

3,3'-Disubstituted Oxindoles Formation via Copper-Catalyzed Arylboration and Arylsilylation of Alkenes

Ren-Xiao Liang, Ru-Yi Chen, Chao Zhong, Jia-Wen Zhu, Zhong-Yan Cao, and Yi-Xia Jia*

oxindoles are obtained in moderate to excellent yields. The reaction is proposed to proceed via a domino sequence involving intermolecular olefin borylcupration or silylcupration followed by intramolecular coupling of an alkyl-Cu intermediate with aryl iodide.

ransition-metal-catalyzed olefin difunctionalization represents an efficient strategy for rapid assembly of complex molecules by forming two chemical bonds in one single step. Among, 1,2-carboboration of alkenes² is particularly attractive as the resulting organoboranes allow further transformations to access functional molecules, such as oxidation to form alcohols and Suzuki-Miyaura cross-coupling to create new C-C bonds. Currently, 1,2-arylboration of olefin with B₂pin₂ and arylhalides relied on the use notable palladium catalyst (for Heck/borylation domino reactions),³ nickel catalyst,⁴ and Pd/ Cu-5 or Ni/Cu-6 cocatalysts. In the latter case, alkyl-Cu species, generated by olefin borylcupration,⁷ acts as an organometallic reagent to couple with arylhalides in the presence of Pd- or Ni-based catalysts (Scheme 1a). Whereas in 2014, Brown and co-workers demonstrated in an elegant copper-catalyzed diarylation of alkenes with arylborates and aryl iodides that the alkyl-Cu species could directly couple with

Scheme 1. Arylboration and Arylsilylation of Alkenes Involving Cu-Based Catalyst

a) Olefin arylboration with Cu/Pd or Cu/Ni co-catalysts

copper as sole catalyst

√functional oxindole formation

√C-B and C-Si bond formation

iodoarene to form a new C–C bond (Scheme 1b).⁸ Inspired by this result, we envisioned that the use of copper as a sole catalyst might enable olefin 1,2-arylboration through couplings of alkenes, aryl iodides, and borates. If true, it would avoid the use of notable Pd-catalyst or dual-metal catalysis in the olefin 1,2-arylboration reaction.

3,3'-Disubstituted oxindole represents a privileged building block that frequently occurred in natural products, pharmaceuticals, and bioactive molecules.⁹ A number of synthetic transformations have been developed toward the construction of such a unique structural unit.¹⁰ Nevertheless, it is still highly desirable to develop efficient methods to install functionalities (e.g., boryl or silyl) possessing potential transformations to the oxindole core. We herein communicate an efficient arylboration reaction of N-(2-iodoaryl)acrylamide with B₂pin₂ by using simple CuOAc as the sole catalyst, which achieves a number of borylated 3,3'-disubstituted oxindoles in moderate to excellent yields with a high reaction rate (Scheme 1c). It is noted that the same transformation has been realized by the group of Vachhani and Eycken using Pd-catalyst under microwave.^{3f} Gratifyingly, the present process is further extended to 1,2arylsilylation¹¹ with PhMe₂Si-Bpin, delivering a range of silvlated 3,3'-disubstituted oxindoles in good yields.

We commenced the study of arylboration reaction by using N-(2-iodophenyl)-2-phenylacrylamide 1a and B₂pin₂ as model substrates. Initial testing found the reaction completed in 5 min by employing the complex CuI/1,10-Phen as a catalyst and KO^tBu as a base in toluene at 100 °C, which delivered oxindole 2a in 95% yield (Table 1, entry 1). The effect of the

Received: March 18, 2020

8 examples

52-90% yields

26 examples

24-97% yields

Α

Table 1. Optimization of the Reaction Conditions^a

		,Ph + B ₂ pin ₂	[Cu], Ligand Base Solvent, 100 °C	Ph Ph 2a Me	Bpin O
Entry	[Cu]	Ligand	Base	Solvent	Yield (%) ^b
1	CuI	1,10-Phen	KO ^t Bu	toluene	95
2	CuBr	1,10-Phen	KO ^t Bu	toluene	96
3	CuCl	1,10-Phen	KO ^t Bu	toluene	94
4	CuOAc	1,10-Phen	KO ^t Bu	toluene	97
5	$Cu(OTf)_2$	1,10-Phen	KO ^t Bu	toluene	90
6	CuOAc	1,10-Phen	NaO ^t Bu	toluene	90
7 ^c	CuOAc	1,10-Phen	LiO ^t Bu	toluene	50
8	CuOAc	1,10-Phen	KO ^t Bu	1,4-dioxane	96
9	CuOAc	1,10-Phen	KO ^t Bu	THF	78
10	CuOAc	2,2'-Bipy	KO ^t Bu	toluene	43
11 ^d	CuOAc	Pyridine	KO ^t Bu	toluene	35
12 ^d	CuOAc	PPh_3	KO ^t Bu	toluene	70
13	CuOAc	dppf	KO ^t Bu	toluene	63
14 ^e	CuOAc	1,10-Phen	KO ^t Bu	toluene	90
15 ^f	CuOAc	1,10-Phen	KO ^t Bu	toluene	85
16	-	1,10-Phen	KO ^t Bu	toluene	nd ^g
-		,			/

