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NH-Heterocyclic Aryliodonium Salts and their Selective Conversion
into N1-Aryl-5-iodoimidazoles
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Abstract: The synthesis of N-arylimidazoles substituted at the
sterically encumbered 5-position is a challenge for modern
synthetic approaches. A new family of imidazolyl aryliodo-
nium salts is reported, which serve as a stepping stone on the
way to selective formation of N1-aryl-5-iodoimidazoles. Iodine
acts as a “universal” placeholder poised for replacement by
aryl substituents. These new l3-iodanes are produced by
treating the NH-imidazole with ArI(OAc)2, and are converted
to N1-aryl-5-iodoimidazoles by a selective copper-catalyzed
aryl migration. The method tolerates a variety of aryl frag-
ments and is also applicable to substituted imidazoles.

Imidazole is a ubiquitous heterocyclic core present in a wide
range of biologically relevant molecules.[1] Although the
synthesis of imidazole derivatives is commonly accomplished
through a variety of cyclization routes, it is often desirable to
obtain a particular derivative starting from a preformed
heterocyclic ring. For this reason, imidazole derivatization has
been the focus of attention from a number of laboratories.
A particularly common challenge is the selective construction
of the 1,4- and 1,5-disubstituted imidazoles. Thus, the
NH-arylation of an imidazole substituted at the C4(5)
position tends to produce a mixture of isomers favoring the
sterically less encumbered NH position, and thus, the
1,4-substitution pattern.[2, 3] This bias was recently perfected
by Buchwald et al. using a highly bulky biaryl phosphine
ligand in palladium-catalyzed imidazole N-arylation.[3b] A
similar preference for the less encumbered NH position can
also be seen in the oxidative Chan–Lam N-arylation of
imidazole (Scheme 1A).[4]

However, a challenge remains to selectively access the
corresponding 1,5-disubstituted imidazoles. Progress made in
recent years includes the use of well-designed protection/
deprotection strategies,[5] and the C5-selective CH-boryla-
tion[6] and CH-arylation[7] reactions.

Herein, we present a new route to a versatile class of
precursors for 1,5-disubstituted imidazoles. Specifically, the
N1-aryl-5-iodoimidazoles are produced via a relay in which

a hypervalent iodoarene fragment[8] serves as a trampoline for
aryl transfer to the proximal NH site (Scheme 1B). We
reasoned that if the iodane I could be generated, it can then
undergo a phenyl transfer to produce II, perhaps akin to the
intramolecular O- and N-arylation observed in iodonium
ylides.[9] Somewhat surprisingly, the NH-heterocyclic
l3-iodanes have only received limited attention beyond the
early work by Neiland et al. in the 1970Ïs.[10,11] However,
recent reports highlight the promise of hypervalent iodine
reactivity in azole functionalization, including via heterocyclic
l3-iodanes.[12]

In particular, we found only a single precedent for an
imidazolyl-l3-iodane derived from unprotected imidazole;[13]

this species, however, was described as an imidazole fragment
bound to iodine through the nitrogen atom.[13a] A reaction
between PhI(O2CCF3)2 and imidazole (2 equiv) in acetoni-
trile at room temperature produced a white precipitate
identified as [PhI(Imid)][TFA] salt, 1a (58 %; TFA = tri-
fluoroacetate). However, the presence of just two imidazolic
resonances in 1H NMR (1H each) strongly suggested a CH
rather than NH functionalization of the imidazole. Accord-
ingly, X-Ray crystallography revealed a classical T-shaped
diaryliodonium environment, with the imidazole bound to the
iodine through the C4(5) carbon atom (Scheme 2). An
analogous acetate salt 2 a was obtained by employing
PhI(OAc)2. A DFT analysis confirmed that both the C2 and
the N-bound isomer are higher in energy than the observed
C4(5) isomer. An N-bound species was found unlikely even as
an intermediate on the way to 1a ; rather, the reaction
appeared to proceed through a Wheland-type intermediate
(see Supporting Information).

While sparingly soluble in CDCl3, 1 a and 2a dissolved
well in MeOH and water. They also underwent a facile
deprotonation into zwitterionic 3, for which both the solid
state and DFT structures show an essentially “normal” single
Cimid¢I bond (2.051 and 2.076 è, respectively, vs. 2.091 è
observed for 1 a). We quickly discovered that the desired
iodine-to-nitrogen phenyl transfer does not take place upon

Scheme 1. Examples of common imidazole N-arylation strategies (A)
and the relay arylation (B) proposed here.
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heating 1a, 2a, or 3 in CH2Cl2, with or without Cs2CO3.
Consistently, only a high energy transition state
(35.6 kcal mol¢1) could be identified for the direct (non-
catalyzed) iodine-to-nitrogen 1,3 phenyl migration in 3
(Scheme 3).

