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ABSTRACT

We herein describe a B2Pin2-assisted copper-catalyzed semihydrogenation of alkynes. A variety of 

alkenes were obtained in good to excellent yields with Z-selectivity under mild reaction conditions. 

Mechanistic studies indicated that a transfer hydrogenation process was involved and ethanol acted as 

both a solvent and a hydrogen donor in this reaction. The present protocol enabled convenient synthesis 

of deuterium-substituted Z-alkenes such as Z-Combretastain A4-d2 in high deuteration ratio by using 

readily available ethanol-d1 as the deuterium source. 
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Introduction

Z-Alkene moieties are among the most important structural units in organic molecules due to 

their practical utilities in some advanced materials as well as their potential bioactivities in various 

drugs and natural products.1 As such, a wide range of synthetically useful methods have been  

established, among which the transition metal-catalyzed (especially palladium) semihydrogenation 

of alkynes with hydrogen dominates this field for decades.1d,2 However, the inevitable use of 

flammable hydrogen gas in those reactions2d,3 prompts chemists to explore more safe and facile 

hydrogenation processes.4-10 In this regard, catalytic transfer hydrogenation (TH) emerges as an 

alternative way to access Z-alkenes, which necessitates the development of various transfer 

hydrogenating reagents such as ammonia borane,4 silane,5 formic acid-triethylamine,2f,6 

isopropanol,7 ethanol,8 and even water.9 Among them, ethanol and water have received 

considerable attention due to their intrinsic advantages of easy availability and non-toxicity. Thus, 

the exploration of TH reactions with water or ethanol as the economical hydrogen sources is still 

highly desirable.

Typically, diboron reagents served as efficient boron precursors in traditional cross-coupling 

reactions, C-H activations, and functionalizations of alkenes, etc.11 In addition, diboron reagents 

could also serve as reductants for generating hydride from water as exemplified in the reduction of 

various unsaturated C-C bonds.12-14 In 2016, Stokes group first described a palladium-catalyzed 

transfer hydrogenation of alkenes and alkynes with water under the assistance of B2(OH)4 (Scheme 

1a).12 Soon later, Song group independently reported a palladium-catalyzed transfer hydrogenation 
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3

of N-heteroaromatics using a combined H2O/B2Pin2 system as the hydrogen source (Scheme 1b).13 

Similarly, Prabhu group conducted a palladium-catalyzed reduction of alkenes or alkynes by using 

the combined H2O/B2Pin2 system to produce hydrogen (Scheme 1c).14 Note that these 

diboron-assisted transfer hydrogenation reactions inevitably produce alkanes, while the selective 

reduction of alkynes to (Z)-alkenes remains challenging.12-14 As part of our continued efforts to 

develop copper-catalyzed efficient transformations,15 we herein disclose an efficient 

copper-catalyzed semihydrogenation of alkynes5b-e,16 to access Z-alkenes with excellent 

stereoselectivity by using a combined ethanol/B2pin2 system as the hydrogen source.

Scheme 1. Diboron-assisted transfer hydrogenation reactions

a) Stokes' work:

R1
R2 or R1 R2

Pd/C, B2(OH)2

solvent, rt.
R1

R2

c) Prabhu's work:

H2O

+

B2Pin2

[Pd(OAc)2]3
H2

[Pd(OAc)2]3
PCy3

R1
R2

R1
R2

b) Song's work:

N

N
Ar

Pd(OAc)2
B2Pin2

H2O, w/o base, rt. N

N
Ar

d) this work:

R1 R2

CuCl/Ligand
B2Pin2/t-BuOK

R1 R2EtOD, r.t.

D D

H2O

R1 R2

H H

EtOH, r.t.

CuCl/Ligand
B2Pin2/t-BuOK
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Results and Discussion

Initially, diphenylacetylene 1a was selected as the model substrate to investigate the optimal 

reaction conditions (Table 1). Screening of various ligands revealed that the NHC L5 gave a high 

conversion of alkyne in the presence of CuCl (10 mol %), B2Pin2 (1.2 equiv) and t-BuOK (1.0 equiv) in 

THF, but a considerable amount of hydroboronated product 3a was detected (entries 1-5, Table 1). 

Unfortunately, no hydrogenation occurred when the reaction was carried out in water (entry 6).12-14 We 

then chose ethanol as a hydrogen donor as well as a solvent. Gratifyingly, in this case 2a was obtained 

in 94% yield with an excellent Z-selectivity (Z/E > 99/1, entry 7, Table 1). Several other alcohols were 

also surveyed and ethanol was proved to be the most suitable one (entries 8-10 vs 7, Table 1). The use 

of other NHC ligands in ethanol or in the absence of a ligand only resulted in lower yields of 2a 

together with poor Z/E stereoselectivities (entries 11-14 vs 7, Table 1). Several other diboron reagents 

were also investigated for the reaction, it was found that B2(OH)4 and B2(nep)2 (bis(neopentyl 

glycolato)diboron) could also give good conversion as well as high stereoselectivity, while B2(cat)2 

(biscatecholato)diboron) gave poor results (entries 15-17 vs 7, Table 1). Controlled experiments 

indicated that B2Pin2 and CuCl were indispensable for this semihydrogenation reaction (entries 18, 19, 

Table 1). Reducing the amount of copper salt, ligand, t-BuOK, and B2Pin2, respectively, would lower 

the yield of 2a (entries 20-23 vs 7, Table 1). When t-BuONa was used as a base instead of t-BuOK, a 

comparable yield of 2a was obtained in 94%, but in slightly lower conversion (entry 24, Table 1). The 

reaction failed to give 2a when HBPin was used instead of B2Pin2 (entry 25, Table 1).

