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Two classes of amino acid-derived heterocyclic progesterone receptor ligands were developed to address
the metabolic issues posed by the dimethyl amide functionality of the lead compound (1). The tetrazole-
derived ligands behaved as potent partial agonists, while the 1,2,4-triazole ligands behaved as potent full
agonists.

� 2009 Elsevier Ltd. All rights reserved.
The steroid hormones progesterone (P4) and estrogen (E2) play
an important role in the female reproductive process. In the uterus,
E2 stimulates the proliferation of the endometrium, while P4
blocks this growth in an E2-dependent manner.1 While the exact
mechanism of this effect is not fully understood, in vitro and
in vivo studies have demonstrated that this antagonism requires
complexation of P4 with the progesterone receptor (PR)2 and can
operate through two general pathways: (1) an autocrine mecha-
nism in which liganded PR interferes with the ability of E2-bound
estrogen receptor (ER) to stimulate gene expression,3 and (2) a par-
acrine mechanism whereby P4-bound PR in one cell type, through
its gene products, suppresses E2-stimulated gene expression in an-
other cell type.4

In addition to regulating the female reproductive cycle, P4 and
E2 also play a role in modulating endometriosis, a condition char-
acterized by growth of endometrial tissue outside of the uterus
that is associated with dysmenorrhea, chronic pelvic pain, fatigue
and a host of other symptoms. As with endometrial tissue within
the uterus, proliferation of endometrial lesions is stimulated by
E2 and blocked by P4.5 Consequently, treatments for endometriosis
ll rights reserved.
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include the use of P4 and other progestins to moderate growth of
the offending lesions. Progestin therapies have been found to be
efficacious, but not without unpleasant side effects that include
depression, breakthrough bleeding and breast tenderness, some
of which are mediated through PR agonism.6 Additional adverse ef-
fects may be attributed to the poor nuclear hormone receptor
(NHR) selectivity of most progestins, including P4 itself.7

In the search for improved endometriosis treatments, opportu-
nity exists for exploitation of the diverse pathways involved in E2
opposition by PR agonism, including the development of small
molecule PR modulators, PR partial agonists, and highly selective
PR full agonists. A PR modulator strategy would, via selective
recruitment of cofactors by the liganded PR, be dependent upon
selective expression of proteins responsible for mediating E2 oppo-
sition while avoiding expression of proteins that mediate adverse
effects.8 Alternatively, a PR partial agonist approach would not rely
on differential cofactor recruitment, but on reducing the level of
PR-regulated gene expression such that enough gene products
are obtained to oppose E2 but not to induce side effects. Finally,
a highly selective PR full agonist would offer E2 antagonism with-
out the side effects brought about by activity at other NHRs. The
work disclosed herein is the result of efforts applied to the latter
two approaches.
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Table 1
Selected in vitro data for compounds 3–10.a
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Specifically, the goal of this program has been to identify small
molecules having a profile that includes potent binding at the pro-
gesterone receptor (ideally <20 nM), P100-fold selectivity over
other NHRs, including the androgen receptor (AR), glucocorticoid
receptor (GR), mineralocorticoid receptor (MR) and ER, and par-
tial-to-full PR agonism. Chemistry initiated with the lead dimethyl
amide 1 (Fig. 1). Compound 1 demonstrated a PR binding IC50 of
32 nM9 and sub-nanomolar activity in a T47D-based alkaline phos-
phatase PR agonist assay.10,11 With respect to NHR selectivity,
compound 1 was 50-fold selective over AR and >100-fold selective
over GR, MR and ER, indicating that AR selectivity required
improvement. Early in the team’s efforts to optimize the
pharmacological properties of 1, it became apparent that the dim-
ethylamide group was metabolically unstable, and isosteric
replacement of this moiety might offer a means of discharging this
liability.

Applying the strategy of utilizing five-membered ring heterocy-
cles as amide surrogates, a survey of heterocyclic amide replace-
ments was conducted. A number of ligands were identified as
having good to excellent PR binding potency and agonist activity
in the T47D PR agonist assay (Table 1). Across all heterocycles
examined, P450 inhibition profiles (represented by inhibition at
the 2C19 isoform in Table 1), would require optimization and of-
fered no means of differentiation. Examination of the binding
and functional parameters, however, did allow for differentiation,
as those ligands with a methyl substituent in the 2-position rela-
tive to the point of core attachment, (exemplified by entries 4, 7,
9 and 10) were found to be both more selective over AR and signif-
icantly more potent in the agonist assay. The reduced cell poten-
cies of compounds 3, 5, 6, and 8 coupled with the lower AR
selectivity of compounds 3, 5, and 6 rendered them less appealing.
Based on their exceptional potencies and selectivities, tetrazole 9
and triazole 10 were selected for further SAR activities.