Gratifyingly, the addition of 5 mol% of Cu(OTf)2 did
allow for the formation of two regioisomeric N-phenyl
iodoimidazoles, and a moderate selectivity for the more
hindered 4a was achieved in fluorinated alcohols (Table 1,
runs 1–3; both isomers confirmed by X-Ray diffraction). The
use of Cs2CO3 in hexafluoroisopropanol (HFIP) led to
a combined yield of 86% with a 4:1 ratio in favor of 4a
(run 4). This ratio was further improved by employing
catalytic amounts of certain heterocyclic additives (runs
5–7). For example, the use of 20 mol % of N-Me-benzimid-
azole (run 6) led to an 8:1 selectivity and a 93% yield.

It was subsequently found that the highest yields of 2 were
achieved in trifluoroethanol[14] and, notably, MeOH solvents.

However, CH3CN remained convenient for large scale
applications because of favorable product precipitation, as
seen in the synthesis of a 23 g batch of 2 a (Supporting
Information). All the aryl(imidazolyl)-l3-iodanes, 2, exhibited
the corresponding Ar-I(Imid)+ cation in the HR (ESI +) mass
spectra. These species were subsequently transformed into
the N1-aryl-5-iodoimidazole, 4, with good selectivities. As
previously observed for 4 a, in all cases a characteristic 13C
resonance at 71–73 ppm was observed for the 13C-I unit in 4,
which is approximately 10 ppm lower than in the correspond-
ing 1,4 species 5 (82–85 ppm). Given the synthetic potential of
4a, the method was extended to structurally diverse
aryl(imidazolyl)-l3-iodanes (Table 2). The most robust pro-
tocol involves the use of 20 mol% of N-Me-benzimidazole in
combination with 5 mol% of Cu(OTf)2.

The improved selectivity achieved with these additives is
likely to be due to the formation of copper-heterocycle
complexes. Indeed, best results were achieved by pre-mixing
Cu(OTf)2 with the additive and base for 20 min, presumably
favoring complex formation. We observed that, while
Cu(OTf)2 alone did not dissolve in HFIP, a green solution
formed upon addition of N-Me-benzimidazole.

Both electron-donating and mildly electron-withdrawing
substituents were well tolerated on the aryl fragment (4b–i,
Table 2). In fact, even a di-ortho substitution was tolerated, as
illustrated in the successful synthesis of the highly hindered
N-mesityl-5-iodoimidazole, 4j. We were particularly pleased
with the successful incorporation of a second heterocycle, as
in the 2- and 3-thienyl derivatives 4 k and 4 l. The
4-iodobiphenyl and 2-iodonaphthalene derivatives could
also be obtained in 70% and 74% yield, respectively (4m
and 4 n). In the case of the 4-Me-imidazolyl iodane 2 o, a 13:1
4/5 selectivity was achieved, affording the target 4o in an 87%
yield. In this case, selectivity evidently benefited from
hindrance at the competing N-site. The aryl transfer in the
2-Me derivative 2p was less efficient, providing 4p in 31%
yield. The method was also applied to produce an 82 % of the
4,5-diiodo derivative 4q. In general, chromatographic sepa-
ration between 4 and 5 proved straightforward.

As mentioned earlier (see Scheme 1), the high selectivity
towards 4 stems from an intramolecular aryl migration from
iodine to the proximal nitrogen.[15] Accordingly, a crossover
experiment between 2a-d2 and 2c revealed a predominant
formation of 4a-d2 and 4c, as expected for an intramolecular
process (Scheme 4A).[16] Small amounts of the 1,4 isomers
were also produced, for which full aryl/imidazole scrambling
was observed, indicating their origin in a bimolecular process.
Indirect support for an intramolecular process was also
obtained from the poor performance of the pyrazole-derived
iodane 6 (< 15% yield, Scheme 4B), which lacks a proximal
NH site.

We envisaged that 3 (formed upon deprotonation of 2),
binds a CuI-OTf fragment through N1 (Scheme 5).[17, 18]

Indeed, despite employing a CuII precatalyst, the true
catalytic species is likely a CuI center.[18,19] The inclusion of
MeOH in the coordination sphere of copper (as a stand-in
solvent molecule) was found to be beneficial to properly
describe the copper intermediate, and given that the process
was already moderately selective (up to 4:1) in the absence of

Scheme 2. Formation and structures of the imidazole-based l3-iodanes
and of the neutral (betaine) 3. Gibbs Energies (kcalmol¢1) in CH3CN.

