

Arylation Reagents

NH-Heterocyclic Aryliodonium Salts and their Selective Conversion into *N*1-Aryl-5-iodoimidazoles

Yichen Wu, Susana Izquierdo, Pietro Vidossich, Agustí Lledós,* and Alexandr Shafir*

Abstract: The synthesis of N-arylimidazoles substituted at the sterically encumbered 5-position is a challenge for modern synthetic approaches. A new family of imidazolyl aryliodonium salts is reported, which serve as a stepping stone on the way to selective formation of N1-aryl-5-iodoimidazoles. Iodine acts as a "universal" placeholder poised for replacement by aryl substituents. These new λ^3 -iodanes are produced by treating the NH-imidazole with $ArI(OAc)_2$, and are converted to N1-aryl-5-iodoimidazoles by a selective copper-catalyzed aryl migration. The method tolerates a variety of aryl fragments and is also applicable to substituted imidazoles.

midazole is a ubiquitous heterocyclic core present in a wide range of biologically relevant molecules.^[1] Although the synthesis of imidazole derivatives is commonly accomplished through a variety of cyclization routes, it is often desirable to obtain a particular derivative starting from a preformed heterocyclic ring. For this reason, imidazole derivatization has been the focus of attention from a number of laboratories. A particularly common challenge is the selective construction of the 1,4- and 1,5-disubstituted imidazoles. Thus, the NH-arylation of an imidazole substituted at the C4(5) position tends to produce a mixture of isomers favoring the sterically less encumbered NH position, and thus, the 1,4-substitution pattern.^[2,3] This bias was recently perfected by Buchwald et al. using a highly bulky biaryl phosphine ligand in palladium-catalyzed imidazole N-arylation.[3b] A similar preference for the less encumbered NH position can also be seen in the oxidative Chan-Lam N-arylation of imidazole (Scheme 1 A).^[4]

However, a challenge remains to selectively access the corresponding 1,5-disubstituted imidazoles. Progress made in recent years includes the use of well-designed protection/ deprotection strategies,^[5] and the C5-selective *CH*-borylation^[6] and *CH*-arylation^[7] reactions.

Herein, we present a new route to a versatile class of precursors for 1,5-disubstituted imidazoles. Specifically, the *N*1-aryl-5-iodoimidazoles are produced via a relay in which

[*]	Y. Wu, Dr. S. Izquierdo, Dr. A. Shafir
	Institute of Chemical Research of Catalonia (ICIQ), Barcelona
	Institute of Science and Technology
	Av. Països Catalans 16, 43007 Tarragona (Spain)
	E-mail: ashafir@iciq.es
	Dr. P. Vidossich, Prof. Dr. A. Lledós
	Departament de Química, Universitat Autònoma de Barcelona
	08193 Cerdanyola del Vallès (Spain)
	E-mail: agusti@klingon.uab.es
	Supporting information and the ORCID identification number(s) for
Ă	the author(s) of this article can be found under http://dx doi org/10

the author(s) of this article can be found under http://dx.doi.org/10. 1002/anie.201602569.

Scheme 1. Examples of common imidazole *N*-arylation strategies (**A**) and the relay arylation (**B**) proposed here.

a hypervalent iodoarene fragment^[8] serves as a trampoline for aryl transfer to the proximal *NH* site (Scheme 1B). We reasoned that if the iodane *I* could be generated, it can then undergo a phenyl transfer to produce *II*, perhaps akin to the intramolecular *O*- and *N*-arylation observed in iodonium ylides.^[9] Somewhat surprisingly, the *NH*-heterocyclic λ^3 -iodanes have only received limited attention beyond the early work by Neiland et al. in the 1970's.^[10,11] However, recent reports highlight the promise of hypervalent iodine reactivity in azole functionalization, including via heterocyclic λ^3 -iodanes.^[12]

In particular, we found only a single precedent for an imidazolyl- λ^3 -iodane derived from unprotected imidazole;^[13] this species, however, was described as an imidazole fragment bound to iodine through the nitrogen atom.^[13a] A reaction between PhI(O₂CCF₃)₂ and imidazole (2 equiv) in acetonitrile at room temperature produced a white precipitate identified as [PhI(Imid)][TFA] salt, 1a (58%; TFA = trifluoroacetate). However, the presence of just two imidazolic resonances in ¹H NMR (1H each) strongly suggested a CH rather than NH functionalization of the imidazole. Accordingly, X-Ray crystallography revealed a classical T-shaped diaryliodonium environment, with the imidazole bound to the iodine through the C4(5) carbon atom (Scheme 2). An analogous acetate salt 2a was obtained by employing PhI(OAc)₂. A DFT analysis confirmed that both the C2 and the N-bound isomer are higher in energy than the observed C4(5) isomer. An N-bound species was found unlikely even as an intermediate on the way to 1a; rather, the reaction appeared to proceed through a Wheland-type intermediate (see Supporting Information).