Table 1.  Optimization of reaction conditionsa 
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5

Ph Ph

CuCl, ligand
B2pin2, t-BuOK

solvent, rt, 5 h Ph

HH

Ph
+

Ph

BpinH

Ph
1a 2a 3a

+ Ph
Ph

4a

entry ligand solvent H2O (equiv) diboron (equiv) conversion (%) yield of 2a/3a/4a (%)b Z/E for 2ac

1 L1 THF 7.5 B2Pin2 (1.2) 94 25/67/2 >99/1

2 L2 THF 7.5 B2Pin2 (1.2) 84 4/80/0 --

3 L3 THF 7.5 B2Pin2 (1.2) 95 40/54/1 >99/1

4 L4 THF 7.5 B2Pin2 (1.2) 92 45/46/1 >99/1

5 L5 THF 7.5 B2Pin2 (1.2) 90 28/61/1 >99/1

6 L5 H2O -- B2Pin2 (1.2) 23 0/23/0 --

7 L5 EtOH -- B2Pin2 (1.2) 99 94d/4/0 >99/1

8 L5 MeOH -- B2Pin2 (1.2) 89 32/13/0 >99/1

9 L5 i-PrOH -- B2Pin2 (1.2) 90 20/68/0 >99/1

10 L5 t-BuOH -- B2Pin2 (1.2) 89 0/86/0 --

11 L6 EtOH -- B2Pin2 (1.2) 73 32/37/0 46/1

12 L7 EtOH -- B2Pin2 (1.2) 92 70/22/0 56/1

13 L8 EtOH -- B2Pin2 (1.2) 74 36/33/0 15/1

14 -- EtOH -- B2Pin2 (1.2) 43 15/15/0 11/2

15 L5 EtOH -- B2(OH)4 

(1.2)

99 90/0/1 >99/1

16 L5 EtOH -- B2(cat)2 (1.2) 4 3/0/0 --

17 L5 EtOH -- B2(nep)2 

(1.2)

97 92/0/0 >99/1

18 L5 EtOH -- -- 0 0/0/0 --

19e L5 EtOH -- B2Pin2 (1.2) 10 6/4/0 1/1

20f L5 EtOH -- B2Pin2 (1.2) 81 78/3/0 >99/1

21g L5 EtOH -- B2Pin2 (1.2) 99 89/9/0 >99/1

22h L5 EtOH -- B2Pin2 (1.2) 0 0/0/0 --

23 L5 EtOH -- B2Pin2 (1.0) 91 86/4/0 >99/1

24i L5 EtOH -- B2Pin2 (1.2) 95 94/1/0 >99/1

25j L5 EtOH -- -- 0 0/0/0 --

aReaction conditions: 1a (0.2 mmol), CuCl (10 mol %), ligand (15 mol %), B2Pin2 (0.24 mmol), 
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6

t-BuOK (0.2 mmol), solvent (3.0 mL), 25 ºC for 5 h under N2 atmosphere unless otherwise noted. 

bYield was determined by GC analysis using diphenyl as an internal standard. cZ/E ratio was 

determined by GC analysis. dIsolated yield: 92%. eWithout CuCl. fCuCl (5 mol%) and L5 (7.5 

mol%). gt-BuOK (50 mol%). ht-BuOK (15 mol%). it-BuONa (1.0 equiv.) was used instead of 

t-BuOK. jHBPin (1.2 equiv.) was used instead of B2Pin2.

O
PPh2 PPh2

Xantphos (L2)

Ph2P
PPh2

dppe (L1)

P(Cy)2

CyJohnPhos (L4)

N NAr Ar
Cl

IMes•HCl (L5): Ar = 2,4,6-trimethylphenyl
IPr•HCl (L6): Ar = 2,6-diisopropylphenyl

N NAr Ar
Cl

SIMes•HCl (L7): Ar = 2,4,6-trimethylphenyl
SIPr•HCl (L8): Ar = 2,6-diisopropylphenyl

With the optimized reaction conditions in hand, the substrate scope of alkynes 1 was first 

examined as shown in Table 2. Both electron-donating and electron-withdrawing substituents on the 

benzene ring of alkynes 1 were compatible with the reaction conditions and the desired Z-alkenes 2 

were obtained in good yields (except 1h) with excellent stereoselectivities (2a-g, 2k-o). Alkynes 

bearing a heteroarene such as 4-pyridinyl or 2-thienyl ring were also tolerable under the current 

reaction conditions to give Z-alkenes in good yields with high stereoselectivity (2p, 2q). Notably, this 

transfer semihydrogenation process could be applied to ynamines leading to the formation of 

Z-enamines which could be used as versatile building blocks in organic synthesis (2r-t). Aryl alkyl 

acetylenes such as hex-1-yn-1-ylbenzene 1u and 2-(3,3-dimethylbut-1-yn-1-yl)naphthalene 1v were 
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7

also workable for the semihydrogenation to give highly selective Z-alkene albeit in moderate yields (2u, 

2v). An aliphatic internal alkyne 1w could also be semihydrogenated to give the corresponding 

Z-alkene 2w in excellent stereoselectivity (2w). As expected, the semihydrogenation of terminal 

alkynes also proceeded smoothly to give the corresponding alkenes in moderate to excellent yields 

(2x-2z, 2zb) except in the case of 1za as a substrate. 

Table 2. Substrate scope of alkynes.a,b
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8

R1 R2

CuCl (10 mol %)
IMes  HCl (15 mol %)
B2Pin2 (1.2 equiv)
t-BuOK (1.0 equiv)

EtOH, rt, 5 h R1 R2

N
Ph

Ms
Ph

R

2a: R = H, 92% (>99:1);
2b: R = Me, 82% (>99:1);
2c: R = OMe, 90% (>99:1);
2d: R = NH2, 62% (16:1);
2e: R = F, 91% (>99:1);
2f: R = Cl, 82% (>99:1);
2g: R = CF3, 86%c (21:1)
2h: R = NO2, 0%

H H

R 2k: R= Me, 85% (>99:1);
2l: R = Br, 93% (>99:1);
2m: R = CN, 95%c (>99:1);
2n: R = CO2Et, 88%c (>99:1);

R
2i:R= Me, 92% (>99:1);
2j: R = Cl, 89% (40:1);

2o: 93% ( >99:1)

S

2q: 85%c ( 11:1)

N

2p: 79% ( >99:1)

N R

2r :R= Ms, 92% (33:1);
2s: R = Ts, 69% (>99:1);

2t: 41%d (>99:1) 2v: 62%g (>99:1) 2x: 95%c

H H

H H H H

H H

H H H H

HHH H



H
H

H

H H

1 2

HH H H

n-pentyl n-pentyl

H

H

H

O

Ph
MeO

MeO
OMe

H
H

H

H
H

OHC
H

H
H

H
( )8

2u: 85%e (>99:1)
78%f (>99:1)

2w: 49%h (>99:1)
70%i (>99:1)

2y: 53%c

88%f
2z: 80%c 2za: 0% 2zb: 79%e

76%f

aReaction conditions: 1 (0.2 mmol), CuCl (10 mol %), IMes·HCl (15 mol %), B2Pin2 (0.24 mmol), 

t-BuOK (0.2 mmol), ethanol (3.0 mL), 25 ºC for 5 h under N2 atmosphere unless otherwise noted. bThe 