^{*a*}Reaction conditions: 1a (0.2 mmol), B_2pin_2 (0.3 mmol), [Cu] (10 mol %), ligand (10 mol %), base (1.5 equiv), and solvent (2.0 mL) at 100 °C (oil bath) for 5 min. ^{*b*}Isolated yields. ^{*c*}For 1 h. ^{*d*}Ligand (20 mol %). ^{*e*}At 80 °C. ^{*f*}CuOAc (5 mol %), 1,10-Phen (5 mol %). ^{*g*}Not detected.

copper salt was then investigated. CuBr and CuCl resulted in comparable yields (entries 2 and 3), while CuOAc proved to be the best choice to produce **2a** in 97% yield (entry 4). Changing the base to NaO'Bu or LiO'Bu diminished the yield to 90% or 50%, respectively (entries 6 and 7). The influence of the solvent was examined. Lower yields were observed in 1,4dioxane and THF (entries 8 and 9). Other solvents, such as DMF, NMP, or CH₃CN, failed to give the target product. Several other ligands, such as 2,2'-bipy, pyridine, PPh₃, and dppf, were also tested in this reaction, whereas all these ligands led to **2a** in moderate yields (entries 10–13). In addition, lowering the temperature to 80 °C and the catalyst loading to 5 mol % resulted in decreased yields (entries 14 and 15). Product **2a** was not detected in the absence of CuOAc, which implied a radical pathway is not likely (entry 16).¹²

With the optimal conditions in hand, the scope of the arylboration reaction was then investigated. A slightly lower yield of 94% was obtained in a 1.0-mmol-scale reaction of 2a. As shown in Scheme 2, a variety of N-(2-iodoaryl)acrylamides reacted smoothly with B₂pin₂ in the presence of the CuOAc catalyst, affording the corresponding oxindoles in moderate to excellent yields. Substituents attached at C4-C5 on the aniline ring, either electron-donating (2c, 2g, 2h) or electronwithdrawing (2d-2f, 2i-2k, 2m), were well tolerated, and the products were achieved in the yields ranging from 60% to 85%. Note that bromine can survive from the reaction to afford 2f and 2k in 65% and 85% yields, respectively. N-Benzyl and 6-Cl-substrates were also suitable for this reaction to give the products 2b and 2l in 94% and 88% yield. In addition, the aryl group attached on the alkene moiety was also investigated. Products 2n-2s having different aryl substituents were achieved in moderate to excellent yields. The para- and ortho-methyl groups on the benzene ring resulted in products 2n and 2s in lower yields. Moreover, a number of 2methylacrylamide derived substrates were treated to the

Scheme 2. Substrate Scope for the Arylboration Reaction^a

"Reaction conditions: 1 (0.2 mmol), B_2pin_2 (0.3 mmol), CuOAc (10 mol %), 1,10-Phen (10 mol %), and KO'Bu (1.5 equiv) in toluene (2.0 mL) at 100 °C (oil bath) for 5–35 min. ^b1.0 mmol scale.

reaction, which led to the desired products 2u-2z in 57– 87% yields. Acrylamide with no substituent (R'' = H) could also be converted to 3-monosubstituted oxindole 2t, albeit in a lower yield of 24%. It is noteworthy that all the reactions could complete in 5–35 min, showing a fast reaction rate for this Cucatalyzed arylboration process.

To our delight, this copper-catalyzed difunctionalization process was further extended to a 1,2-arylsilylation reaction. Therefore, a range of silylated 3,3'-disubstituted oxindoles were obtained by the reaction of acrylamides 1 with PhMe₂Si-Bpin. As displayed in Scheme 3, several substrates having substituents, such as -OMe, -F, -Cl, and -Br, attached at

Scheme 3. Substrate Scope for the Arylsilylation Reaction

"Reaction conditions: 1 (0.2 mmol), $PhMe_2Si-Bpin$ (0.6 mmol), CuOAc (10 mol %), 1,10-Phen (10 mol %), KO'Bu (1.2 equiv), and 4 Å MS (100 mg) in toluene (2.0 mL) at room temperature for 1 h.

