## ARTICLE IN PRESS

European Journal of Medicinal Chemistry xxx (xxxx) xxx

FISEVIER

Contents lists available at ScienceDirect

# European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech



# Research paper

Structural modifications in the distal, regulatory region of histamine H<sub>3</sub> receptor antagonists leading to the identification of a potent antiobesity agent

Katarzyna Szczepańska <sup>a</sup>, Steffen Pockes <sup>b, \*</sup>, Sabina Podlewska <sup>a, c</sup>, Carina Höring <sup>b</sup>, Kamil Mika <sup>d</sup>, Gniewomir Latacz <sup>a</sup>, Marek Bednarski <sup>d</sup>, Agata Siwek <sup>e</sup>, Tadeusz Karcz <sup>a</sup>, Martin Nagl <sup>b</sup>, Merlin Bresinsky <sup>b</sup>, Denise Mönnich <sup>b</sup>, Ulla Seibel <sup>b</sup>, Kamil J. Kuder <sup>a</sup>, Magdalena Kotańska <sup>d</sup>, Holger Stark <sup>f</sup>, Sigurd Elz <sup>b</sup>, Katarzyna Kieć-Kononowicz <sup>a, \*\*</sup>

#### ARTICLE INFO

Article history: Received 28 August 2020 Received in revised form 7 November 2020 Accepted 16 November 2020 Available online xxx

Keywords: Histamine H<sub>3</sub> receptor Non-imidazole histamine H<sub>3</sub>R ligands Piperazine derivatives, Selective ligands Molecular docking Anti-obesity agents

#### ABSTRACT

A series of 4-pyridylpiperazine derivatives with varying regulatory region substituents proved to be potent histamine H<sub>3</sub> receptor (H<sub>3</sub>R) ligands in the nanomolar concentration range. The most influential modification that affected the affinity toward the H<sub>3</sub>R appeared by introducing electron-withdrawing moieties into the distal aromatic ring. In order to finally discuss the influence of the characteristic 4pyridylpiperazine moiety on H<sub>3</sub>R affinity, two Ciproxifan analogues 2 and 3 with a slight modification in their basic part were obtained. The replacement of piperazine in 3 with piperidine in compound 2, led to slightly reduced affinity towards the  $H_3R$  ( $K_i = 3.17$  and 7.70 nM, respectively). In fact, 3 showed the highest antagonistic properties among all compounds in this series, hence affirming our previous assumptions, that the 4-pyridylpiperazine moiety is the key element for suitable interaction with the human histamine H<sub>3</sub> receptor. While its structural replacement to piperidine is also tolerated for H<sub>3</sub>R binding, the heteroaromatic 4-pyridyl moiety seems to be essential for proper ligand-receptor interaction. The putative protein-ligand interactions responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at the  $H_3R$ , as well as drug-like properties of ligands were evaluated using in vitro methods. Moreover, pharmacological in vivo test results of compound 9 (structural analogue of Abbott's A-331440) clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound.

© 2020 Elsevier Masson SAS. All rights reserved.

### 1. Introduction

The histamine  $H_3$  receptor  $(H_3R)$  has been pharmacologically discovered in 1983 as presynaptic autoreceptor [1] involved in a negative feedback modulation of histamine synthesis and inhibition of its release from histaminergic neurons [1]. On the other

*E-mail addresses*: steffen.pockes@ur.de (S. Pockes), mfkonono@cyf-kr.edu.pl (K. Kieć-Kononowicz).

https://doi.org/10.1016/j.ejmech.2020.113041

0223-5234/© 2020 Elsevier Masson SAS. All rights reserved.

hand, as postsynaptic  $H_3$  heteroreceptors they also modulate the release of other neurotransmitters such as dopamine, acetylcholine, serotonin, norepinephrine,  $\gamma$ -aminobutyric acid, glutamate, substance P [2–4]. The  $H_3R$  is expressed predominantly in the central nervous system (CNS), especially in the regions associated with cognition, sleep, wakefulness and homeostatic regulation [5]. Regarding the distribution of the  $H_3R$  in the body combined with its regulatory impact on essential neurotransmitters,  $H_3R$ -inhibiting compounds (antagonists/inverse agonists) represent a highly attractive class of ligands in the search for new drugs.

Please cite this article as: K. Szczepańska, S. Pockes, S. Podlewska *et al.*, Structural modifications in the distal, regulatory region of histamine H<sub>3</sub> receptor antagonists leading to the identification of a potent anti-obesity agent, European Journal of Medicinal Chemistry, https://doi.org/10.1016/j.ejmech.2020.113041

a Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland

b Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany

<sup>&</sup>lt;sup>c</sup> Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland

d Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland

<sup>&</sup>lt;sup>e</sup> Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland

f Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany

<sup>\*</sup> Corresponding author.

<sup>\*\*</sup> Corresponding author.