Z/E ratios were determined by GC-MS. c.The reaction time was prolonged to 12 h. d39% of 1s was 

recovered. eThe reaction temperature was increased to 80 ºC and the reaction time was prolonged to 12 

h. fB2(OH)4 (0.24 mmol) was used instead of B2Pin2 at 25 ºC and the reaction time was prolonged to 12 
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9

h. g26% of 1t was recovered. hReaction condition: 1w (0.2 mmol), CuCl (15 mol%), IMes·HCl (22.5 

mol %), B2Pin2 (0.3 mol), t-BuOK (0.2 mmol), ethanol (3.0 mL), 80 ºC for 36 h under N2 atmosphere. 

iReaction condition: 1w (0.2 mmol), CuCl (15 mol %), IMes·HCl (22.5 mol%), B2OH4 (0.3 mol), 

t-BuOK (0.2 mmol), ethanol (3.0 mL), 25 ºC for 12 h under N2 atmosphere.

In addition, a gram-scale (8.0 mmol of 1a used) synthesis of 2a was also tried, and the target 

Z-alkene 2a was obtained in 85% yield (eq. 1).

Ph Ph

CuCl (10 mol %)
IMes  HCl (15 mol %)
B2Pin2 (1.2 equiv)
t-BuOK (1.0 equiv)

EtOH, rt, 8 h Ph Ph



H H

1a: 8.0 mmol 2a: 1.2 g, 85%

(1)

To gain insight into the mechanism of the reaction, a deuterium-labeled experiments was first carried 

out (Scheme 2a). When EtOD (99% D-enrichment of the hydroxyl proton) was used as the solvent, the 

deuterium was incorporated into both the 1,2-olefinic positions of 2m-d2 (both 94% D-enrichment) 

(Scheme 2a). This result suggested that ethanol acted as a hydrogen donor in this reaction. To probe the 

possible intermediate,17 the byproduct 3a was subjected to the standard conditions without the extra 

addition of B2Pin2 (Scheme 2b). As a result, a low yield of 2a (19%) was obtained which indicated that 

3a might not be the most likely intermediate in the catalytic cycle.

Scheme 2. Mechanistic experiments
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10

CuCl (10 mol%)
IMes HCl (15 mol%)

t-BuOK (1 equiv.)

EtOH, r.t., 5 h

BPin

CuCl (10 mol%)
IMes HCl (15 mol%)
B2Pin2 (1.2 equiv.)
t-BuOK (1 equiv.)

EtOD (99% D), r.t., 12 h

CN NC
D D

1m 2m-d2: 93 %,
deuterium incorporation was measured by 1H NMR

a)

b)

3a 2a: 19 %

94% D94% D



On the basis of the above experiments and previous literature,12-14,18 a plausible mechanism was 

described in Scheme 3. The alkoxocopper species Cu-A was first formed and it further reacted with 

B2Pin2 to produce the Cu-boron complex Cu-C. Ethanol could then coordinate to boron atom, followed 

by a hydrogen transfer to generate copper hydride species Cu-E. The syn-addition of Cu-E to the 

alkyne 1a afforded the vinylcuprate intermediate Cu-F. The protonation of Cu-F by ethanol released 

the Z-alkene and regenerated the active catalyst.

Scheme 3. Proposed mechanism
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11

CuCl + IMes HCl
t-BuOK

KCl

or B2Pin2

PinB OBut

or
PinB OEt

Cu OButL

Cu OEtL

Cu BPinL

EtOHCu BPinL
OEtH

Cu HL

PinB OEt

1a

Ph Ph

HLCu

EtOH

Ph Ph
1a

Ph Ph
2a

3a

Cu-A

Cu-B

Cu-C

Cu-D

Cu-E

Cu-F

•

Ph Ph

BPinLCu

Cu-G
ethanol
protodecupration

 Recent researches indicated that the incorporation of deuterium into drugs or nature products would 

significantly improve their pharmacological and biological activities.19 From the above mechanism 

illustration, we can expect that the present protocol enables an expedient way to access olefinic 

deuterium-incorporated Z-alkenes by using commercially available ethanol-d1 as the deuterium source. 

To fully demonstrate the synthetic potential of the present protocol, the synthesis of deuterated 

Z-Combretastation A-4-d2 5b from alkyne 1zc was carried out under our catalytic system (Scheme 

4).4b,5d Gratifyingly, a total 64% yield of 5b with a 94% D-enrichment at both the 1,2-olefinic positions 

was obtained through a two-step process. Furthermore, the resulting intermediate 5a from 1zc could be 

easily converted to the corresponding phenanthrenes-d2 6a and 6b almost without a deuterium loss.20 
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12

Note that these deuterium-labeled compounds might exhibit unique bioactivities compared to the 

unlabeled ones.1c,21,22

Scheme 4. Synthesis of Z-Combretastation A-4-d2 and Phenanthrenes-d2 

MeO

MeO

MeO

OMe

OAc

MeO

MeO OMe OMe

OAc

D D

5a: 70%e, Z/E ratio = 49:1f

94 % D94 % D

MeO

MeO OMe OMe

OH

D D

94 % D94 % D

5b: Z-Combretastation A-4-d2

92%e, Z/E ratio = 20: 1f

a b

c

MeO

MeO OMe

OAc

OMe

D D

d

6a: 52%e

92 % D 92 % D

D D

MeO

MeO OMe OMe

OH

6b: 89%e

92 % D 92 % D

1zc

Reaction condition: (a) 1zc (0.2 mmol), CuCl (10 mol %), IMes·HCl (15 mol %), B2Pin2 (0.24 mmol), 

t-BuOK (0.2 mmol), EtOD (3.0 mL, 99% D-enrichment), 25 ºC for 10 h under N2 atmosphere. (b) 5a 

(0.2 mmol), K2CO3 (0.6 mmol), MeOH (6 mL), 25 ºC for 5 h. (c) 5a (0.2 mmol), I2 (0.2 mmol), 

cyclohexane (100 mL), irradiated at a distance of 5 cm from 500 W high pressure mercury lamp for 5 h 

at room temperature. (d) 6a (0.2 mmol), K2CO3 (0.6 mmol), MeOH (6 mL), 25 ºC for 5 h. (e) Isolated 

yields. (f) Z/E ratios were determined by GC analysis and deuterium incorporations were measured by 

1H NMR analysis.
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13

Conclusion

In summary, we have developed an efficient copper-catalyzed transfer semihydrogenation of 

various alkynes to stereoselectively afford Z-alkenes in high yields with a combined ethanol/B2Pin2 

system as the hydrogen source. The present protocol has advantages of mild reaction conditions, 

inexpensive catalyst, excellent stereoselectivity, and good functional group tolerance. Moreover, the 

present strategy enabled a convenient way to access deuterium-labeled molecules such as 

Z-Combretastation A-4-d2 and Phenanthrenes-d2 in highly selective manner using readily available 

ethanol-d1 as the deuterium source which demonstrates the practically useful application of our protocol 

in organic synthesis. 