Analogs of 9 were prepared as shown in Scheme 1.12 Reaction of
2-chloro-4-fluorobenzonitrile with an amino acid followed by
Fischer esterification produced ester 11. Treatment with an alumi-
num amide was followed by reaction with TMS azide under Mits-
unobu-like conditions13 to afford tetrazole 12, which was then
alkylated to provide target tetrazoles 9 and 13–22. In most cases,
the syntheses began with single amino acid enantiomers, however
it was later determined that scrambling of the stereocenter bearing
the R2 substituent occurred during alkylation of the aniline nitro-
gen. In the cases examined, the racemization was not complete,
and with the exception of the example in which the enantiomers
were separated (vide infra), compounds were tested as mixtures
of undetermined ee and are shown without indication of absolute
stereochemistry.

Several SAR trends were identified in this class of tetrazoles. For
example, substitution at the R2 position was important for potency
in the PR functional assay (Table 2, cf. compound 13 vs. compounds
9, 14, and 15). In addition, while all other compounds exemplified
in Table 2 were at least 100-fold selective for PR over AR, com-
pound 13 was only 40-fold selective (data not shown). Increasing
N
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Figure 1. Lead PR ligand 1.
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Scheme 1. Reagents and conditions: (a) H2NCH(R2)CO2H, K2CO3, DMF/H2O, 90 �C,
15 h; (b) EtOH, H2SO4, 80 �C, 15 h; (c) R3NH2�HCl, AlMe3, PhCH3, 0–60 �C, 36 h; (d)
TMSN3, PPh3, DIAD, THF, 0–23 �C, 4d; (e) R1Br, NaH, DMF, 0–23 �C, 15 h.
the length of the R2 substituent led to an attenuation in intrinsic
agonism (and potency to a lesser extent) such that compound 15



Table 2
Selected in vitro data for compounds 9 and 13–22a

Cl

N

N N
N

NN

R2 R3

R1

Compd R1 R2 R3 PR IC50 (nM) T47D EC50 (nM) (% P4) P450 2C19 IC50 (lM)

9 2-Cl–Bn Me Me 13 0.02 (93) <0.033
13 2-Cl–Bn H Me 50 197 (ND) <0.33
14 2-Cl–Bn Et Me 13 0.04 (73) <0.033
15 2-Cl–Bn i-Bu Me 5 1.3 (60) 0.30
16 2-Cl–Bn Me Et 16 0.6 (122) <0.033
17 2-Cl–Bn Me i-Pr 32 35 (116) 0.08
18 2-CF3–Bn i-Bu Me 25 139 (56) 1.3
19 i-Bu i-Bu Me 16 9.5 (47) 8.8
20 c-Bu(CH2) i-Bu Me 40 11 (31) 17
21 c-Bu(CH2) (S)-i-Bub Me 16 6.8 (38) 6.4
22 c-Bu(CH2) (R)-i-Bub Me 200 ND ND

a Values are means of P 2 determinations.
b See Ref. 15. ND = Not determined.
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Scheme 3. Reagents and conditions: (a) H2NCH(R2)CO2H, K2CO3, DMF/H2O, 90 �C,
15 h; acetylhydrazide, EDC, HOBT, THF, 23 �C, 18 h; (c) POCl3, CH3CN, 75 �C, 3 h; (d)
CH3NH2, MeOH, microwave, 200 �C, 1 h; (e) NaH, DMF, R1Br, 0–23 �C, 15 h.
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demonstrated intrinsic agonism that was 60% of P4. By contrast,
adding steric bulk directly to the tetrazole ring resulted in de-
creased agonist potency, but not intrinsic agonism (Table 2, cf.
compound 9 vs. compounds 16 and 17). The P450 inhibition (rep-
resented by 2C19 inhibition) was most influenced by modification
of the R1 aniline substituent. Compound 18, in which the 2-chloro-
benzyl substituent was replaced with a 2-(trifluoromethyl)benzyl
substituent, demonstrated markedly reduced 2C19 inhibition, but
this improvement appeared to come at the cost of agonist potency.
Ultimately, replacement of benzyl groups at R1 with aliphatic sub-
stituents led to the identification of partial agonists 19 and 20, each
having excellent PR binding, functional potency, and PR partial
agonism. Compound 20 was separated into its individual enantio-
mers 21 and 22 and all PR agonist activity was found to reside in
enantiomer 21.14

