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Ezetimibe (Zetia®), a cholesterol-absorption inhibitor (CAI) approved by the FDA for the treatment of
hypercholesterolemia, is believed to target the intestine protein Niemann-Pick C1-Like 1 (NPC1L1) or
its pathway. A spiroimidazolidinone NPC1L1 inhibitor identified by virtual screening showed moderate
binding activity but was not efficacious in an in vivo rodent model of cholesterol absorption. Synthesis

of analogs established the structure-activity relationships for binding activity, and resulted in com-
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pounds with in vivo efficacy, including 24, which inhibited plasma cholesterol absorption by 67% in
the mouse, thereby providing proof-of-concept that non-p-lactams can be effective CAls.

© 2010 Elsevier Ltd. All rights reserved.

Hypercholesterolemia resulting from the absorption of both
dietary cholesterol and endogenous biliary cholesterol is associ-
ated with atherosclerotic diseases.! Ezetimibe 1 (shown in Fig. 1),
a cholesterol-absorption inhibitor (CAI), has been shown to be
effective in decreasing blood low-density lipoprotein cholesterol
(LDL-c) levels.? Ezetimibe was discovered from a 2-azetidinone
lead series initially identified as ACAT inhibitors and subsequent
structural modifications of biliary metabolites identified in a bile
duct-cannulated rat model.? It was later determined that the molec-
ular target of ezetimibe is Niemann-Pick C1-Like 1 protein
(NPC1L1), a putative member of the resistance-nodulation-division
permease family of transporters.* NPC1L1 has been established as a
primary regulator for intestinal cholesterol absorption and whole-
body cholesterol homeostasis.” Ezetimibe 1 is glucuronidated
in vivo to the more potent metabolite 2, which undergoes enterohe-
patic recirculation to prolong half-life.6

These discoveries have improved the ability to identify com-
pounds that function as CAls, via a correlation between NPC1L1
binding affinity and inhibition of cholesterol absorption in vivo.” It
has been shown, using ezetimibe and a potent 2-azetidinone lead
3, that the binding affinity of recombinant human NPC1L1 closely
parallels that of native human NPCI1L1 from brush border
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membranes.” Furthermore, an in vivo mouse inhibition of
cholesterol-absorption assay (MICA) demonstrates correlation
between in vivo EDsg and in vitro binding affinity for ezetimibe
and analog 3, even though the binding affinity observed for ezetim-
ibe glucuronide 2 in mice is reduced as compared to that of human.”
This difference in human and animal models is in agreement with
previous studies.**8

These discoveries have improved the ability to identify new
compounds that function as CAls if a correlation between binding
affinity and in vivo efficacy is established for non-B-lactam com-
pounds with binding affinity to NPC1L1. This letter describes the
synthesis, structure-activity relationships, and in vivo efficacy of
a novel class of spiroimidazolidinone NPC1L1 inhibitors which
were identified by similarity-based virtual screening and are unre-
lated to the first-in-class p-lactam compound ezetimibe.? Over the
course of the preparation of this manuscript, several related
reports have disclosed spiro-beta lactam and other non-beta
lactam CAls.1°

Spiroimidazolidinone analogs were synthesized as shown in
Scheme 1. The basic amine of commercially available 1-phenyl-
1,3,8-triazaspiro[4.5]decan-4-one (5) was protected with a
t-butoxycarbonyl group, then the amide 6 was deprotonated with
sodium hydride, followed by alkylation with ethyl bromoacetate.
Repeated deprotections and EDC-mediated couplings afforded the
corresponding target analogs 9 in 2-88% yield (three steps).
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Figure 1. Structures of NPC1L1 inhibitors.
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Scheme 1. Reagents and conditions: (a) EtsN, DMF/CH,Cl,, 0 °C, 30 min, 95-99% yld.; (b) NaH, THF/DMSO, 1.5 h, 71-96% yld.; (c)

HCl/dioxane, CH,Cl, 16 h, 93-94% yld.; (d)

EDC, HOBT, DIEA, CH,Cl,, 16 h, 67-97%; (e) LiOH, THF/H,0, 2 h, 93-94%; (f) EDC, HOBT, DIEA, CH,Cl,, 16 h, 4-97% yld.

The substituted spirocyclic derivatives shown in Tables 1 and 2
were rapidly synthesized from a library of reagents from commer-
cial sources using similar chemistry. In this manner, approximately
230 analogs of the lead were generated which allowed quick explo-
ration of preliminary structure-activity relationships of this lead
series.

Compounds were evaluated in a binding assay of mouse brush
border membranes and human embryonic kidney 293 cell line
which expressed recombinant human NPCIL1. Binding affinity

Table 1
Effect of amide side chain on binding to human NPC1L1, ICsp, pM

was determined by displacement of 3°S-labeled compound 3
according to procedures previously reported.>”-!!

In this binding assay, lead 4, the original lead which came from
the modeling study, exhibited a binding affinity of 2.5 uM in
human NPC1L1. Initial SAR studies to improve the binding affinity
focused on varying the piperidyl amide and 4-t-butyl substituent
of the benzamide.