Experimental Section

  Unless otherwise stated, all reagents were purchased from commercial suppliers and used as received. 

Melting points are uncorrected. 1H and 13C NMR spectra were recorded on a spectrometer at 25 C in 

CDCl3 at 500 MHz, 125 MHz, respectively, with TMS as internal standard. Chemical shifts () are 

expressed in ppm and coupling constants J are given in Hz. GC-MS experiments were performed with 

EI source; high resolution mass spectra (HRMS) were obtained on a TOF-MS instrument with EI or 

ESI source.

Preparation of the starting material 1 and 3a. Alkynes (1a-1q, 1v) were synthesized via a 

Sonogashira cross-coupling reaction according to the literature procedure.4c The ynamines (1r-1t) were 

synthesized according to the known literature procedure.23 Alkynes (1y-1za) were synthesized via a 
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Sonogashira cross-coupling reaction of corresponding aryl iodide with trimethylsilylacetylene 

according to the literature procedure, subsequently hydrolysis of trimethysilylethynyl-substrates.24 The 

3a was synthesized from 1a under the standard reaction conditions by using t-BuOH as the solvent 

instead of EtOH. 

Preparation of the starting material 1zc.4b,5d 5-ethynyl-1,2,3-trimethoxybenzene (1.77 g, 3 mmol), 

5-iodo-2-methoxyphenol (0.75 g, 3 mmol), Pd(PPh3)4 (158 mg, 0.14 mmol) and CuI (23 mg, 0.12 

mmol) were added to a 50 mL Schlenk flash with a stir bar under an atmosphere of nitrogen. Then 

pyrrolidine (20 mL) were added sequentially. The reaction mixture was stirred at 80 ºC overnight. Then  

a saturated NH4Cl solution (20 mL) was added into it. The mixture was extracted with Et2O (20 mL × 

3), the combined organic fractions were washed with brine and dried with MgSO4. After filtration, the 

solvent was removed under vacuum and the residue was purified by column chromatography on silica 

gel (100-200 mesh), eluting with the mixture of ethyl acetate (EA)/petroleum ether (PE) = 3/1 to give 

2-methoxy-5-((3,4,5-trimethoxyphenyl)ethynyl)phenol (yellow solid, 740.0 mg, 77%). 1H NMR 

(CDCl3, 500 MHz): δ 7.10 (d, J = 2.0 Hz, 1H), 7.07 (dd, J1 = 8.5 Hz, J2 = 2.0 Hz, 1H), 6.83 (d, J = 8.5 

Hz, 1H), 6.79 (s, 2H), 5.70 (s, 1H), 3.92 (s, 3H), 3.88 (s, 6H), 3.87 (s, 3H).5d Then acetyl chloride (197 

mg, 2.61 mmol) was added slowly to a solution of 

2-methoxy-5-((3,4,5-trimethoxyphenyl)ethynyl)phenol (740 mg, 2.4 mmol), Et3N (0.75 mL, 5.2 mmoL) 

and dry CH2Cl2 (3 mL) at 0 ºC under an atmosphere of nitrogen, the mixture was allowed to warm to 

room temperature and stirred for 6 h. Upon completion, quenching the reaction with water (5 mL). The 

mixture was extracted with CH2Cl2, the organic fractions were combined. Afterwards the solvent was 
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removed under vacuum and the residue was purified by column chromatography on silica gel (100-200 

mesh), eluting with the mixture of ethyl acetate (EA)/ petroleum ether (PE) = 3/1 to give pure 1zc 

(white solid, 752.0 mg, 89%). 1H NMR (CDCl3, 500 MHz): δ 7.34 (dd, J1 = 8.5 Hz, J2 = 2.5 Hz, 1H), 

7.23 (d, J = 2.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 6.75 (s, 2H), 3.88 (s, 6H), 3.87 (s, 3H), 3.86 (s, 3H), 

2.33 (s, 3H).

General procedure for the synthesis of Z-alkenes 2. CuCl (2.0 mg, 0.02 mmol, 10 mol %), 

IMes·HCl (10.2 mg, 0.03 mmol, 15 mol %) and t-BuOK (22.4 mg, 0.2 mmol, 1 equiv) were placed in a 

dried 25 mL Schlenk tube. The tube was evacuated and refilled with N2 three times. Ethanol (1.0 mL) 

was added and the resulting mixture was stirred at room temperature for 15 min. A solution of 1 (0.2 

mmol), B2Pin2 (61.0 mg, 0.24 mmol, 1.2 equiv) and ethanol (2 mL) was then added and the mixture 

was stirred at room temperature for 5 h. Upon completion, the reaction mixture was concentrated under 

vacuum and the residue was purified by column chromatography on silica gel (100-200 mesh), eluting 

with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give pure Z-alkene 2.

Gram-scale synthesis of 2a. CuCl (79.0 mg, 0.8 mmol, 10 mol %), IMes·HCl (409.0 mg, 1.2 mmol, 

15 mol %) and t-BuOK (898.0 mg, 8.0 mmol, 1 equiv.) were placed in a dried 250 mL Schlenk flash. 

The flash was evacuated and refilled with N2 three times. Ethanol (40 mL) was added and the resulting 

mixture was stirred at room temperature for 15 min. A solution of 1a (1.4 g, 8.0 mmol), B2Pin2 (2.4 g, 

9.6 mmol, 1.2 equiv) and ethanol (80 mL) was then added and the mixture was stirred at room 

temperature for 8 h. Upon completion, the reaction mixture was concentrated under vacuum and the 

residue was purified by column chromatography on silica gel (100-200 mesh), eluting with petroleum 
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ether (PE) to give pure Z-alkene 2a as colorless liquid (1.2 g, 85%).

(Z)-1,2-diphenylethene (2a)4c

Product was isolated via column chromatography (PE) as colorless liquid (33.0 mg, 92%). 1H NMR 

(CDCl3, 500 MHz): δ 7.25-7.15 (m, 10H), 6.59 (s, 2H); 13C{1H} NMR (CDCl3, 125 MHz): δ 137.3, 

130.3, 128.9, 128.2, 127.1. 