While sparingly soluble in CDCl_3 , **1a** and **2a** dissolved well in MeOH and water. They also underwent a facile deprotonation into zwitterionic **3**, for which both the solid state and DFT structures show an essentially "normal" single C_{imid} –I bond (2.051 and 2.076 Å, respectively, vs. 2.091 Å observed for **1a**). We quickly discovered that the desired iodine-to-nitrogen phenyl transfer does not take place upon

Communications

Scheme 2. Formation and structures of the imidazole-based λ^3 -iodanes and of the neutral (betaine) 3. Gibbs Energies (kcalmol⁻¹) in CH₃CN.

heating **1a**, **2a**, or **3** in CH_2Cl_2 , with or without Cs_2CO_3 . Consistently, only a high energy transition state (35.6 kcalmol⁻¹) could be identified for the direct (non-catalyzed) iodine-to-nitrogen 1,3 phenyl migration in **3** (Scheme 3).

Scheme 3. Reaction path modelled for uncatalyzed 1,3 phenyl migration.

Gratifyingly, the addition of 5 mol% of Cu(OTf)₂ did allow for the formation of two regioisomeric *N*-phenyl iodoimidazoles, and a moderate selectivity for the more hindered **4a** was achieved in fluorinated alcohols (Table 1, runs 1–3; both isomers confirmed by X-Ray diffraction). The use of Cs₂CO₃ in hexafluoroisopropanol (HFIP) led to a combined yield of 86% with a 4:1 ratio in favor of **4a** (run 4). This ratio was further improved by employing catalytic amounts of certain heterocyclic additives (runs 5–7). For example, the use of 20 mol% of *N*-Me-benzimidazole (run 6) led to an 8:1 selectivity and a 93% yield.

It was subsequently found that the highest yields of **2** were achieved in trifluoroethanol^[14] and, notably, MeOH solvents.

Table 1: Copper-catalyzed iodine-to-nitrogen phenyl transfer in 2a.[a]

/	ACO	5 mol% 20 mol%	Cu(OTf) ₂	+ //_N	Ð
	1 2a	solvent,	50 °C, 16 h 🚺 4a	N=	5a
Run	Base	Solvent	Additive	$Yield \ [\%]^{[b]}$	$4 a/5 a^{[b]}$
1	-	CH_2CI_2	-	39	0.1:1
2	-	CF_3CH_2OH	-	51	1.5:1
3	-	HFIP	-	53	4.2:1
4	Cs_2CO_3	HFIP	-	86	4.1:1
5	Cs_2CO_3	HFIP	4-methylimidazole	90	7.3:1
6	Cs_2CO_3	HFIP	benzimidazole	90	8.4:1
7	Cs_2CO_3	HFIP	N-Me-benzimidazole	93	8.0:1

[a] Using **2a** (0.5 mmol), Cu(OTf)₂ (5 mol%), and base (1.6 equiv, if any) in solvent (2.6 mL). [b] Total yield (%**4a**+%**5a**) and the ratio, as determined by GC.

Angew. Chem. Int. Ed. 2016, 55, 7152-7156

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

However, CH₃CN remained convenient for large scale applications because of favorable product precipitation, as seen in the synthesis of a 23 g batch of **2a** (Supporting Information). All the aryl(imidazolyl)- λ^3 -iodanes, **2**, exhibited the corresponding Ar-I(Imid)⁺ cation in the HR (ESI +) mass spectra. These species were subsequently transformed into the *N1*-aryl-5-iodoimidazole, **4**, with good selectivities. As previously observed for **4a**, in all cases a characteristic ¹³C resonance at 71–73 ppm was observed for the ¹³C-I unit in **4**, which is approximately 10 ppm lower than in the corresponding 1,4 species **5** (82–85 ppm). Given the synthetic potential of **4a**, the method was extended to structurally diverse aryl(imidazolyl)- λ^3 -iodanes (Table 2). The most robust protocol involves the use of 20 mol % of *N*-Me-benzimidazole in combination with 5 mol % of Cu(OTf)₂.