Scheme 3. Reaction path modelled for uncatalyzed 1,3 phenyl
migration.

Table 1: Copper-catalyzed iodine-to-nitrogen phenyl transfer in 2a.[a]

Run Base Solvent Additive Yield [%][b] 4a/5a[b]

1 – CH2Cl2 – 39 0.1:1
2 – CF3CH2OH – 51 1.5:1
3 – HFIP – 53 4.2:1
4 Cs2CO3 HFIP – 86 4.1:1
5 Cs2CO3 HFIP 4-methylimidazole 90 7.3:1
6 Cs2CO3 HFIP benzimidazole 90 8.4:1
7 Cs2CO3 HFIP N-Me-benzimidazole 93 8.0:1

[a] Using 2a (0.5 mmol), Cu(OTf)2 (5 mol%), and base (1.6 equiv, if any)
in solvent (2.6 mL). [b] Total yield (%4a + %5a) and the ratio, as
determined by GC.
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an additive, this initial DFT study was performed in the
absence of an added heterocycle. In the first step, the phenyl
group in A is transferred from iodide to copper, leading to
a formal CuIII-phenyl intermediate B.[19, 20] This step features
an activation barrier of 26.2 kcalmol¢1 (ts-1). A Localized
Orbital analysis supports the change in copper oxidation state
and allows visualization of the flow of electrons (see small
green spheres of ts-1 in Scheme 5 and Supporting Informa-
tion). The final C¢N bond is formed through an essentially
barrierless reductive elimination step (Scheme 5, ts-2). Given
the energetic proximity between B and ts-2, the mechanism
resembles a copper-guided concerted iodine-to-nitrogen
phenyl migration. A preliminary investigation also revealed
that the coordination of N-Me-benzimidazole to the CuI

center may disfavor the binding of two molecule of 3 to the
same copper center, hence enforcing an intramolecular
phenyl transfer.[21]

In agreement with Scheme 5, the preformed zwitterionic 3
was also an excellent substrate even in the absence of a base
[Eq. (1)].

The reason for the poor performance of solvents such as
CH2Cl2 is likely two-fold. The deprotonation of 2 in CH2Cl2

appears sluggish, which negatively affects the selectivity,
giving rise to bimolecular crossover events (see Supporting
Information). Additionally, while the use of 3 in CH2Cl2 does
render the reaction moderately selective, the rate remains
low.

Iodine introduced at the C5 position enabled the synthesis
of a wide spectrum of 1,5-imidazole derivatives (Scheme 6).
Thus, the 5-alkynyl and 5-aryl derivatives 7 and 8 were
prepared by palladium-catalyzed C¢C coupling reactions.
Additionally, copper-catalyzed C¢N bond formation was
readily accomplished to give 9.[22] The 5-iodoimidazole 2a
was also readily converted into an organomagnesium
species,[23] which served as a precursor to the 5-formyl and the
5-borylderivatives 10 and 11.[23b,c]

Table 2: Scope of the relay synthesis of N1-aryl-5-iodoimidazoles 4.

[a] 1H NMR yield (isolated yield). [b] Yield of isolated products. [c] 4/5
ratio determined by GC. [d] Benzimidazole (20 mol%) as additive.
[e] 4-methylimidazole (20 mol%) as additive. [f ] Ar-I(imid)+OAc¢ was
added before injection of the solvent; no additive was used.

Scheme 4. Crossover experiment (A), and the assay with pyrazole (B).

Scheme 5. A DFT profile for the CuI-catalyzed aryl migration. Relative
Gibbs energies in methanol (kcalmol¢1).
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In conclusion, we have shown that the new (NH-imid-
azolyl)aryl iodonium cation, readily obtained from imidazole
and aryliodine diacetate, ArI(OAc)2, serves as an excellent
stepping stone for the formation of N-arylimidazoles bearing
an iodine substituent at the strategic C5 position. The method
complements common existing methods known to produce
the sterically favored 1,4-derivatives. The method was toler-
ant of a variety of aryl substitution patterns, including mono-
or bis-ortho substitution. Through subsequent transformation
of the iodine group, the newly formed N1-aryl-5-iodoimid-
azole constitutes a valuable precursor to a wide range of
products. Experimental and DFT data suggest that selectivity
is likely the result of an intramolecular copper-catalyzed
iodine-to-nitrogen migration of the aryl fragments.
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