C4–C6 on the aniline ring were examined. The desired silanecontaining 3,3'-disubstituted oxindoles 3a-3h were formed in 52-90% yields in the presence of CuOAc catalyst at room temperature.

A tentative reaction mechanism is depicted in Scheme 4. The active species CuO'Bu is first formed by the reaction of

Scheme 4. Proposed Mechanism

CuOAc with KO^tBu. Subsequently, organocopper intermediates of Cu^I-Bpin or Cu^I-SiMe₂Ph are generated through the transmetalation of CuO^tBu with B₂pin₂ or PhMe₂Si-Bpin. The following borylcupration or silylcupration via the insertion of the C=C bond to Cu^I-Bpin or Cu^I-SiMe₂Ph leads to alkyl-Cu species I. The intramolecular coupling of alkyl-Cu with the CAr-I bond affords either borylated or silylated 3,3'disubstituted oxindoles 2 or 3 and releases catalyst precursor CuI.⁸ Finally, the catalytic cycle is finished by the conversion of CuI to CuO^tBu through an anionic exchange. Two possible pathways are as follows: (1) the oxidative addition of alkyl-Cu to C_{Ar} -I followed by reductive elimination of the Cu(III) species generated and (2) the nucleophilic aromatic substitution of alkyl-Cu with iodoarene might account for the conversion of intermediate I to product. The detailed mechanism could not be concluded at this stage, although an oxidative addition/reductive elimination sequence is more likely.13

In summary, we have developed a highly efficient coppercatalyzed arylboration and arylsilylation reaction of alkenes. A range of borylated or silylated 3,3'-disubstituted oxindoles are obtained in moderate to excellent yields in the reaction of *N*-(2-iodoaryl)acrylamide with B₂pin₂ or PhMe₂Si-Bpin. The present protocol provides an alternative access to functionalized oxindoles, which featured high efficiency, a broad scope, and mild reaction conditions by using a simple copper salt as the sole catalyst.

ASSOCIATED CONTENT

9 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c00999.

Experimental procedures, characterization data for all products, NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Yi-Xia Jia – College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou *310014, China;* orcid.org/0000-0001-7936-0049; Email: yxjia@zjut.edu.cn

Authors

- **Ren-Xiao Liang** College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
- **Ru-Yi Chen** College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
- **Chao Zhong** College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Jia-Wen Zhu College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
- **Zhong-Yan Cao** College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c00999

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The project was supported by the National Natural Science Foundation of China (Nos. 21702184, 21772175, and 91956117).

REFERENCES

(1) For reviews: (a) Fu, X.; Zhao, W. Youji Huaxue 2019, 39, 625–647.
 (b) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413–2423.
 (c) Schultz, D. M.; Wolfe, J. P. Synthesis 2012, 44, 351–361.
 (2) Liu, Z.; Gao, Y.; Zeng, T.; Engle, K. M. Isr. J. Chem. 2019, 59, DOI: 10.1002/ijch.201900087.

(3) For the Pd-catalyzed arylboration of alkenes: (a) Shen, C.; Zeidan, N.; Wu, Q.; Breuers, C. B. J.; Liu, R.-R.; Jia, Y.-X.; Lautens, M. *Chem. Sci.* **2019**, *10*, 3118–3122. (b) Liu, Z.; Chen, J.; Lu, H.-X.; Li, X.; Gao, Y.; Coombs, J. R.; Goldfogel, M. J.; Engle, K. M. Angew. *Chem., Int. Ed.* **2019**, *58*, 17068–17073. (c) Yang, K.; Song, Q. Org. *Lett.* **2016**, *18*, 5460–5463. (d) Wei, F.; Wei, L.; Zhou, L.; Tung, C.-H.; Ma, Y.; Xu, Z. Asian J. Org. Chem. **2016**, *5*, 971–975. (e) Yang, K.; Song, Q. Org. Lett. **2016**, *18*, 5460–5463. (f) Vachhani, D. D.; Butani, H. H.; Sharma, N.; Bhoya, U. C.; Shahb, A. K.; der Eycken, E. V. V. Chem. Commun. **2015**, *51*, 14862–14865.