The improved selectivity achieved with these additives is likely to be due to the formation of copper-heterocycle complexes. Indeed, best results were achieved by pre-mixing $Cu(OTf)_2$ with the additive and base for 20 min, presumably favoring complex formation. We observed that, while $Cu(OTf)_2$ alone did not dissolve in HFIP, a green solution formed upon addition of *N*-Me-benzimidazole.

Both electron-donating and mildly electron-withdrawing substituents were well tolerated on the aryl fragment (4b-i, Table 2). In fact, even a di-ortho substitution was tolerated, as illustrated in the successful synthesis of the highly hindered N-mesityl-5-iodoimidazole, 4j. We were particularly pleased with the successful incorporation of a second heterocycle, as in the 2- and 3-thienyl derivatives 4k and 4l. The 4-iodobiphenyl and 2-iodonaphthalene derivatives could also be obtained in 70% and 74% yield, respectively (4m and 4n). In the case of the 4-Me-imidazolyl iodane 2o, a 13:1 4/5 selectivity was achieved, affording the target 40 in an 87 % yield. In this case, selectivity evidently benefited from hindrance at the competing N-site. The aryl transfer in the 2-Me derivative 2p was less efficient, providing 4p in 31% yield. The method was also applied to produce an 82% of the 4,5-diiodo derivative 4q. In general, chromatographic separation between 4 and 5 proved straightforward.

As mentioned earlier (see Scheme 1), the high selectivity towards **4** stems from an intramolecular aryl migration from iodine to the proximal nitrogen.^[15] Accordingly, a crossover experiment between **2a**- d_2 and **2c** revealed a predominant formation of **4a**- d_2 and **4c**, as expected for an intramolecular process (Scheme 4A).^[16] Small amounts of the 1,4 isomers were also produced, for which full aryl/imidazole scrambling was observed, indicating their origin in a bimolecular process. Indirect support for an intramolecular process was also obtained from the poor performance of the pyrazole-derived iodane **6** (<15% yield, Scheme 4B), which lacks a proximal *NH* site.

We envisaged that **3** (formed upon deprotonation of **2**), binds a Cu^I-OTf fragment through *NI* (Scheme 5).^[17,18] Indeed, despite employing a Cu^{II} precatalyst, the true catalytic species is likely a Cu^I center.^[18,19] The inclusion of MeOH in the coordination sphere of copper (as a stand-in solvent molecule) was found to be beneficial to properly describe the copper intermediate, and given that the process was already moderately selective (up to 4:1) in the absence of

 Table 2: Scope of the relay synthesis of N1-aryl-5-iodoimidazoles 4.

	AcC) 5%	0 Cu(OTt) ₂ Me-benzimic	lazole	Σ.N
H-(HN N (20	mol%)	AT	N√⁄ 5
N	MeOH (1A)	2 Cs ₂ CC	D ₃ , HFIP, 15	-16 h	4 (1,4-isomer)
str	ucture 2	yield 2 ^[a]	yield 4 ^[b]	4/5 ^[c]	structure 4
,OF	Ac 2a , R = H	87% (78%)	4a, 74%	8.1:1	5-
~Ľ	2b, R = OMe	81% (62%)	4b, 72%	9.8:1	N N
N. NH) 2c, R = Me	91% (76%)	4c, 75%	8.5:1	
	2d , R = Cl	81% (68%)	4d, 60%	8.4:1	
,OA	^R 2e, R = OCF ₃	91% (72%)	4e, 47%	11.6:1 ^[d]	R
	2f R = 0Me	81% (64%)	Af 77%	98.1	Y=N
N NH (20 P - Br	87% (85%)	49 62 %	8 2·1[e]	N_J
R	<i>lj</i> ∠g , R = Br	87% (85%)	4g , 62 %	0.2.114	R h
N_NH	le 2h	67% (57%)	4h , 85%	8.5:1	Me N-/N
N. NH	r 2i	96% (71%)	4i , 61%	13.0:1 ^[d]	Br N~N
	Me 2j	90% (47%)	4j 51%	9.4:1	
	Ac ^{Me} 2k	75% (80%)	4k , 78%	11.8:1 ^[e]	S N N
N NH S	Ac 21	74% (72%)	4I , 79%	13.5:1	ST N-2N
N. NH	د 2m Ph	83% (79%)	4m , 70%	10.4:1	Ph
N NH	c 22n	82% (76%)	4n , 74%	5.6:1	NN
	Ac 20	79% (64%)	40 , 87%	13.0:1 ^[f]	
N	2p	90% (59%)	4p , 31%	4.4:1	N N Me
	DAc 2q	(73%)	4q, 82%		N-2N

[a] ¹H NMR yield (isolated yield). [b] Yield of isolated products. [c] 4/5 ratio determined by GC. [d] Benzimidazole (20 mol%) as additive.
[e] 4-methylimidazole (20 mol%) as additive. [f] Ar-1(imid)⁺OAc⁻ was added before injection of the solvent; no additive was used.

