 2.0 equiv.) in PhCF₃ (0.50 mL) at room temperature under irradiation of blue LED (24 W) for 72 h under argon. Yields of 3 and 3" were based on ¹H NMR analysis of the crude product using CH₂Br₂ as an internal standard. Isolated yield of 3' is shown. Ee value was determined by HPLC analysis. [b] Cul (15 mol%) and L1 (18 mol%) were used. [c] 2a (0.10 mmol) with 1.0 mL of PhCF₃ was used. [d] 2.5 equiv. of Cs₂CO₃ was used. [e] 3.0 equiv. of Cs₂CO₃ was used.

presence of CuI and L1 delivered the desired product 3 in poor yield, albeit with excellent enantioselectivity, along with the starting carboxylic acid via the hydrolysis of **1aa**, the Glaser homocoupling product 3' and radical dimerization product^[15] 3" (Tables S1 and S2 in Supporting Information). We then screened various copper salts and cinchona alkaloid-derived N,N,P-ligands, but the hydrolysis of **1aa** and the dimerization process cannot be

RESEARCH ARTICLE

inhibited (Table S3 and S4 in the Supporting Information). We speculated that the low reaction efficiency and occurrence of the dimerization reactions might be attributed to the reactivity of NHP ester 1aa. We then coupled different type of N-hydroxy imides with the carboxylic acid to achieve a good reaction efficiency. After screening diverse esters 1aa-1ah (Table 1, entries 2-8), we were pleased to find that with N-hydroxy 2,3-naphthalimide(R = NNaphth)-derived ester 1ah as the substrate, the reaction efficiency was enhanced, and the dimerization products were also inhibited (Table 1, entry 8). Further increasing either catalytic loading of Cul and L1 or the amount of 2a could not improve the reaction efficiency (entries 9 and 10). It is worth noting that increasing the amount of Cs₂CO₃ to 3.5 equiv. could efficiently improve the reaction efficiency and give 3 in 70% yield and 92% ee (entry 13). No reaction occurred in the absence of copper or Cs₂CO₃ and only trace amount of desired products was detected in the absence of light or ligand, suggesting that all the parameters are essential to the success of the asymmetric alkynylation (Table S5 in the Supporting Information).

With the optimal reaction conditions established, the substrate scope of racemic carboxylic acid-derived NHP-type esters was then investigated (Table 2). We found that various substituents in the alkyl branch of the NHP-type esters was compatible with the reaction conditions and the alkynylation products 3-10 were obtained in good yields and 90-99% ee (Table 2a). Many potentially reactive groups, such as chloride (7), ester (8), alkyne (9), and terminal alkene (10), were left untouched. As for the aryl ring, a range of NHP-type esters, including those having halides (11–14), methyl (15) or methoxyl (16) groups at different positions (ortho, meta, or para) of phenyl rings and a naphthalene ring (17), reacted smoothly to afford chiral alkynes in good yields and excellent ee. Besides, for carboxylic acids commonly used as anti-inflammatory drugs, such as ibuprofen, flurbiprofen, pranoprofen and zaltoprofen, their NHP-type esters underwent the reaction smoothly as well to generate the coupling products 18-21 in good yields and 88-98% ee (Table 2b). The late-stage modification of natural product estrone was also feasible to give the alkylation product 22 in 43% yield. Furthermore, NHP-type esters containing heterocycles, such as pyridine, benzo[b]furan and benzo[b]thiophene, also worked well to deliver 23-25 in excellent ee (Table 2c). Interestingly, the allylic and α aminocarbonyl substrates were also found to be suitable for the reaction to afford the expected products 26-28 in good ee, albeit with low yield (Table 2d). Unfortunately, the homobenzylic substrate delivered a racemic coupling product 29, while the tertiary substrate did no provide the desired product 30 (Table 2d). These results are currently under further optimization in our lab. Direct comparisons were also made between the NHP-type esters and alkyl halides.^[5] As such, the reaction of orthosubstituted benzylic substrates provided the desired products 31 and 32 in good yields, respectively. In contrast, the orthosubstituted benzyl halides always reacted in much lower efficiency in our previous work^[5] (Table 2e). Further, benzyl halides with strong electron-withdrawing or -donating functional groups at the para positions of phenyl rings and cyclic benzylic halides are generally unstable, rendering them inapplicable to our previous Sonogashira conditions.^[5] To our delight, the desired enantioenriched alkynes 33-38 were successfully generated from the decarboxylative alkynylation of the stable NHP-type esters in 67-93% ee, but the yields are low for substrates with electronwithdrawing groups.