(Z)-1-methyl-4-styrylbenzene (2b)4c

Product was isolated via column chromatography (PE) as colorless liquid (31.8 mg, 82%). 1H NMR 

(CDCl3, 500 MHz): δ 7.27-7.13 (m, 7H), 7.01 (d, J = 8.0 Hz, 2H), 6.55 (s, 2H), 2.30 (s, 3H); 13C{1H} 

NMR (CDCl3, 125 MHz): δ 137.6, 136.9, 134.3, 130.3, 129.6, 128.9, 128.9, 128.8, 128.2, 127.0, 21.3. 

(Z)-1-methoxy-4-styrylbenzene (2c)4c

OCH3

Product was isolated via column chromatography (PE/EA 100:1) as yellow liquid (37.9 mg, 90%). 1H 

NMR (CDCl3, 500 MHz): δ 7.34-7.22 (m, 7H), 6.62-6.79 (m, 2H), 6.59 (d, J = 12.0 Hz, 1H), 6.56 (d, J 

= 12.0 Hz, 1H), 3.82 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 158.7, 137.6, 130.2, 129.8, 129.7, 

128.82, 128.78, 128.2, 126.9, 113.6, 55.2. 
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(Z)-2-styrylaniline (2d)4c

NH2

Product was isolated via column chromatography (PE/EA 20:1-5:1) as yellow liquid (24.3 mg, 62%). 

1H NMR (CDCl3, 500 MHz): δ 7.35-7.20 (m, 5H), 7.11 (d, J = 8.0 Hz, 2H), 6.57-6.55 (m, 2H), 6.52 (d, 

J = 12.0 Hz, 1H), 6.47 (d, J = 12.0 Hz, 1H), 3.68 (s, 2H); 13C{1H} NMR (CDCl3, 125 MHz): δ 145.5, 

138.0, 130.2, 130.1, 128.8, 128.2, 127.6, 127.5, 126.7, 114.7. 

(Z)-1-fluoro-4-styrylbenzene (2e)4c 

F

Product was isolated via column chromatography (PE) as colorless liquid (36 mg, 91%). 1H NMR 

(CDCl3, 500 MHz): δ 7.29-7.22 (m, 7H), 6.94 (t, J = 8.8 Hz, 2H), 6.63 (d, J = 12.2 Hz, 1H), 6.58 (d, J = 

12.2 Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz): δ 161.8 (d, J =246.7 Hz), 137.1, 133.2 (d, J = 3.5 Hz), 

130.5 (d, J = 7.9 Hz), 130.3 (d, J = 1.0 Hz), 129.1, 128.8, 128.3, 127.2, 115.2 (d, J = 21.4 Hz).

(Z)-1-chloro-4-styrylbenzene (2f)4c

Cl

Product was isolated via column chromatography (PE) as colorless liquid (35 mg, 82%). 1H NMR 

(CDCl3, 500 MHz): δ 7.29-7.21 (m, 9H), 6.68 (d, J = 12.2 Hz, 1H), 6.58 (d, J = 12.2 Hz, 1H). 13C{1H} 

NMR (CDCl3, 125 MHz): δ 136.9, 135.7, 132.8, 131.0, 130.2, 128.9, 128.8, 128.4, 128.3, 127.3. 

Page 17 of 39

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

(Z)-1-styryl-4-(trifluoromethyl)benzene (2g)4c 

CF3

Product was isolated via column chromatography (PE) as colorless liquid (42.8 mg, 86%). 1H NMR 

(CDCl3, 500 MHz): δ 7.50 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.30-7.24 (m, 5H), 6.75 (d, J = 

12.2 Hz, 1H), 6.62 (d, J = 12.2 Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz): δ 141.0, 136.6, 132.3, 

129.1, 129.0 (q, J = 32.5 Hz ), 128.8, 128.7, 128.4, 127.6, 125.1 (q, J = 3.8 Hz), 124.2 (q, J = 270.1 

Hz). 

(Z)-1-methyl-3-styrylbenzene (2i)4c

Product was isolated via column chromatography (PE) as colorless liquid (35.8 mg, 92%). 1H NMR 

(CDCl3, 500 MHz): δ 7.32-7.21 (m, 5H), 7.17-7.05 (m, 4H), 6.62 (s, 2H), 2.31 (s, 3H); 13C{1H} NMR 

(CDCl3, 125 MHz): δ 137.8, 137.4, 137.2, 130.4, 130.1, 129.6, 128.9, 128.2, 128.1, 127.9, 127.1, 125.9, 

21.3.

 (Z)-1-chloro-3-styrylbenzene (2j)4c 

Cl

Product was isolated via column chromatography (PE) as colorless liquid (38.3 mg, 89%). 1H NMR 

(CDCl3, 500 MHz): δ 7.30-7.14 (m, 9H), 6.69 (d, J = 12.2 Hz, 1H), 6.56 (d, J = 12.2 Hz, 1H); 13C{1H} 

NMR (CDCl3, 125 MHz): δ 139.1, 136.6, 134.1, 131.6, 129.4, 128.9, 128.8, 128.7, 128.3, 127.5, 127.1, 
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127.0.

(Z)-1-methyl-2-styrylbenzene (2k)4c

Product was isolated via column chromatography (PE) as colorless liquid (33 mg, 85%). 1H NMR 

(CDCl3, 500 MHz): δ 7.25-7.08 (m, 9H), 6.70 (d, J = 12.2 Hz, 1H), 6.66 (d, J = 12.2 Hz, 1H), 2.32 (s, 

3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 137.13, 137.05, 136.1, 130.5, 130.1, 129.6, 128.93, 128.89, 

128.1, 127.2, 127.0, 125.7, 19.9.

 (Z)-1-bromo-2-styrylbenzene (2l)25

Br

Product was isolated via column chromatography (PE) as colorless liquid (48.3 mg, 93%). 1H NMR 

(CDCl3, 500 MHz): δ 7.67-7.62 (m, 1H), 7.24-7.17 (m, 6H), 7.14-7.10 (m, 2H), 6.73 (d, J = 12.1 Hz, 

1H), 6.66 (d, J = 12.1 Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz): δ 138.0, 136.4, 132.7, 131.4, 130.9, 

129.5, 129.0, 128.7, 128.2, 127.3, 127.0, 123.9. 

