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Abstract: Addition of lithiated methoxyallene 1 to imines 2 provid-
ed allenyl amines 3, which upon reaction with iodine and nitriles
furnished dihydroimidazole derivatives 5. Treatment of these inter-
mediates with strong acids such as trifluoromethane sulfonic acid
afforded tetrasubstituted imidazole derivatives 6 in good overall
yields. Subsequent base-promoted conversion of 1-iodovinyl-sub-
stituted compounds 6 into alkynyl-substituted imidazole derivatives
7 proceeded smoothly. Products 6 and 7 are versatile intermediates
for further transformations such as palladium-catalyzed coupling
reactions.
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In earlier publications we have reported that lithiated
alkoxyallenes smoothly add to aldimines and that the re-
sulting allenyl amines can be cyclized to produce dihydro-
pyrrole derivatives.1 This route has been exploited for
syntheses of several natural products.2 During attempts to
prepare 4-iododihydropyrrole derivatives we detected that
the reaction of allenyl amines such as 3 with iodine in ac-
etonitrile furnished dihydroimidazole derivatives 5 in
good yields (Table 1). Apparently, an allyl cation is
formed by addition of the iodine cation to the central
allene carbon, which is subsequently trapped by the sol-
vent acetonitrile. Cyclization by attack of the amino group
to the nitrilium carbon generated the five-membered ring.
This Ritter type reaction3 proved to be rather general
allowing a new access to imidazole derivatives by a four-
component process.

Addition of lithiated methoxyallene 1 (generated from
methoxyallene and n-BuLi) to imines 2 provided allenyl
amines 3,1c which upon reaction with iodine in different
nitriles 4 as solvent furnished dihydroimidazole deriva-
tives 5a–e as mixtures of diastereomers. Elimination of
methanol to afford the 1-iodovinyl-substituted imidazoles
6a–e was achieved by treatment with strong acids such as
trifluoromethane sulfonic acid (Table 1).4 Imine substitu-
ents R1 can be aryl or alkyl, at the nitrogen R2 = aryl and
tosyl are tolerated and as typical nitriles we successfully
employed acetonitrile, propionitrile, and benzonitrile. The
overall yields for this three-step sequence were good to
moderate (Table 1, entries a–e). It should be noted here
that experiments reducing the amount of nitriles were not
very successful. Thus, one drawback of our new four-

component synthesis is clearly the necessity to use the
corresponding nitrile in excess.

The 1-iodovinyl substituent of compounds 6 is a suitable
handle for further diversification, the simplest one being
base-induced elimination providing 4-alkynyl-substituted
imidazole derivatives 7 (Table 2).5 Whereas the reaction
of N-phenyl-substituted compounds 6a–c with potassium
tert-butoxide in tetrahydrofuran afforded the expected
alkynes 7a–c the N-tosyl derivative 6d suffered de-
tosylation, thus providing imidazole derivative 7d with a
free NH group in moderate yield (Table 2, entries a–d).

Alkynes 7 are suitable substrates for Sonogashira reac-
tions. Under standard conditions6 precursors 7a or 7c
reacted in the presence of iodobenzene to generate phen-
yl-substituted products 8a or 8c, respectively, in good
yields (Scheme 1).

We expected that the acidic alkyne hydrogen could be
used to introduce other substituents at the terminal carbon
of compounds 7. Deprotonation of 7a with 2.2 equivalents
of n-butyllithium followed by reaction with chlorotri-
methylsilane provided the bissilylated product 9 in 72%

Table 1 Synthesis of 1-Iodovinylimidazole Derivatives 6 from 
Methoxyallene, Imines, Iodine and Nitriles

Entry R1 R2 R3 Yield (%) Imidazole

a Ph Ph Me 80 6a

b Ph Ph Et 40 6b

c Ph Ph Ph 40 6c

d n-Bu Ts Me 63 6d

e Ph Ts Me 35 6e
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yield (Scheme 2). Hence the base is also able to depro-
tonate at the C-2 methyl group. This was confirmed when
methyl iodide was employed as electrophile, which
furnished dimethylated compound 10 in moderate yield.
Similar reaction conditions using methyl chloroformate as
electrophile gave the monosubstituted product 11 in low
yield.

The reactivity of the 1-iodovinyl group of compound 6a
was also examined in typical palladium-catalyzed reac-
tions. Sonogashira reaction with phenylacetylene provid-
ed coupling product 12 in acceptable yield whereas the
Suzuki reaction of 6a with an aryl boronic acid led to the
expected compound 13 in lower efficacy (Scheme 3).

Other cross-coupling experiments were even less success-
ful. These observations may reflect the considerable steric
hindrance at the reacting carbon due to the highly substi-
tuted imidazole core. We also successfully performed the
Stille coupling of 6a with tributylvinyltin, which provided
the expected 2-imidazolyl-1,3-diene derivative. However,
this compound rapidly polymerized and therefore it could
not be completely characterized. Trapping of the crude
product with tetracyanoethylene (TCNE) furnished
Diels–Alder adduct 14 in 32% overall yield. Other dieno-
philes examined were not sufficiently reactive.

Scheme 3 Cross-coupling reactions of 1-iodovinyl imidazole 
derivative 6a

In this communication we present a new four-component
synthesis7 involving an alkoxyallene, an imine, a nitrile,
and iodine, which furnished highly substituted imidazole
derivatives in moderate to good yields.8 Due to the func-
tional groups these can be further transformed into several
higher substituted and functionalized heterocycles. In par-
ticular, imidazole derivatives with different aryl substitu-
ents are easily accessible. Since imidazole derivatives are
of considerable interest in medicinal chemistry and also in
material science our new method – although restricted in
scope – should establish a valuable new approach to this
important class of heterocycles.9 These results once again
demonstrate the high synthetic versatility and value of
lithiated alkoxyallenes,10 which have served as an iodo-
vinyl carbene synthon in this new application leading to
imidazole derivatives.
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Table 2 Synthesis of 4-Alkynyl-Substituted Imidazole Derivatives 7

Entry R1 R2 R3 Yield (%) Alkyne

a Ph Ph Me 50 7a

b Ph Ph Et 60 7b

c Ph Ph Ph 72 7c

d n-Bu Ts Me 54 7d 
(R2 = H)

t-BuOK
 1–2 equiv

THF, 0 °C, 
1–2 h

N

N R1

R3

R2

N

N R1
R3

R2

I

6a–6d 7

Scheme 1 Sonogashira reactions of 7 with iodobenzene leading to
disubstituted alkynes 8
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Scheme 2 Deprotonation of imidazole derivative 7a and reactions
with electrophiles
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