Table 2. Substrate scope of NHP-type esters.[a]

[a] Reaction conditions: 1 (0.20 mmol), 2a (0.30 mmol), Cul (10 mol%), L1 (12 mol%), and Cs₂CO₃ (0.70 mmol) in PhCF₃ (4.0 mL). Yield was determined after isolation; Ee value was determined using HPLC analysis. [b] Reaction time is 4 d. [c] Cul (20 mol%) and L1 (24 mol%) in Et₂O. [d] Cul (15 mol%) and L1 (18 mol%). [e] With L2 as the ligand and Et_2O as the solvent. [f] Our recent reported results of asymmetric Sonogashira reaction in parenthesis.ref. 5

Encouraged by the above results, we next examined the scope of alkynes. A number of aryl alkynes proceeded smoothly to give 39-52 in good yields with excellent ee under the standard conditions. Diverse functional groups such as methoxyl (39), chloro (41-43), bromo (44), fluoro (45), trifluoromethyl (46), nitrile (47), formyl (48), methoxycarbonyl (49), pinacolborato (50) and terminal alkyne (51) were well tolerated. The absolution configuration of 39 was determined to be R by comparing its HPLC spectrum and optical rotation with those reported in literature^[5] and the configurations were inferred accordingly. The

RESEARCH ARTICLE

decarboxylative alkynylation was also applicable to heteroaryl alkynes that contain medicinally relevant heterocycles, such as

[a] Reaction conditions: 1 (0.30 mmol), 2 (0.20 mmol), Cul (10 mol%), L1 (12 mol%), and Cs₂CO₃ (0.70 mmol) in PhCF₃ (4.0 mL). The yield was isolated and the ee value was determined by HPLC. [b] Cul (15 mol%), L1 (18 mol%). [c] 1 (0.20 mmol), 2 (0.24 mmol), Cul (15 mol%), L1 (12 mol%), for 4 d. [d] Cul (15 mol%), L1 (12 mol%), and propyne (5.0 equiv.). [e] Cul (20 mol%), L3 (24 mol%), and propyne (5.0 equiv.).

thiophene (**53** and **54**), pyridine (**55**), and quinoline (**56**), affording the desired chiral alkynes in excellent ee. Furthermore, the direct decarboxylative alkynylation enabled a single-step access to a patented mGluR modulator **57** in 93% ee. More significantly, many aliphatic alkynes with different functional groups, such as conjugated alkene (**58**), acetal (**59**), acetate (**60**), and even free alcohol (**61**) reacted smoothly in this process. Trimethylsilyl acetylene also worked well to provide **62** in 50% yield and 94% ee. The direct incorporation of industrial feedstocks into organic molecules for synthesis of complex synthetic intermediates or medicinally relevant compounds is an important goal of chemical research. As such, we were delighted to find that the industrially relevant propyne,^[16] was also suitable to provide **63** in 58% yield and 93% ee. Furthermore, the direct decarboxylative alkynylation with propyne provided **64** in 76% ee, which is a key intermediate in the synthesis of a drug lead (AMG 837, a G-protein coupled receptor GPR40 agonist)^[5,17] under slightly modified conditions. Besides, the enantioenriched alkyne **39** could undergo either a stereoselective partial or complete hydrogenation to afford chiral *Z*-alkene **65** or alkane **66**, respectively, without any loss of ee. Thus, the asymmetric decarboxylative alkynylation–when combined with simple transformations–provides an excellent complementary strategy for the construction of chiral $C(sp^3)$ – $C(sp^2)$ and $C(sp^3)$ – $C(sp^3)$ bonds from cheap and stable carboxylic acids.

