A versatile catalyst system for Suzuki–Miyaura syntheses of sterically hindered biaryls employing a cyclobutene-1,2-bis(imidazolium) salt[†]

Andreas Schmidt* and Alireza Rahimi

Received (in Cambridge, UK) 20th January 2010, Accepted 19th February 2010 First published as an Advance Article on the web 5th March 2010 DOI: 10.1039/c001362e

The catalyst system consisting of 3,3'-(3,4-bis(dichloro-methylene)-cyclobut-1-ene-1,2-diyl)bis(1-methyl-1*H*-imidazolium) bis(tetra-fluoroborate), Pd(OAc)₂ and NaOtBu in toluene proved to be very effective for a broad variety of Suzuki–Miyaura reactions at room temperature. It is also suited for the synthesis of sterically hindered compounds including 2,6-di-*tert*-butyl-2'-substituted biaryls at elevated temperatures.

The Suzuki-Miyaura reaction has become an extremely versatile and successful synthetic tool for carbon-carbon bond formation.^{1,2} A broad substrate scope, methods to prepare sterically hindered biaryls, the ability to operate at low levels of catalyst for a range of substrates, and the ability to work at room temperature have been the most important goals of rational catalyst design,^{3,4} and remarkable success has been achieved in the last years.¹⁻⁴ As the Suzuki-Miyaura reaction is inter alia influenced by parameters such as palladium source, ligand, additive, solvent, stoichiometry, and temperature, a plethora of protocols for accomplishing this transformation has been published. With respect to this, poly(N-heterocyclic carbene)s have attracted considerable attention as ligands because they allow the preparation of organometallic compounds with a broad variety of geometries.5 In continuation of our interest in N-heterocyclic carbenes⁶ we report here a new cyclobutene-1,2-bis(imidazolium) salt as very efficient catalyst precursor for a broad variety of Suzuki-Miyaura reactions at room temperature. The system can also successfully be employed for the synthesis of sterically hindered tri- and tetra-ortho-substituted biaryls.

The bis(imidazolium) salt was prepared starting from perchloropropene 1 which formed 1,2-dichloro-3,4-bis-(dichloro-methylene)cyclobut-1-ene 2 on treatment with Al/Hg.⁷ Reaction of cyclobutene 2 with 1-methylimidazole (NMI) resulted in the formation of (cyclobut-1-ene-1,2-diyl)bis-(1-methylimidazolium) chloride which was subjected to anion exchange in a one-pot procedure. Thus, tetrafluoroborate 3 was formed in 73% yield from 2. The salt 3 possesses no water of crystallization and its purification is simple (ESI[†]).

We selected 4-bromotoluene and phenylboronic acid to optimize the conditions of Suzuki–Miyaura reactions (Table 1, entry 1). THF, 2-propanol, and toluene proved to be suitable solvents (ESI[†]), but toluene gave the best results, when sodium *tert*-butylate was used as base. Thus, the reaction of 1.0 mmol of 4-bromotoluene, 1.2 mmol of phenylboronic acid, 1.7 mmol of NaOtBu, 1.0 mol% of Pd(OAc)₂, and 1.0 mol% of the bis(imidazolium) salt **3** conducted in 5.0 mL of toluene at room temperature gave 96% of 4-phenyltoluene.

Table 1 summarizes our results starting from (het)aryl chlorides, iodides, and triflates which all efficiently crosscoupled with arylboronic acids at room temperature in short periods of time. As a comparison, 1-(biphenyl-4-yl)ethanone (entry 2) has been prepared before at rt within 16–40 h in 50-92% yield,⁸ or in a microreactor on a polymer-bound Pd–NHC catalyst in 99% yield.⁹ To the best of our knowledge, the other transformations presented in Table 1 are new.