(Z)-2-styrylbenzonitrile (2m)

CN

Product was isolated via column chromatography (PE/EA 100:1) as yellow liquid (39.0 mg, 95%). 1H 

NMR (CDCl3, 500 MHz): δ 7.67 (d, J = 8.3 Hz, 1H), 7.40-7.30 (m, 3H), 7.25-7.23 (m, 3H), 7.18-7.16 

(m, 2H), 6.88 (d, J = 12.2 Hz, 1H), 6.80 (d, J = 12.2 Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz): δ 
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141.2, 135.9, 134.4, 132.9, 132.2, 129.7, 128.9, 128.4, 127.8, 127.5, 125.9, 117.9, 112.3; HRMS (ESI) 

for C15H11NNa [M + Na]+: calcd. 228.0784, found 228.0786.

ethyl (Z)-2-styrylbenzoate (2n) 

COOEt

Product was isolated via column chromatography (PE/EA 100:1) as yellow liquid (44.4 mg, 88%). 1H 

NMR (CDCl3, 500 MHz): δ 8.05-8.01 (m, 1H), 7.34-7.29 (m, 2H), 7.25-7.22 (m, 1H), 7.18-7.12 (m, 

3H), 7.10-7.07 (m, 3H), 6.67 (d, J = 12.0 Hz, 1H), 4.38 (q, J = 7.0 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H); 

13C{1H} NMR (CDCl3, 125 MHz): δ 167.1, 139.6, 136.8, 131.8 131.0, 130.5, 129.6, 129.5, 129.2, 

128.0 (2C), 127.0, 126.9, 61.0, 14.3; HRMS (ESI) for C17H17O2 [M + H]+: calcd. 253.1223, found 

253.1224.

(Z)-1-styrylnaphthalene (2o)26

Product was isolated via column chromatography (PE) as colorless liquid (42.7 mg, 93%). 1H NMR 

(CDCl3, 500 MHz): δ 7.84-7.75 (m, 3H), 7.70 (d, J = 8.5 Hz, 1H), 7.50-7.47 (m, 2H), 7.41 (dd, J1 = 8.5 

Hz, J2 = 1.5 Hz, 1H), 7.36-7.34 (m, 2H), 7.30-7.24 (m, 3H), 6.82 (d, J = 12.0 Hz, 1H), 6.74 (d, J = 12.0 

Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz): δ 137.3, 134.9, 133.5, 132.6, 130.6, 130.2, 129.0, 128.3, 

128.0, 128.0, 127.6, 127.5, 127.2, 127.0, 126.0, 125.9. 

(Z)-4-styrylpyridine (2p)4c
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N

Product was isolated via column chromatography (PE/EA = 10:1-3:1) as colorless liquid (28.6 mg, 

79%). 1H NMR (CDCl3, 500 MHz): δ 8.46 (d, J = 1.0 Hz, 2H), 7.28-7.21 (m, 5H), 7.12 (d, J = 5.5 Hz, 

2H), 6.81 (d, J = 12.0 Hz, 1H), 6.51 (d, J = 12.0 Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz): δ 149.8, 

145.0, 136.2, 134.1, 128.8, 128.5, 127.9, 127.6, 123.5. 

(Z)-2-styrylthiophene (2q)26 

S

Product was isolated via column chromatography (PE) as colorless liquid (31.3 mg, 85%). 1H NMR 

(CDCl3, 500 MHz): δ 7.43-7.33 (m, 5H), 7.13 (d, J = 5.0 Hz, 1H), 7.02 (d, J = 3.5 Hz, 1H), 6.93 (dd, J1 

= 5.1 Hz, J2 = 3.6 Hz, 1H), 6.75 (d, J = 12.0 Hz, 1H), 6.63 (d, J = 12.0 Hz, 1H); 13C{1H} NMR (CDCl3, 

125 MHz): δ 139.8, 137.4, 128.9, 128.8, 128.5, 128.1, 127.5, 126.4, 125.5, 123.4. 

 (Z)-N-methyl-N-styrylmethanesulfonamide (2r) 

N S
O

O

Product was isolated via column chromatography (PE/EA = 10:1) as colorless liquid (38.9 mg, 92%). 

1H NMR (CDCl3, 500 MHz): δ 7.42-7.41 (m, 2H), 7.36-7.33 (m, 2H), 7.28-7.26 (m, 1H), 6.35 (d, J = 

9.0 Hz, 1H), 6.07 (d, J = 9.0 Hz, 1H), 2.94 (s, 3H), 2.90 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 

134.6, 128.9, 128.2, 127.6, 126.9, 120.5, 36.4, 36.1; HRMS (ESI) for C10H13NNaO2S [M + Na]+: calcd. 

234.0559, found 234.0569.

(Z)-N,4-dimethyl-N-styrylbenzenesulfonamide (2s)8 
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N S
O

O

Product was isolated via column chromatography (PE/EA = 10:1) as colorless liquid (39.5 mg, 69%). 

1H NMR (CDCl3, 500 MHz): δ 7.78-7.76 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.29-7.21 (m, 5H), 6.27 (d, 

J = 9.0 Hz, 1H), 6.03 (d, J = 9.0 Hz, 1H), 2.77 (s, 3H), 2.47 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz): 

δ 144.0, 134.9, 134.2, 129.8, 129.0, 128.2, 127.6, 127.5, 127.3, 121.0, 36.6, 21.6.

(Z)-4-methyl-N-phenyl-N-styrylbenzenesulfonamide (2t) 

N
Ph

S
O

O

Product was isolated via column chromatography (PE/EA = 10:1) as yellow solid (22.4 mg, 41%). m.p. 

93.5-94.6 ºC; 1H NMR (CDCl3, 500 MHz): δ 7.32-7.31 (m, 2H), 7.20-7.16 (m, 4H), 7.11-7.04 (m, 4H), 

6.71 (d, J = 9.1 Hz, 1H), 6.15 (d, J = 9.1 Hz, 1H), 2.94 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 

139.1, 133.8, 128.92, 128.90, 127.7, 127.3, 127.2, 126.9, 126.2, 121.8, 37.1; HRMS (ESI) for 

C15H15NNaO2S [M + Na]+: calcd. 296.0716, found 296.0724.