Scheme 4. Crossover experiment (A), and the assay with pyrazole (B).

Scheme 5. A DFT profile for the Cu¹-catalyzed aryl migration. Relative Gibbs energies in methanol (kcal mol⁻¹).

an additive, this initial DFT study was performed in the absence of an added heterocycle. In the first step, the phenyl group in A is transferred from iodide to copper, leading to a formal Cu^{III}-phenyl intermediate **B**.^[19,20] This step features an activation barrier of 26.2 kcalmol⁻¹ (ts-1). A Localized Orbital analysis supports the change in copper oxidation state and allows visualization of the flow of electrons (see small green spheres of ts-1 in Scheme 5 and Supporting Information). The final C-N bond is formed through an essentially barrierless reductive elimination step (Scheme 5, ts-2). Given the energetic proximity between **B** and **ts-2**, the mechanism resembles a copper-guided concerted iodine-to-nitrogen phenyl migration. A preliminary investigation also revealed that the coordination of N-Me-benzimidazole to the Cu^I center may disfavor the binding of two molecule of 3 to the same copper center, hence enforcing an intramolecular phenyl transfer.^[21]

In agreement with Scheme 5, the preformed zwitterionic **3** was also an excellent substrate even in the absence of a base [Eq. (1)].

The reason for the poor performance of solvents such as CH_2Cl_2 is likely two-fold. The deprotonation of **2** in CH_2Cl_2 appears sluggish, which negatively affects the selectivity, giving rise to bimolecular crossover events (see Supporting Information). Additionally, while the use of **3** in CH_2Cl_2 does render the reaction moderately selective, the rate remains low.

Iodine introduced at the C5 position enabled the synthesis of a wide spectrum of 1,5-imidazole derivatives (Scheme 6). Thus, the 5-alkynyl and 5-aryl derivatives **7** and **8** were prepared by palladium-catalyzed C–C coupling reactions. Additionally, copper-catalyzed C–N bond formation was readily accomplished to give $9^{[22]}$ The 5-iodoimidazole **2a** was also readily converted into an organomagnesium species,^[23] which served as a precursor to the 5-formyl and the 5-borylderivatives **10** and **11**.^[23b,c]

Scheme 6. Versatility of the 1-aryl-5-iodoimidazoles in the synthesis of 1,5-substituted imidazoles; i) PhCCH, PdCl₂/CuI, Ph₃P, Et₃N at 60°C; ii) tol-B(OH)₂, Pd(OAc)₂, XanPhos, K₃PO₄, toluene, 120°C; iii) pyrrolidinone, CuI, Cs₂CO₃, *N*,*N'*-dimethylethylenediamine in dioxane, 105°C; iv) DMF in THF, -15°C to R.T. (from Het-MgX); v) from 4a: *i*PrMgCl·LiCl, *i*PrOBPin in THF.

In conclusion, we have shown that the new (*NH*-imidazolyl)aryl iodonium cation, readily obtained from imidazole and aryliodine diacetate, $ArI(OAc)_2$, serves as an excellent stepping stone for the formation of *N*-arylimidazoles bearing an iodine substituent at the strategic C5 position. The method complements common existing methods known to produce the sterically favored 1,4-derivatives. The method was tolerant of a variety of aryl substitution patterns, including monoor bis-*ortho* substitution. Through subsequent transformation of the iodine group, the newly formed *N*1-aryl-5-iodoimidazole constitutes a valuable precursor to a wide range of products. Experimental and DFT data suggest that selectivity is likely the result of an intramolecular copper-catalyzed iodine-to-nitrogen migration of the aryl fragments.

Acknowledgements

This work was funded by Fundació ICIQ, MINECO (CTQ2013-46705-R, CTQ2014-54071-P and 2014-2018 Severo Ochoa Excellence Accreditation SEV-2013-0319) and the Generalitat de Catalunya (2014 SGR 1192). The CELLEX Foundation is gratefully acknowledged for a post-doctoral contract to S.I. and for support through the CELLEX-ICIQ HTE platform.