To demonstrate the practicality of this method, we next developed a tandem one-pot procedure for direct use of readily available racemic carboxylic acids in the reaction. Thus, the crude esters obtained by coupling of carboxylic acids **67a** and **67b** with **68** were applied directly to the standard conditions without further purification, delivering the chiral alkynes **4** and **18** with good results, respectively (Scheme 2a). In addition, a large-scale reaction of **1b** and phenyl acetylene **2a** was also performed to deliver the desired product **4** in 58% yield with 97% ee (Scheme 2b).

Scheme 2. Synthetic applications.

Scheme 3. Control experiment for mechanistic investigation.

To gain some insight into the reaction mechanism, we carried out a series of control experiments. When TEMPO was added under the otherwise standard conditions, the reaction was completely inhibited and only the Glaser reaction occurred to provide **3'** (Scheme 3a). The reaction of radical clock substrate **1c** delivered the ring-opening/alkynylation product **69** in 10% yield along with the alkynylation product **70** (Scheme 3b). These

RESEARCH ARTICLE

experiments demonstrated that a radical process might be involved in this reaction. The replacement of Cul and phenylacetylene **2a** with stoichiometric copper acetylide **71** under the otherwise identical conditions provided the desired product **4** in 55% yield and 92% ee, showing that **71** might be involved in the process. Only 10% yield of **4** was observed in the absence of ligand, indicating that the ligand significantly promoted the transformation (Scheme 3c).

It is known that the copper acetylide complex can be photoexcitated with photons of relatively low energy.^[12] Fluorescence quenching experiments revealed that the excited copper acetylide was quenched by the NHP-type ester 1b rather than 2a, indicating a possible SET process between the NHP-type esters and the excited copper acetylide (Figure 1a and 1b). This process was also supported by the cyclic voltammetry study, which showed that the literature reported redox potential (-2.048 V vs SCE in CH₃CN)^[12d] of the excited copper acetylide **71** is strong enough to reduce the ester **1b** $(-1.174 \text{ V vs SCE in CH}_3\text{CN},$ Figure S1 in the Supporting Information). Further fluorescence quenching experiments demonstrated that the NHP-type esters 1aa-1ae guenched the excited copper acetylide more efficiently than **1af-1ah**, which might cause higher concentration of Cu^{II} acetylide and benzylic radical IV (Scheme 4, Figure 1c). Accordingly, fast radical-radical homocoupling might be favored to provide 3", and the left Cu^{II} acetylide might have to undergo Glaser coupling to deliver product 3' as observed during the condition optimization (Table 1).^[10,15] However, too low quenching efficiency may cause a low reaction efficiency and **1ah** is the most suitable NHP-type ester for the reaction.

Figure 1. Fluorescence quenching experiments. (a) copper acetylide emission quenching by 1b. (b) copper acetylide emission quenching by 2a. (c) quenching efficiency with 1aa–1ah.

Based on these results and previous reports,^[5,12] we proposed a possible mechanism as shown in Scheme 4. Cu¹ catalyst, acetylene and the ligand L1 reacted in the presence of Cs₂CO₃ to generate the intermediate I,^[14h] which was directly excited to give the complex II. Subsequently, the excited copper acetylide II can transfer an electron to NHP-type ester 1 to deliver the Cu^{II} complex III. Meanwhile, the formed anionic radical of NHP-type ester undergoes a radical decarboxylation process to generate the radical intermediate IV. This intermediate would undergo a $C(sp^3)$ –C(sp) bond formation with III, providing chiral alkynes and releasing the L1Cu¹ complex for the next catalytic cycle (See Scheme S1 in in the Supporting Information for proposed model in the asymmetric induction).

Scheme 4. Mechanistic proposal.