Synthesis of analogs of 10 began with the same amino acid—
aryl fluoride displacement reaction as for the tetrazole class
(Scheme 2).15 Coupling of the product acid with 4-methyl-3-thio-
semicarbazide followed by a one-pot cyclization/alkylation16 pro-
vided methylthio-substituted intermediate 23. Alkylation of the
aniline nitrogen and reductive removal of the methylthio group
afforded target triazoles 10 and 25–31. An additional set of com-
pounds in which a methyl group was incorporated at the five-posi-
tion of the triazole ring was prepared as shown in Scheme 3.17
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Scheme 2. Reagents and conditions: (a) H2NCH(R2)CO2H, K2CO3, DMF/H2O, 90 �C,
15 h; (b) 4-methyl-3-thiosemicarbazide, EDC, i-Pr2NEt, HOBT, THF, 23 �C, 24 h; (c)
NaOMe, MeOH, 60 �C, 15 h, then MeI, 24 h; (d) RaNi, EtOH, 80 �C, 15 h; (e) NaH,
DMF, R1Br, 0–23 �C, 15 h.
Amino acid—aryl fluoride displacement was followed by coupling
with acetylhydrazide and cyclization to oxadiazole 24. Conversion
of the oxadiazole to the N-methyl-1,2,4-triazole could be accom-
plished by heating in a microwave in the presence of an excess
of methylamine in methanol.18 Finally, alkylation of the aniline
nitrogen produced target triazoles 32–34. As with the tetrazole
class, some scrambling of the stereocenter adjacent to R2 occurred
during the aniline alkylation. Compounds were tested as mixtures
of undetermined ee and are shown without indication of absolute
stereochemistry.

Triazole-based PR ligands were similar in potency to their tetra-
zole-based counterparts, and several of the same SAR trends were
observed. As seen with entries 10 and 25–28 (Table 4), increasing
the size of the substituent in the R2 position attenuated intrinsic
agonism but also produced a corresponding drop in potency. As
with the tetrazole class, P450 inhibition (represented by 2C19 inhi-
bition) was observed with most analogs, and although modifica-
tions at R1 provided the same benefit, a significant drop in
progesterone-related potencies was observed (cf. 18 vs 29 and 19
vs 30). The exception to this was cyclohexylmethylene-substituted
analog 31, which had good PR binding and functional potency, full
agonism, and an acceptable P450 inhibition profile. Another strat-
egy for reducing P450 inhibition was introduction of a methyl
group to the five-position of the triazole, exemplified by com-
pounds 32–34. While compound 34, with significant bulk at R2,



Table 3
Rat PK for compounds 19 and 10a

Parameter Compound

19b 10c

Dose (iv, po, mg/kg) 1.1, 2.0 1.2, 2.3
CLp (mL/min/kg) Very highe 4.85 (1.15)
Vdss (L/kg) Very largee 0.54 (0.08)
Oral Cmax (ng/mL) 146 (117) 2116 (583)
Oral AUC0–t, (h ng/mL) 572 (67) 10085 (1779)
t½, po (h) 8.9 (0.7) 2.4 (0.3)
Oral%F �100 �100

a Values are means of three experiments, standard deviation is given in
parentheses.

b Discrete study.
c Cassette study conducted as a mixture of four compounds.
e Unable to quantitate.

Table 4
Selected in vitro data for compounds 10 and 25–34a

Cl

N

N N

NN

R2

R1

R3

Compd R1 R2 R3 PR IC50

(nM)
PR T47D EC50 (nM)
(% P4)

2C19 IC50

(lM)

10 2-Cl–Bn Me H 13 0.5 (107) <0.033
25 2-Cl–Bn Et H 16 0.02 (97) <0.33
26 2-Cl–Bn n-

Pr
H 13 0.05 (84) 0.11

27 2-Cl–Bn i-
Pr

H 32 4.7 (76) 0.063

28 2-Cl–Bn i-
Bu

H 25 157 (58) 1.3

29 2-CF3–Bn i-
Bu

H 398 ND 1.5

30 i-Bu i-
Bu

H 500 ND ND

31 c-
Hex(CH2)

Me H 40 3.0 (140) 3.8

32 2-Cl–Bn Me Me 63 4.5 (119) 43
33 2-Cl–Bn n-

Pr
Me 50 4.0 (87) 4.1

34 2-Cl–Bn i-
Pr

Me 398 1665 (61) ND

a Values are the means of P2 determinations. ND = not determined.
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suffered from markedly reduced PR binding and functional po-
tency, analogs 32 and 33 were free of potent P450 inhibition and
were found to be single-digit nanomolar full agonists of PR.