Keywords: C–H functionalization · C–N coupling · copper catalysis · hypervalent iodine · imidazoles

How to cite: Angew. Chem. Int. Ed. 2016, 55, 7152–7156 Angew. Chem. 2016, 128, 7268–7272

- a) L. Zhang, X. M. Peng, G. L. V. Damu, R. X. Geng, X. H. Zhou, *Med. Res. Rev.* 2014, 34, 340–437; b) M. Gaba, C. Mohan, *Med. Chem. Res.* 2016, 25, 173–210.
- [2] For a review on metal-catalyzed imidazole functionalization, see: F. Bellina, R. Rossi, Adv. Synth. Catal. 2010, 352, 1223– 1276.
- [3] For examples, of catalytic imidazole *N*-arylation, see: a) R. A.
 Altman, E. D. Koval, S. L. Buchwald, *J. Org. Chem.* 2007, 72, 6190-6199; b) S. Ueda, M. Su, S. L. Buchwald, *J. Am. Chem. Soc.* 2012, *134*, 700-706.
- [4] a) J. P. Collman, M. Zhong, Org. Lett. 2000, 2, 1233–1236;
 b) X. O. Yu, Y. Yamamoto, N. Miyaura, Chem. Asian J. 2008, 3, 1517–1522;
 c) for a review, see: K. Sanjeeva Rao, T.-S. Wu, Tetrahedron 2012, 68, 7735–7754.

- [5] a) B. Delest, P. Nshimyumukiza, O. Fasbender, B. Tinant, J. Marchand-Brynaert, F. Darro, R. Robiette, J. Org. Chem. 2008, 73, 6816-6823; b) E. Van Den Berge, R. Robiette, J. Org. Chem. 2013, 78, 12220-12223; during the preparation of this manuscript, a method appeared for NI-alkylation of unprotected 1,3-azoles (at Amgen); c) S. Chen, R. F. Grace, A. A. Boezio, Org. Lett. 2016, 18, 16-19.
- [6] M. R. Smith, R. E. Maleczka, V. A. Kallepalli, E. Onyeozili, US 7,709,654 B2, May 4, 2010.
- [7] a) F. Bellina, S. Cauteruccio, L. Mannina, R. Rossi, S. Viel, J. Org. Chem. 2005, 70, 3997–4005; b) F. Bellina, M. Lessi, C. Manzini, Eur. J. Org. Chem. 2013, 5621–5630; c) F. Bellina, N. Guazzelli, M. Lessi, C. Manzini, Tetrahedron 2015, 71, 2298–2305.
- [8] For the chemistry of λ³-iodanes, see: a) *Hypervalent Iodine Chemistry. Modern Developments in Organic Synthesis* (Ed.: T. Wirth), Springer, Berlin, **2003**; b) A. Yoshimura, V. V. Zhdankin, *Chem. Rev.* **2016**, *116*, 3328–3435.
- [9] Examples include: a) I. Papoutsis, S. Spyroudis, A. Varvoglis, *Tetrahedron Lett.* **1996**, *37*, 913–916; b) I. Papoutsis, S. Spyroudis, A. Varvoglis, C. P. Raptopouloub, *Tetrahedron* **1997**, *53*, 6097–6112; for a mechanistic study, see: c) R. M. Moriarty, S. Tyagi, D. Ivanov, M. Constantinescu, J. Am. Chem. Soc. **2008**, *130*, 7564–7565.
- [10] a) B. Y. Karele, S. V. Kalnin', I. P. Grinberga, O. Ya. Neiland, *Chem. Hetercycl. Compd.* **1973**, *9*, 226–229; b) for a review, see: O. Neilands, *Chem. Hetercycl. Compd.* **2003**, *39*, 1555–1569.
- [11] For the diaryliodonium renaissance, see: a) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052–9070; Angew. Chem. 2009, 121, 9214–9234; for recent examples of NH-pyrazole-based species, see b) M. Bielawski, J. Malmgren, L. M. Pardo, Y. Wikmark, B. Olofsson, ChemistryOpen 2014, 3, 19–22.
- [12] a) K. Morimoto, Y. Ohnishi, A. Nakamura, K. Sakamoto, T. Dohi, Y. Kita, *Asian J. Org. Chem.* 2014, *3*, 382–386; also see: b) T. Dohi, K. Morimoto, N. Takenaga, A. Goto, A. Maruyama, Y. Kiyono, H. Tohma, Y. Kita, *J. Org. Chem.* 2007, *72*, 109–116; c) D. Lubriks, I. Sokolovs, E. Suna, *J. Am. Chem. Soc.* 2012, *134*, 15436–15442; d) I. Sokolovs, D. Lubriks, E. Suna, *J. Am. Chem. Soc.* 2014, *136*, 6920–6928; e) G. L. Tolnai, A. Székely, Z. Makó, T. Gáti, J. Daru, T. Bihari, A. Stirling, Z. Novák, *Chem. Commun.* 2015, *51*, 4488–4491; f) R. Samanta, R. Narayan, J. O. Bauer, C. Strohmann, S. Sievers, A. P. Antonchick, *Chem. Commun.* 2015, *51*, 925–928; g) S. G. Modha, M. F. Greaney, *J. Am. Chem. Soc.* 2015, *137*, 1416–1419.
- [13] a) E. A. Veretennikov, A. E. Gavrilov, Chem. Heterocycl. Compd. 2007, 43, 1081–1082 For N-Me imidazole derived iodane, see: b) N. Sh. Pirkuliyev, V. K. Brel, V. V. Zhdankin, N. S. Zefirov, Rus. J. Org. Chem. 2002, 38, 1224–1225.
- [14] a) T. Dohi, M. Ito, K. Morimoto, Y. Minamitsuji, N. Takenaga, Y. Kita, *Chem. Commun.* **2007**, 4152–4154; b) T. Dohi, N. Yamaoka, I. Itani, Y. Kita, *Aust. J. Chem.* **2011**, *64*, 529–535.
- [15] A 1,3 migration has also been proposed in pyrazole arylation by Ar₂I⁺: Z. Gonda, Z. Novák, *Chem. Eur. J.* **2015**, *21*, 16801– 16806.
- [16] No scrambling between 2a-d₂ and 2c was observed at 50°C in the absence of copper catalyst, see: a) B. Wang, R. L. Cerny, S. Uppaluri, J. J. Kempinger, S. G. DiMagno, *J. Fluorine Chem.* 2010, *131*, 1113–1121; b) J. Malmgren, S. Santoro, N. Jalalian, F. Himo, B. Olofsson, *Chem. Eur. J.* 2013, *19*, 10334–10342.
- [17] The DFT calculations show equi-energetic binding of Cu^IOTf to either of the two nitrogen sites.
- [18] For copper-catalyzed N-arylation of azoles using diaryliodonium salts, see: S. K. Kang, S. H. Lee, D. Lee, *Synlett* 2000, 7, 1022– 1024.
- [19] a) For an early mechanistic study, see: T. P. Lockhart, J. Am. Chem. Soc. 1983, 105, 1940–1946; for a Cu^I-Cu^{III} cycle with hypervalent iodonium, see: b) R. J. Phipps, M. J. Gaunt, Science