rt

	(het)aryl—X	$aryl-X + aryl-B(OH)_2 \xrightarrow{Pd(OAc)_2, 3}{NaOtBu}$ (het)aryl-aryl						
Entry	(het)aryl–X	(het)aryl– B(OH) ₂	(het)aryl– (het)aryl	Time/h	Yield (%)			
1	MeBr	(HO) ₂ B	Me-	0.5	96 ^a			
2	Me CI	(HO) ₂ B-		1	92 ^b			
3	}–∕⊂)–ci	(HO) ₂ B-	$\succ \hspace{-1.5cm} \rightarrow \hspace{-1.5cm} \sim \hspace{-1.5cm} \rightarrow $	1	94 ^b			
4		(HO) ₂ B	\sim	3.5	90 ^a			
5	⟨ _s ∖,	(HO) ₂ B	Ne S Me	3.5	91 ^{<i>a</i>}			
6	TfO	(HO) ₂ B	Me	3	93 ^b			
7	MeOTf	(HO) ₂ B-	Me-	1.25	93 ^b			
8	MeOTf	(HO) ₂ B	Me-	2	88 ^b			

^{*a*} 1.0 mol% Pd(OAc)₂, 1.0 mol% **3**, 1.7 eq. NaOtBu. ^{*b*} 2.0 mol% Pd(OAc)₂, 2.0 mol% **3**, 1.7 eq. NaOtBu.

Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany. E-mail: schmidt@ioc.tu-clausthal.de; Fax: +49-5323-722858; Tel: +49-5323-723861

[†] Electronic supplementary information (ESI) available: Experimental details and characterization data. See DOI: 10.1039/c001362e

The synthesis of sterically extremely hindered tri- and tetra-*ortho* biaryls under mild conditions remains a challenge for Suzuki–Miyaura cross-coupling reactions.^{10,11} We tested our system starting from bromides and chlorides as shown in Table 2.

Tetra-*ortho*-substituted biaryls can successfully be formed from aryl bromides using hindered biarylphosphine ligands and Pd₂(dba)₃ at 100 °C–110 °C,^{4,12} or from aryl chlorides in the presence of IBiox12·HOTf/Pd(OAc)₂ at 110 °C.¹³ In addition, ruthenocenylphosphine R-Phos/Pd(dba)₃ at 50 °C to 100 °C proved to be a suitable catalyst system.¹⁴ To overcome the major drawback of significantly elevated temperatures, Pd-PEPPSI-IPent was employed as catalyst at 65 °C to prepare tetra-*ortho*-substituted biaryls within 24 h.¹⁰ Using our catalytic system, 2,2',4,6,6'-pentamethylbiphenyl is formed starting from 2-bromo-1,3-dimethylbenzene and mesityl boronic acid in 87% yield after only 3.5 h at 60 °C (Table 2, entry 1). Literature procedures for the synthesis of this compound give either considerably lower yields,¹⁴ or require temperatures up to 150 °C,¹⁵ or need 24 h of reaction time at 65 °C.¹⁰ Starting from 2-chloro-1,3,5-trimethylbenzene and 2,6-dimethylphenylboronic acid (entry 2) the same biaryl is formed under comparable conditions as reported.¹⁶ The synthesis of 1-(2,6-dimethylphenyl)-2-methylnaphthalene (entry 3), however, also proceeds in considerably shorter time (4.5 h *vs.* 24 h) in comparison to the usage of Pd-PEPPSI-IPent, although in

Table 2 Suzuki-Miyaura syntheses of tri- and tetra-ortho-substituted biaryls

			toldene			
Entry	Aryl–X	Aryl–B(OH) ₂	Aryl–aryl	Time/h	Temp./°C	Yield (%)
1	Me Br Me	(HO) ₂ B	Me Me Me Me	3.5	60	87 ^{<i>a</i>}
2	Me Me Me	(HO) ₂ B- Me		4	90	79 ^a
3	Br Me	(HO) ₂ B	Me Me	4.5	70	86 ^a
4	Me CI	(HO) ₂ B- Me	Me Me Me	3	50	91 ^b
5	Me Cl	(HO) ₂ B- Me	Me Me Me	3	60	89 ^a
6	C C	(HO) ₂ B Me	Me Me Me	4.5	90	90 ^{<i>a</i>}
7) Br	(HO) ₂ B-		7	90	46 ^b
8	Me	(HO) ₂ B	Me-	10	110	39 ^{<i>a</i>}
9	Me	MeO (HO) ₂ B-	Me	10	110	37 ^a
10	CI	(HO) ₂ B-	Me	10	90	79 ^a