(Z)-hex-1-en-1-ylbenzene (2u)26

Product was isolated via column chromatography (PE) as colorless liquid (27.2 mg, 85%). 1H NMR 

(CDCl3, 500 MHz): δ 7.38-7.31 (m, 4H), 7.27-7.23 (m, 1H), 6.44 (d, J = 11.7 Hz, 1H), 5.71 (dt, J1 = 

11.7 Hz, J2 = 7.3 Hz, 1H), 2.40-2.35 (m, 2H), 1.51-1.45 (m, 2H), 1.43-1.36 (m, 2H), 0.94 (t, J = 7.2 Hz, 

3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 137.8, 133.2, 128.7, 128.7, 128.1, 126.4, 32.2, 28.3, 22.4, 
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14.0. 

(Z)-1-(3,3-dimethylbut-1-en-1-yl)naphthalene (2v) 

 

Product was isolated via column chromatography (PE/EA = 50:1) as colorless liquid (26.0 mg, 62%). 

1H NMR (CDCl3, 500 MHz): δ 7.85-7.82 (m, 2H), 7.79 (d, J = 8.5 Hz, 1H), 7.51-7.45 (m, 2H), 7.67 (s, 

1H), 7.37 (dd, J1 = 8.5 Hz, J2 = 1.5 Hz, 1H), 6.58 (d, J = 12.5 Hz, 1H), 5.73 (d, J = 12.5 Hz, 1H), 1.04 

(s, 9H); 13C{1H} NMR (CDCl3, 125 MHz): δ 143.1, 140.0, 133.0, 132.0, 127.8, 127.7, 127.6, 127.3, 

127.1, 127.0, 126.0, 125.5, 34.3, 31.3. HRMS (EI) for C16H18 [M+]: calcd. 210.1409, found 210.1415.

(Z)-dodec-6-ene (2w)4c

Product was isolated via column chromatography (PE) as colorless liquid (23.6 mg, 70%, conversion: 

82%). 1H NMR (CDCl3, 500 MHz): δ 5.40-5.34 (m, 2H), 2.05-2.01 (m, 4H), 1.39-1.27 (m, 12H), 0.91 

(t, J = 7.0 Hz, 6H); 13C{1H} NMR (CDCl3, 125 MHz): δ 129.9, 31.6, 29.5, 27.2, 22.6, 14.1.

4-vinyl-1,1'-biphenyl (2x)27

Product was isolated via column chromatography (PE) as white solid (34.1 mg, 95%). m.p. 

122.5-123.8 °C (lit.27 m.p. 118-120 °C); 1H NMR (CDCl3, 500 MHz): δ 7.60-7.55 (m, 4H), 7.49-7.41 

(m, 4H), 7.35-7.31 (m, 1H), 6.75 (dd, J1 = 18.0 Hz, J2 = 11.0 Hz, 1H), 5.79 (dd, J1 = 17.5 Hz, J2 = 1.0 
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Hz, 1H), 5.27 (dd, J1 = 11.0 Hz, J2 = 1.0 Hz, 1H); 13C{1H} NMR (CDCl3, 125 MHz) δ 140.8, 140.6, 

136.7, 136.5, 128.8, 127.3, 127.3, 127.0, 126.7, 113.9. 

phenyl(4-vinylphenyl)methanone (2y)28

O

Product was isolated via column chromatography (PE/EA = 20:1) as colorless liquid (36.7 mg, 88%). 

1H NMR (CDCl3, 500 MHz): δ 7.82-7.80 (m, 4H), 7.60 (t, J = 7.4 Hz, 1H), 7.53-7.49 (m, 4H), 6.80 (dd, 

J1 = 17.6 Hz, J2 = 10.9 Hz, 1H), 5.91 (d, J = 17.6 Hz, 1H), 5.43 (d, J = 10.9 Hz, 1H); 13C{1H} NMR 

(CDCl3, 125 MHz) δ 196.2, 141.6, 137.8, 136.7, 136.0, 132.3, 130.6, 130.0, 128.3, 126.1, 116.6.

1,2,3-trimethoxy-5-vinylbenzene (2z)29

MeO

MeO
OMe

Product was isolated via column chromatography (PE/EA = 50:1) as colorless liquid (31.0 mg, 80%). 

1H NMR (CDCl3, 500 MHz): δ 6.68-6.62 (m, 3H), 5.67 (d, J = 17.5 Hz, 1H), 5.23 (d, J = 10.8 Hz, 1H), 

3.90 (s, 6H), 3.86 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 153.3, 138.1, 136.8, 133.3, 113.2, 103.3, 

60.9, 56.1. 

dodec-1-ene (2zb)30

Product was isolated via column chromatography (PE) as colorless liquid (26.7 mg, 79%). 1H NMR 

(CDCl3, 500 MHz): δ 5.88-5.79 (m, 1H), 5.03-4.99 (m, 1H), 5.96-5.93 (m, 1H), 2.08-2.04 (m, 2H), 
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1.41-1.28 (m, 16H), 0.90 (t, J = 7.0 Hz, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 139.3, 114.1, 33.9, 

31.9, 29.7 (2C), 29.5, 29.4, 29.2, 29.0, 22.7, 14.1.

Mechanistic Studies.

Reaction of 1m in EtOD. CuCl (2.0 mg, 0.02 mmol, 10 mol %), IMes·HCl (10.2 mg, 0.03 mmol, 15 

mol %) and t-BuOK (22.4 mg, 0.2 mmol, 1 equiv.) were placed in a dried 25 mL Schlenk flash. The  

tube was evacuated and refilled with N2 three times. EtOD (1.0 mL) was added and the result mixture 

was stirred at room temperature for 15 min. Subsequently, a solution of 1l (40.6 mg, 0.2 mmol), B2Pin2 

(61 mg, 0.24 mmol, 1.2 equiv.) and EtOD (2.0 mL) was added, and the resulting mixture was stirred at 

room temperature for 12 h. Upon completion, the solvent was removed under vacuum and the residue 

was purified by column chromatography on silica gel (100-200 mesh), eluting with the mixture of 

PE/EA = 50/1 to give pure products in 93% yield. The resulting product 2m-d2 was sampled for 1H 

NMR analysis (see Figure S1 in Supporting Information).