Conclusion

In summary, we have described a strategy for direct asymmetric radical decarboxylative alkynylation of NHP-type esters with terminal alkynes utilizing a photoinduced copper catalysis. One striking feature of this strategy is the dual roles of the copper catalyst as both the photo- and the cross-coupling catalysts. The NHP-type esters are tuned to inhibit the easilyoccurring Glaser reaction, thus achieving good reaction efficiency. Owing to the ready availability of carboxylic acids and the high stability of NHP-type esters, this strategy largely expands the substrate scope compared with that using the corresponding alkyl halide counterparts. Therefore, it provides an efficient and general synthetic tool for not only chiral $C(sp^3)-C(sp)$ but also chiral $C(sp^3)$ – $C(sp^2/sp^3)$ bond formations when allied with follow-up transformations. Further studies toward the development of direct asymmetric radical decarboxylative reactions with other nucleophiles are ongoing in our laboratory.

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 21722203, 21831002, and 21801116), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (No. 2019BT02Y335), Shenzhen Nobel Prize Scientists Laboratory Project (No. C17783101) and SUSTech Special Fund for the Construction of High-Level Universities (No. G02216303) are gratefully acknowledged. The authors acknowledge the assistance of SUSTech Core Research Facilities.

Keywords: alkynylation • asymmetric radical reaction • copper • decarboxylation • photocatalysis

 For selected reviews, see: a) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062; Angew. Chem. 2012, 124, 5150; b) A. de Meijere, S. Bräse, M. Oestreich, Metal-Catalyzed Cross-Coupling Reactions and More, Wiley-VCH, Weinheim, 2014; c) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53, 74; Angew. Chem. 2014, 126, 76; d) T. J. Colacot, S. Nolan, C. Hardacre, M. Stradiotto, Z. Ismagilov, U. Ozkan, M.

RESEARCH ARTICLE

Lautens, J. Spivey, G. Lloyd-Jones, X. F. Wu, *New Trends in Cross-Coupling: Theory and Applications*, Royal Society of Chemistry, **2014**.