Pd(OAc)₂, **3** NaOtBu

toluono

aryl-aryl

 $aryI-X + aryI-B(OH)_2$

^a 2.0 mol% Pd(OAc)₂, 2.0 mol% 3, 2 eq. NaOtBu. ^b 2.0 mol% Pd(OAc)₂, 2.0 mol% 3, 1.7 eq. of NaOtBu.

almost identical yields.¹⁰ 2'-Isopropoxy-2,4,6-triisopropylbiphenyl (entry 7) was obtained in 46% yield at 90 °C using our catalytic system. This compound has previously been prepared in the presence of the aforementioned biphenylenesubstituted ruthenocenylphosphine in 19% yield at 50 °C.14 The title catalyst system was also able to couple 2.6-di-tertbutyl-6-methylbromobenzene with 2-methylboronic acid and 2-methoxyboronic acid, respectively (Table 2, entries 8 and 9). Although the conversion of the starting materials is 81% and 54%, respectively, the isolated yields of the biaryls are moderate, as CH-activation occurred to give $\alpha.\alpha$ -dimethyl- β -aryl hydrostyrene derivatives as by-products. In a literature-known procedure, the reaction of 2,4,6-tri-tert-butylbromobenzene with 2-methylphenylboronic acid using 2-(2',6'-dimethoxybiphenyl)dicyclohexylphosphine as a ligand yielded an analogous by-product, but no aryl coupling at all was detectable.⁴ Thus, to the best of our knowledge, these reactions presented here are the first Suzuki-Miyaura syntheses of 2'-substituted 2,6-di-tert-butyl-biaryls. The Suzuki-Miyaura synthesis of 9-(2-methylnaphthalen-1-yl)anthracene (entry 10) was finished in 10 h at 90 °C, whereas the usage of 2 mol% of Pd-PEPPSI-IPent required 24 h at 65 °C to give a yield of 88%.¹⁰

In summary we present a new cyclobutene-1,2-bis(imidazolium) salt as component of a versatile catalyst system for Suzuki–Miyaura reactions at rt and for the preparation of sterically hindered biaryls.

The Deutsche Forschungsgemeinschaft DFG is gratefully acknowledged for financial support.

Notes and references

 For recent examples, see: (a) J. Han, Y. Liu and R. Guo, J. Am. Chem. Soc., 2009, 131, 2060; (b) T. S. Jo, S. H. Kim, J. Shin and C. Bae, J. Am. Chem. Soc., 2009, 131, 1656; (c) Y. Uozumi, Y. Matsuura, T. Arakawa and Y. M. A. Yamada, Angew. Chem., 2009, 121, 2746 (Angew. Chem., Int. Ed., 2009, 48, 2708); (d) M. Tobisu and N. Chatani, Angew. Chem., 2009, 121, 3617 (Angew. Chem., Int. Ed., 2009, 48, 3565); (e) B. Saito and G. C. Fu, J. Am. Chem. Soc., 2008, 130, 6694; (f) T. Fujihara, S. Yoshida, H. Ohta and Y. Tsuji, Angew. Chem., 2008, 120, 8434 (Angew. Chem., Int. Ed., 2008, 47, 8310); (g) C. M. So, C. P. Lau and F. Y. Kwong, Angew. Chem., 2008, 120, 8179 (Angew. Chem., Int. Ed., 2008, 47, 8059); (h) K. L. Billingsley and S. L. Buchwald, Angew. Chem., 2008, 120, 4773 (Angew. Chem., Int. Ed., 2008, 47, 4695); (i) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott and S. P. Nolan, J. Am. Chem. Soc., 2006, **128**, 4101.