Reaction of 3a under the standard reaction conditions in the absence of B2Pin2. CuCl (2.0 mg, 0.02 

mmol, 10 mol%), IMes·HCl (10.2 mg, 0.03 mmol, 15 mol%) and t-BuOK (22.4 mg, 0.2 mmol, 1 

equiv.) were placed in a dried 25 mL Schlenk flash. The tube was evacuated and refilled with N2 three 

times. Then, ethanol (1.0 mL) was added, and the result mixture was stirred at room temperature for 15 

min. Subsequently, a solvent of 3a (61.2 mg, 0.2 mmol) and ethanol (2.0 mL) was added, and the 

resulting mixture was stirred at room temperature for 5 h. Upon completion, after evaporation of the 

solvent under vacuum, the residue was purified by column chromatography on silica gel (100-200 

mesh), eluting with PE to give 2a in 19% yield.
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Synthesis of (Z)-2-methoxy-5-(2-(3,4,5-trimethoxyphenyl)vinyl-1,2-d2)phenyl acetate (5a) CuCl 

(2.0 mg, 0.02 mmol, 10 mol%), IMes·HCl (10.2 mg, 0.03 mmol, 15 mol%) and t-BuOK (22.4 mg, 0.2 

mmol, 1 equiv.) were placed in a dried 25 mL Schlenk tube. The tube was evacuated and refilled with 

N2 three times. EtOD (1.0 mL) was added and the resulting mixture was stirred at room temperature for 

15 min. 2-methoxy-5-((3,4,5-trimethoxyphenyl)ethynyl)phenyl acetate 1zc (0.2 mmol) and B2Pin2 

(61.0 mg, 0.24 mmol, 1.2 equiv) was added under N2 atmosphere. Then EtOD (2.0 mL) was added to 

wash 1zc and B2Pin2 which might remain on the Schlenk tube wall. The reaction was stirred at room 

temperature for 10 h. Upon completion, the reaction mixture was concentrated under vacuum and the 

residue was purified by column chromatography on silica gel (200-300 mesh), eluting with the mixture 

of ethyl acetate (EA)/petroleum ether (PE) = 6/1-3/1 to give pure 5a (colorless liquid, 50.4 mg, 70 %). 

1H NMR (CDCl3, 500 MHz): δ 7.14 (dd, J1 = 8.5 Hz, J2 = 2.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.87 (d, 

J = 8.5 Hz, 1H), 6.52 (s, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.72 (s, 6H), 2.28 (s, 3H); 13C{1H} NMR 

(CDCl3, 125 MHz): δ 168.8, 152.9, 150.2, 139.3, 137.1, 132.3, 129.9, 129.0 (t, J = 23.4 Hz), 128.1 (t, J 

= 23.4 Hz), 127.7, 123.1, 111.9, 105.7, 60.8, 55.8, 20.6. 

Synthesis of Z-Combretastation A-4-d2 (5b). 5a (72.0 mg, 0.2 mmol), K2CO3 (83 mg, 0.6 mmol) and 

MeOH (6 mL) was added to a 15 mL reaction tube with a stir bar. The reaction mixture was stirred at 

room temperature for 5 h. Upon completion, extra water (15 mL) was added and the mixture was 

extract with CH2Cl2 (20 mL × 3). The organic phase was combined. Afterwards the solvent was 

removed under vacuum and the residue was purified by column chromatography on silica gel (200-300 

mesh), eluting with the mixture of ethyl acetate (EA)/ petroleum ether (PE) = 6/1-3/1 to give 5b21e 
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( colorless liquid, 58.5 mg, 92%); 1H NMR (CDCl3, 500 MHz): δ 6.94 (d, J = 2.0 Hz, 1H), 6.82 (dd, J1 

= 8.0 Hz, J2 = 2.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.55 (s, 2H), 5.58 (s, 1H), 3.87 (s, 3H), 3.85 (s, 

3H), 3.71 (s, 6H); 13C{1H} NMR (CDCl3, 125 MHz): δ 152.7, 145.8, 145.2, 137.0, 132.5, 130.4, 128.9 

(t, J = 23.4 Hz), 128.4 (t, J = 23.3 Hz), 121.0, 114.9, 110.3, 106.0, 60.8, 55.81, 55.79.

Synthesis of 3,5,6,7-tetramethoxyphenanthren-2-yl-9,10-d2 acetate (6a).20 Iodine (50.8 mg, 0.2 

mmol) was added to a solution of 5a (72 mg, 0.2 mmol) and cyclohexane (100 mL) with a stir bar. The 

reaction mixture was irradiated at a distance of 5 cm from 500 W high pressure mercury lamp and 

stirred for 5 h at room temperature. Then extra sat. Na2S2O8 was added until the solution turn to 

colorless and the mixture was extract with CH2Cl2. The organic phase was combined. Afterwards the 

solvent was removed under vacuum and the residue was purified by column chromatography on silica 

gel (200-300 mesh), eluting with the mixture of ethyl acetate (EA)/ petroleum ether (PE) = 10/1-3/1 to 

give 6a (colorless liquid, 37 mg, 52%). 1H NMR (CDCl3, 500 MHz): δ 9.21 (s, 1H), 7.52 (s, 1H), 7.10 

(s, 1H), 4.06 (s, 6H), 4.05 (s, 3H), 4.03 (s, 3H), 2.42 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 

169.2, 152.5, 152.1, 150.2, 142.7, 138.9, 130.2, 128.9, 126.6, 125.8 (t, J = 24.6 Hz), 124.6 (t, J = 24.5 

Hz), 120.9, 118.4, 108.9, 105.3, 61.3, 60.5, 55.86, 55.84, 20.7.  

Synthesis of 3,5,6,7-tetramethoxyphenanthren-9,10-d2-2-ol (6b). 6a (71.7 mg, 0.2 mmol), K2CO3 

(83 mg, 0.6 mmol) and MeOH (6 mL) was added to a 15 mL reaction tube with a stir bar. The reaction 

mixture was stirred at room temperature for 5 h. Upon completion, extra water (15 mL) was added and 

the mixture was extract with CH2Cl2 (20 mL × 3). The organic phase was combined. Afterwards the 

solvent was removed under vacuum and the residue was purified by column chromatography on silica 
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gel (200-300 mesh), eluting with the mixture of ethyl acetate (EA)/ petroleum ether (PE) = 6/1-3/1 to 

give 6b31 (white solid, 56.3 mg, 89%). m.p. 162.9-163.7 ºC. 1H NMR (CDCl3, 500 MHz): δ 9.09 (s, 

1H), 7.34 (s, 1H), 7.09 (s, 1H), 5.95 (s, 1H), 4.11 (s, 3H), 4.06 (s, 3H), 4.05 (s, 3H), 4.02 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz): δ 151.7, 151.5, 146.7, 144.7, 142.5, 129.3, 127.6, 125.8 (t, J = 24.0 

Hz), 124.4 (t, J = 24.0 Hz), 124.0, 118.7, 111.1, 107.1, 105.2, 61.4, 60.4, 55.9 (2C).
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