The effect of the right-hand amide side chain was studied in two
series of analogs where the left-hand phenyl substituent was either

g O
R1 N
o N-(CHy),—R
H
Entry R R n= n=2 n=3 n=4 n=>5
1 t-Bu CO,Me 16.6 1.0 (44) 42 (35 nd nd
2 t-Bu COH nd 23.6 14.5 nd nd
3 t-Bu OH nd 19.2 7.7 8.3 3.8
4 t-Bu NH-BOC nd 9.4 3.2 2.0 (7)) 31
5 t-Bu NH, nd 59.0 49.0 14.0 nd
6 t-Bu NHSO,-Me nd 10.9 104 103 nd
7 Cyclohexyl CO,Me 114 4.5 4.5 nd nd
8 Cyclohexyl OH nd nd 5.5 (42)* 1.7 (52)* 2.1
(43 £27,70+9)°
9 Cyclohexyl NH-BOC nd 13.7 3.7 5.5 3.8
10 Cyclohexyl NH, nd 26.5 12.9 6.0 nd
11 Cyclohexyl NHSO,-Me nd 7.0 2.5 (42)? (<5, <5)° 4.6 nd

nd = not determined.
2 % inhibition in MICA at 10 mg/kg.

b % inhibition (mean * SD) in MICA at 100 mg/kg for plasma and liver, respectively. Data are an av of triplicates.
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Table 2
Effect of right-hand-side amide on human ICsq, pM
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Analog R R! = t-butyl R' = cyclohexyl Analog R R! = t-butyl R! = cyclohexyl
N~ N-BOC 35 (49)° N
10ab L] 1.0 (49) (15522 5ge13p  18d O—NHBOC 42 44
A NHBOC
11ab N NH 22.0 6.5 18ef N 42 25
—~ @ N NHBOC
12ab N N-S-Me 19.0 6.3 18gh 9.5 38
\__/ 0
13ab N—§—© 15.0 142 19ab N\/:>—x< 3.1 0.9
(0] N OEt
\ 4.8 (19)° O_(
14 N N nd (52.+23, 46+ 10 19¢c,d S 82 42
4,15 N 25 1.1
Me (0]
N NEt,
16ab 12 36 20ab 8.7 33
N
N
16ab O#Me 39 26
N\/:>_/OH % i
2
17ab 40 1.1 20c,d 16.9 3.1
N
H
17¢ N\/:>—/_O 26 nd
17d 11.8 nd 21ab ) NH 1.3 0.6
N OH N 2N
17e Q_/_ 6.1 nd 22 N-N 6.4 nd
Et
N
17¢ O_/OH 8.2 nd
N Et
(_)-or Et
17g 122 nd 23 N Z 46 nd
N-N
Et
N\/:>_OH NMEt 2.5 (40 (35 + 19
) . ?(35£19,
17h 47 nd 24 NN 8525 622 117 nd
Et
N\/:>—NHBOC
N N Et
18ab 8.3 48 25 NN 54 nd

m

nd = not determined.
¢ Mouse NPC1L1 binding ICsq, uM.
" % inhibition (mean + SE) in MICA at 100 mg/kg in plasma and liver, respectively.
¢ % inhibition (mean + SE) in MICA at 10, 30, and 100 mg/kg in plasma, respective

R! = t-butyl or cyclohexyl. Binding assay results are shown in Table
1. Of the terminal functional groups studied, non-polar protected
heteroatoms (entries 1, 4, 7, and 11) produced the best binding
affinities. In general, longer chain lengths afforded higher binding
affinities. Compounds with R!=cyclohexyl generally gave im-
proved binding affinities as compared to their t-butyl analogs.

ly.

The binding affinity results for piperidine and piperazine ana-
logs are shown in Table 2. Both series produced examples which
had micromolar binding affinities comparable to that of lead 4.
Note that carboxylic acid esters 19a-d also exhibited similar bind-
ing affinities but were not pursued due to their inherent hydrolytic
instability. Their carboxylic acid analogs were not tested because
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Figure 2. %Inhibition (mean * SE) of *H-cholesterol absorption in C57BL/6 mice
(values are means of six datapoints).

SAR studies showed carboxylic acids had low binding affinities
(Table 1, entry 2; t-butyl and phenyl analogs of 8 were 184 and
1523 uM ICsp in human, respectively).

The compounds were tested for their ability to inhibit choles-
terol absorption in mice. To that end, compounds were pre-dosed
orally in C57BL/6 male mice in a 0.2-mL 0.25% methocel suspen-
sion. Thirty minutes later, the mice were orally dosed with a
0.2 mL mixture of tritium radiolabeled cholesterol in IntraLipid.
After 1.5 h and 5 h, the mice were euthanized and weighed. The
blood was collected by cardiac puncture, and the plasma *H-cho-
lesterol was measured. The liver was collected, weighed, and
saponified, and the liver *H-cholesterol was measured. Six data
points were taken per dosage and averaged, and the standard
deviation and standard error were determined.

Several of the analogs shown in Tables 1 and 2 were screened in
the MICA at 10 or 100 mg/kg, and the results are shown in
parentheses.

The most promising efficacy was observed for pyrazole analog
24. A dose-dependent effect is observed for compound 24, with
the greatest efficacy (62% inhibition) at the 100-mg/kg dose at
the 1.5-hour time point (Fig. 2). At the 5-hour time point, the level
of inhibition of cholesterol absorption in plasma increased to 67%.
Spiroimidazolidinone 24 also reduced cholesterol in the liver (data
not shown). These data demonstrate the potential for non-p-lac-
tam compounds to act as cholesterol-absorption inhibitors in mice.

We have identified spiroimidazolidinones as a novel lead class
of NPC1L1 inhibitors and explored the SAR of binding affinity of
this novel class of CAls. A series of substituted piperidines were

prepared with improvements in binding affinity to NPC1L1
observed for 4-substituted analogs including those containing pyr-
azole groups. Non-B-lactam compound 24, which contains both the
4-t-butyl benzamide and a 4-pyrazolylpiperidine, demonstrated
dose-dependent cholesterol-lowering efficacy in mice. Significant
improvements in binding affinity and in vivo efficacy will be
required to determine if non-p-lactam CAls will be viable leads
for this class of LDL-reducing therapy.
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