The pharmacokinetic parameters of tetrazole 19 and triazole 10
were evaluated in rats (Table 3). Plasma clearance for 19 was found
to be too high to quantitate, likely driven by a large volume of dis-
tribution that was likewise too large to quantitate. By comparison,
triazole 10 demonstrated low plasma clearance and a smaller vol-
ume of distribution. In addition, the oral AUC of 10 was approxi-
mately 18-fold higher than that of tetrazole 19. The oral half-life
of tetrazole 19, perhaps due to its large volume of distribution,
was nearly 9 h, while that of triazole 10 was 2.4 h, suggesting that,
even though the overall exposure of 10 was greater, both com-
pounds would be suitable for in vivo studies.

In summary, replacement of the dimethyl amide of lead PR li-
gand 1 with 5-membered ring heterocycles led to the discovery
of two series of selective PR partial and full agonists. The tetrazole
class, when optimized for potency, selectivity and P450 inhibition,
produced PR ligands with in vitro partial agonist profiles, while ef-
forts in the 1,2,4-triazole class allowed for the identification of po-
tent full agonists. Rat PK studies with compounds from both
classes indicated that the overall exposure of triazole 10 was more
than 15-fold greater than that for tetrazole 19. Conversely, the oral
half life of 19 was nearly fourfold longer, indicating that both com-
pounds might be suitable for in vivo pharmacology studies. Results
of these studies will be reported elsewhere.
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acetylhydrazide (3.59 g, 48.5 mmol) and HOBT (5.94 g, 38.8 mmol). The
resultant mixture was stirred at rt for 18 h, diluted with water and extracted
with EtOAc. The organics were washed with brine, dried over Na2SO4 and
concentrated. The residue was purified by silica gel chromatography using 0–
10% MeOH/CH2Cl2 to afford the bis-acylhydrazide (4.84 g, 40%). Step 3: POCl3

(7.25 mL, 78 mmol) was added via syringe to a solution of the bis-
acylhydrazide (4.8 g, 15.6 mmol) in CH3CN (110 mL). The reaction mixture
was heated at 75 �C for 4 h, and then concentrated to remove the CH3CN. The
residue was partitioned between ½ saturated brine and EtOAc, the layers were
separated and the aqueous layer was further extracted with EtOAc. The
combined organics were washed with brine, dried over Na2SO4 and
concentrated. Purification by ISCO chromatography using 0–10% MeOH/
CH2Cl2 afforded the oxadiazole (1.61 g, 36%). Step 4: A solution of the
oxadiazole (750 mg, 2.58 mmol) and methylamine (6.45 mL of a 2 M solution
in THF, 12.9 mmol) in NMP (6.5 mL) was heated to 200 �C in a microwave oven
for 1 h. The reaction mixture was diluted with EtOAc and washed with ½
saturated brine and brine. Without drying, the organics were concentrated in
vacuo and the solid residue was stirred with 5:1 EtOAc/hexane for 1 h. The
solids were collected by filtration to provide the 1,2,4-triazole (660 mg, 84%) as
a white powder. Step 5: Conducted as described in Ref. 12 to provide 34 as a
waxy yellow solid (75 mg, 53%). 1H NMR (CDCl3) d 7.46 (d, 1H, J = 8 Hz), 7.32 (d,
1H, J = 8 Hz), 7.10 (t, 1H, J = 8 Hz), 6.95 (t, 1 H, J = 8 Hz), 6.90 (m, 1H), 6.73 (m,
1H), 6.42 (d, 1H, J = 8 Hz), 4.95 (d, 1H, J = 16 Hz), 4.76 (d, 1H, J = 8 Hz), 4.52 (d,
1H, J = 20 Hz), 3.44 (s, 3H), 3.15 (br m, 1H), 2.26 (s, 3H), 1.08 (d, 3H, J = 8 Hz),
1.07 (d, 3H, J = 8 Hz). LCMS (ES) m/z 427.8 (M+H)+.
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