- [2] I. D. Hills, M. R. Netherton, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 5749; Angew. Chem. 2003, 115, 5927.
- For selected reviews, see: a) J. Choi, G. C. Fu, *Science* 2017, *356*, eaaf7230; b) G. C. Fu, *ACS Cent. Sci.* 2017, *3*, 692; c) A. H. Cherney, N. T. Kadunce, S. E. Reisman, *Chem. Rev.* 2015, *115*, 9587.
- [4] For representative examples, see: a) H. Huo, B. J. Gorsline, G. C. Fu, *Science* 2020, *367*, 559; b) H. Yin, G. C. Fu, *J. Am. Chem. Soc.* 2019, *141*, 15433; c) B. Li, T. Li, M. A. Aliyu, Z. H. Li, W. Tang, *Angew. Chem. Int. Ed.* 2019, *58*, 11355; *Angew. Chem.* 2019, *131*, 11477; d) Z. Wang, H. Yin, G. C. Fu, *Nature* 2018, *563*, 379; e) K. E. Poremba, N. T. Kadunce, N. Suzuki, A. H. Cherney, S. E. Reisman, *J. Am. Chem. Soc.* 2017, *139*, 5684; f) J. Schmidt, J. Choi, A. T. Liu, M. Slusarczyk, G. C. Fu, *Science* 2016, *354*, 1265; g) M. Sidera, S. P. Fletcher, *Nat. Chem.* 2015, *1*, 7, 935; h) M. Jin, L. Adak, M. Nakamura, *J. Am. Chem. Soc.* 2015, *137*, 7128; i) J. Mao, F. Liu, M. Wang, L. Wu, B. Zheng, S. Liu, J. Zhong, Q. Bian, P. J. Walsh, *J. Am. Chem. Soc.* 2014, *136*, 17662; j) F. O. Arp, G. C. Fu, *J. Am. Chem. Soc.* 2005, *127*, 10482.
- [5] X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu, *Nat. Chem.* **2019**, *11*, 1158.
- [6] For selected reviews, see: a) J. Xuan, Z.-G. Zhang, W.-J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 15632; Angew. Chem. 2015, 127, 15854; b) S. Murarka, Adv. Synth. Catal. 2018, 360, 1735.
- For representative examples, see: a) H.-P. Bi, L. Zhao, Y.-M. Liang, C.-[7] J. Li, Angew. Chem. Int. Ed. 2009, 48, 792; Angew. Chem. 2009, 121, 806; b) X. Liu, Z. Wang, X. Cheng, C. Li, J. Am. Chem. Soc. 2012, 134, 14330; c) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437; d) C. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan, Nature 2016, 536, 322; e) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801; f) X. Tan, Z. Liu, H. Shen, P. Zhang, Z. Zhang, C. Li, J. Am. Chem. Soc. 2017, 139, 12430; g) C. Li, J. Wang, L. M. Barton, S. Yu, M. Q. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan, P. S. Baran, Science 2017, 356, eaam7355; h) E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker, D. W. C. MacMillan, Science 2017, 355, 380; i) J. T. Edwards, R. R. Merchant, K. S. McClymont, K. W. Knouse, T. Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. Wei, T. Zhou, M. D. Eastgate, P. S. Baran, Nature 2017, 545, 213; j) W. Xue, M. Oestreich, Angew. Chem. Int. Ed. 2017, 56, 11649; Angew. Chem. 2017, 129, 11808; k) L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 2017, 139, 7440; I) M. Koy, F. Sandfort, A. Tlahuext-Aca, L. Quach, C. G. Daniliuc, F. Glorius, Chem. -Eur. J. 2018, 24, 4552; m) R. Mao, A. Frey, J. Balon, X. Hu, Nat. Catal. 2018, 1, 120; n) R. Mao, J. Balon, X. Hu, Angew. Chem. Int. Ed. 2018, 57, 9501; Angew. Chem. 2018, 130, 9645; o) H. Cao, H. Jiang, H. Feng, J. M. C. Kwan, X. Liu, J. Wu, J. Am. Chem. Soc. 2018, 140, 16360; p) I. Scheipers, C. Mück-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 2019, 58, 6545; Angew. Chem. 2019, 131, 6616; q) Z. Li, R. O. Torres-Ochoa, Q. Wang, J. Zhu, Nat. Commun. 2020, 11, 403; r) J. He, G. Chen, B. Zhang, Y. Li, J.-R. Chen, W.-J. Xiao, F. Liu, C. Li, Chem 2020, 10.1016/j.chempr.2020.02.003.
- [8] a) Z. Zuo, H. Cong, W. Li, J. Choi, G. C. Fu, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 1832; b) N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E. Reisman, Org. Lett. 2017, 19, 2150; c) D. Wang, N. Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 15632; d) F.-D. Lu, D. Liu, L. Zhu, L.-Q. Lu, Q. Yang, Q.-Q. Zhou, Y. Wei, Y. Lan, W.-J. Xiao, J. Am. Chem. Soc. 2019, 141, 6167; d) R. S. J. Proctor, H. J. Davis, R. J. Phipps, Science 2018, 360, 419; e) J. Ma, J. Lin, L. Zhao, K. Harms, M. Marsch, X. Xie, E. Meggers, Angew. Chem. Int. Ed. 2018, 57, 11193; Angew. Chem. 2018, 130, 11363.
- [9] For one leading review on C(sp³)–C(sp) formation, see: a) C.-J. Li, Acc. Chem. Res. 2009, 42, 335; for related works, see: b) X.-G. Liu, C.-J. Zhou, E. Lin, X.-L. Han, S.-S. Zhang, Q. Li, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 13096; Angew. Chem. 2018, 130, 13280; c) J. M. Smith, T. Qin, R. R. Merchant, J. T. Edwards, L. R. Malins, Z. Liu, G. Che, Z. Shen, S. A. Shaw, M. D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 11906; Angew. Chem. 2017, 129, 12068; d) L. Huang, A. M. Olivares, D.