Angew. Chem. Int. Ed. 2016, 55, 7152-7156

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

2009, *323*, 1593; c) B. Chen, X. L. Hou, Y. X. Li, Y. D. Wu, *J. Am. Chem. Soc.* **2011**, *133*, 7668–7671; d) A. J. Hickman, M. S. Sanford, *Nature* **2012**, *484*, 177–185; e) N. Ichiishi, A. J. Canty, B. F. Yates, M. S. Sanford, *Organometallics* **2014**, *33*, 5525–5534; f) M. G. Suero, E. D. Bayle, B. S. L. Collins, M. J. Gaunt, *J. Am. Chem. Soc.* **2013**, *135*, 5332–5335.

- [20] For Cu^{III}, see: A. Casitas, X. Ribas, Chem. Sci. 2013, 4, 2301– 2318.
- [21] All solid state X-Ray structures have been deposited with the Cambridge Structural Database at CCDC 1465191-1465196.
- [22] a) A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727 – 7729; b) M. Wang, Z. Zhang, F. Xie, W. Zhang, Chem. Commun. 2014, 50, 3163–3165.
- [23] a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333-3336; Angew. Chem. 2004, 116, 3396-3399; for the use of *i*PrMgCl·LiCl in borylation, see: b) E. Demory, V. Blandin, J. Einhorn, P. Y. Chavant, Org. Process Res. Dev. 2011, 15, 710-716; c) P. A. Bethel, A. D. Campbell, F. W. Goldberg, P. D. Kemmitt, G. M. Lamont, A. Suleman, Tetrahedron 2012, 68, 5434-5444.

Received: March 13, 2016 Published online: May 3, 2016