- 2 For recent reviews, see: (a) F.-X. Felpin, T. Ayad and S. Mitra, Eur. J. Org. Chem., 2006, 2679; (b) G. Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Greeser, J. Garner and M. Breuning, Angew. Chem., 2005, 117, 5518 (Angew. Chem., Int. Ed., 2005, 44, 5384); (c) N. Miyaura, Top. Curr. Chem., 2002, 219, 11; (d) A. Suzuki and H. C. Brown, Organic Synthesis via Boranes, Aldrich, Milwaukee, 2003, vol. 3.
- 3 S. D. Walker, T. E. Barder, J. R. Martinelli and S. L. Buchwald, Angew. Chem., 2004, 116, 1907 (Angew. Chem., Int. Ed., 2004, 43, 1871).
- 4 T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685.
- 5 M. Poyatos, J. A. Mata and E. Peris, Chem. Rev., 2009, 109, 3677.
- 6 Some representative examples: (a) A. Schmidt, N. Münster and A. Dreger, Angew. Chem. (Angew. Chem., Int. Ed.), in press; (b) S. Scherbakow, J. C. Namyslo, M. Gjikaj and A. Schmidt, Synlett, 2009, 1964; A. Schmidt and B. Snovydovych, Synthesis, 2008, 2798; A. Schmidt, B. Snovydovych and S. Hemmen, Eur. J. Org. Chem., 2008, 4313; A. Schmidt, A. Beutler, M. Albrecht and F. J. Ramírez, Org. Biomol. Chem., 2008, 6, 287; A. Schmidt, B. Snovydovych, T. Habeck, P. Dröttboom, M. Gjikaj and A. Adam, Eur. J. Org. Chem., 2007, 4909; A. Schmidt, T. Habeck, B. Snovydovych and W. Eisfeld, Org. Lett., 2007, 9, 3515.
- 7 A. Fujino, Y. Nagata and T. Sakan, Bull. Chem. Soc. Jpn., 1965, 38, 295.
- 8 Conditions: 0.01 mol% of a Pd complex, Na₂CO₃, acetone, water, 16 h, 50%: M. Guo and Q. Zhang, *Tetrahedron Lett.*, 2009, **50**, 1965; conditions: 0.1–0.2 mol% of Pd(OAc)₂, Aphos ligand, K₃PO₄, 36–40 h, 81–92%: W.-M. Dai, Y. Li, Y. Zhang, C. Yue and J. Wu, *Chem.–Eur. J.*, 2008, **14**, 5538.
- 9 Conditions: imidazol-2-ylidene catalyst on polyvinylpyridine: 1 h, 99%: K. Mennecke and A. Kirschning, *Synthesis*, 2008, 3267.
- 10 M. G. Organ, S. Çalimsiz, M. Sayah, K. H. Hoi and A. J. Lough, Angew. Chem., 2009, **121**, 2419 (Angew. Chem., Int. Ed., 2009, **48**, 2383).
- 11 A. de Meijere, *Metal-Catalyzed Cross-Coupling Reactions*, Wiley-VCH, Weinheim, 2nd edn, 2004.
- 12 J. Yin, M. P. Rainka, X. X. Zhang and S. L. Buchwald, J. Am. Chem. Soc., 2002, **124**, 1162; S. D. Walker, T. E. Barder, J. R. Martinelli and S. L. Buchwald, Angew. Chem., 2004, **116**, 1907 (Angew. Chem., Int. Ed., 2004, **43**, 1871).
- 13 G. Altenhoff, R. Goddard, C. W. Lehmann and F. Glorius, J. Am. Chem. Soc., 2004, 126, 15195.
- 14 T. Hoshi, I. Saitoh, T. Nakazawa, T. Suzuki, J.-i. Sakai and H. Hagiwara, J. Org. Chem., 2009, 74, 4013.
- 15 O. M. Demchuk, B. Yoruk, T. Blackburn and V. Snieckus, *Synlett*, 2004, 2908.
- 16 T. Hoshi, T. Nakazawa, I. Saitoh, A. Mori, T. Suzuki, J. I. Sakai and H. Hagiwara, Org. Lett., 2008, 10, 2063.