J. Weix, Angew. Chem. Int. Ed. 2017, 56, 11901; Angew. Chem. 2017, 129, 12063.

- [10] P. Leophairatana, S. Samanta, C. C. De Silva, J. T. Koberstein, J. Am. Chem. Soc. 2017, 139, 3756.
- [11] For selected reviews, see: a) A. Hossain, A. Bhattacharyya, O. Reiser, Science 2019, 364, eaav9713; b) O. Reiser, Acc. Chem. Res. 2016, 49, 1990.
- [12] For representative examples, see: a) A. Sagadevan, V. K. K. Pampana, K. C. Hwang, Angew. Chem. Int. Ed. 2019, 58, 3838; Angew. Chem. 2019, 131, 3878; b) A. Hazra, M. T. Lee, J. F. Chiu, G. Lalic, Angew. Chem. Int. Ed. 2018, 57, 5492; Angew. Chem. 2018, 130, 5590; c) A. Sagadevan, V. P. Charpe, A. Ragupathi, K. C. Hwang, J. Am. Chem. Soc. 2017, 139, 2896; d) A. Sagadevan, A. Ragupathi, K. C. Hwang, Angew. Chem. Int. Ed. 2015, 54, 13896; Angew. Chem. 2015, 127, 14102; e) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu, K. C. Hwang, Green Chem. 2015, 17, 1113; f) A. Sagadevan, K. C. Hwang, Adv. Synth. Catal. 2012, 354, 3421.
- For visible light-induced copper-catalyzed C–N bond formation, see: a)
 S. E. Creutz, K. J. Lotito, G. C. Fu, J. C. Peters, *Science* 2012, 338, 647;
 b) Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters,
 G. C. Fu, *Science* 2016, 351, 681.
- For selected reviews on our work, see: a) Q.-S. Gu, Z.-L. Li, X.-Y. Liu, [14] Acc. Chem. Res. 2020, 53, 170; b) Z.-L. Li, G.-C. Fang, Q.-S. Gu, X.-Y. Liu, Chem. Soc. Rev. 2020, 49, 32; for our other representative works, see: c) Y.-F. Cheng, J.-R. Liu, Q.-S. Gu, Z.-L. Yu, J. Wang, Z.-L. Li, J.-Q. Bian, H.-T. Wen, X.-J. Wang, X. Hong, X.-Y. Liu, Nat. Catal. 2020, 3, 401; d) C.-J. Yang, C. Zhang, Q.-S. Gu, J.-H. Fang, X.-L. Su, L. Ye, Y. Sun, Y. Tian, Z.-L. Li, X.-Y. Liu, Nat. Catal. 2020, 10.1038/s41929-020-0460-y; e) L. Ye, Y. Tian, X. Meng, Q.-S. Gu, X.-Y. Liu, Angew. Chem. Int. Ed. 2020, 59, 1129; Angew. Chem. 2020, 132, 1145; f) X.-T. Li, L. Lv, T. Wang, Q.-S. Gu, G.-X. Xu, Z.-L. Li, L. Ye, X. Zhang, G.-J. Cheng, X.-Y Liu, Chem 2020, 10.1016/j.chempr.2020.03.024; g) J.-S. Lin, X.-Y. Dong, T.-T. Li, N.-C. Jiang, B. Tan, X.-Y. Liu, J. Am. Chem. Soc. 2016, 138, 9357; h) X.-Y. Dong, J.-T. Cheng, Y.-F. Zhang, Z.-L. Li, T.-Y. Zhan, J.-J. Chen, F.-L. Wang, N.-Y. Yang, L. Ye, Q.-S. Gu, X.-Y. Liu, J. Am. Chem. Soc. 2020, 142, 9501.
- [15] A. C. P. F. de Sá, G. M. A. Pontes, J. A. L. dos Anjos, S. R. Santana, L. W. Bieber, I. Malvestiti, *J. Braz. Chem. Soc.* 2003, *14*, 429.
- [16] M. A. Berliner, E. M. Cordi, J. R. Dunetz, K. E. Price, *Org. Process Res. Dev.* 2010, *14*, 180.
- [17] R. Yazaki, N. Kumagai, M. Shibasaki, Org. Lett. 2011, 13, 952.

RESEARCH ARTICLE

Entry for the Table of Contents

Chiral copper dual catalysis: A photoinduced asymmetric radical decarboxylative alkynylation of bench-stable racemic carboxylic acid derivatives with easily available terminal alkynes is accomplished, providing expedient access to diverse enantioenriched alkynes. The chiral copper catalyst serves as a dual photo- and cross-coupling catalyst to achieve the challenging stereocontrol over the highly reactive prochiral alkyl radical intermediates.