(4) For the Ni-catalyzed arylboration of alkenes: (a) Wang, W.;
Ding, C.; Pang, H.; Yin, G. Org. Lett. 2019, 21, 3968-3971.
(b) Logan, K. M.; Sardini, S. R.; White, S. D.; Brown, M. K. J. Am. Chem. Soc. 2018, 140, 159-162.

(5) For the Pd/Cu-cocatalyzed arylboration of alkenes: (a) Bergmann, A. M.; Dorn, S. K.; Smith, K. B.; Logan, K. M.; Brown, M. K. Angew. Chem., Int. Ed. 2019, 58, 1719–1723. (b) Kuang, Z.; Li, B.; Song, Q. Chem. Commun. 2018, 54, 34–37. (c) Logan, K. M.; Brown, M. K. Angew. Chem., Int. Ed. 2017, 56, 851–855. (d) Sardini, S. R.; Brown, M. K. J. Am. Chem. Soc. 2017, 139, 9823–9826. (e) Smith, K. B.; Brown, M. K. J. Am. Chem. Soc. 2017, 139, 7721–7724. (f) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7, 2425–2429. (g) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7, 2425–2429. (h) Logan, K. M.; Smith, K. B.; Brown, M. K. Angew. Chem., Int. Ed.
2015, 54, 5228-5231. (i) Smith, K. B.; Logan, K. M.; You, W.;
Brown, M. K. Chem. - Eur. J. 2014, 20, 12032-12036. (j) Semba, K.;

Nakao, Y. J. Am. Chem. Soc. 2014, 136, 7567-7570. (6) For the Ni/Cu-cocatalyzed arylboration of alkenes: Semba, K.;

Ohtagaki, Y.; Nakao, Y. Org. Lett. **2016**, *18*, 3956–3959. (7) For a DFT study: Dang, L.; Zhao, H.; Lin, Z.; Marder, T. B.

(7) For a DFT study. Dang, E., Zhao, H., Elli, Z., Warder, T. B. Organometallics 2007, 26, 2824–2832.

(8) (a) You, W.; Brown, M. K. J. Am. Chem. Soc. 2015, 137, 14578–14581.
(b) You, W.; Brown, M. K. J. Am. Chem. Soc. 2014, 136, 14730–14733.

(9) For selected examples: (a) Zhang, Z.; Zhang, W.; Kang, F.; Ip, F.
C. F.; Ip, N. Y.; Tong, R. J. Org. Chem. 2019, 84, 11359–11365.
(b) Bergonzini, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 971–974. (c) Christensen, M. K.; Erichsen, K. D.; Trojel-Hansen, C.; Tjørnelund, J.; Nielsen, S. J.; Frydenvang, K.; Johansen, T. N.; Nielsen, B.; Sehested, M.; Jensen, P. B.; Ikaunieks, M.; Zaichenko, A.; Loza, E.; Kalvinsh, I.; Björkling, F. J. Med. Chem. 2010, 53, 7140–7145. (d) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.; Shibata, N.; Toru, T. Chem. - Eur. J. 2008, 14, 8079–8081.

(10) For reviews: (a) Cao, Z.-Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. **2018**, 51, 1443–1454. (b) Dalpozzo, R. Org. Chem. Front. **2017**, 4, 2063–2078. (c) Dalpozzo, R. Adv. Synth. Catal. **2017**, 359, 1772–1810. (d) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. **2012**, 10, 5165–5181. (e) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. **2012**, 41, 7247–7290. (f) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. **2010**, 352, 1381–1407.

(11) For 1,2-arylsilylation of alkenes: (a) Xu, Y.; Liu, X.; Chen, W.; Deng, G.; Liang, Y.; Yang, Y. J. Org. Chem. 2018, 83, 13930–13939.
(b) Xiao, G.; Chen, L.; Deng, G.; Liu, J.; Liang, Y. Tetrahedron Lett. 2018, 59, 1836–1840. (c) Xiao, G.; Chen, L.; Zhou, B.; Deng, G.; Gong, J.; Liang, Y. Adv. Synth. Catal. 2018, 360, 3477–3481. (d) Lv, W.; Yu, J.; Ge, B.; Wen, S.; Cheng, G. J. Org. Chem. 2018, 83, 12683–12693.

(12) Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537–15539.

(13) (a) Thapa, S.; Basnet, P.; Giri, R. J. Am. Chem. Soc. 2017, 139, 5700–5703. (b) Shrestha, B.; Thapa, S.; Gurung, S. K.; Pike, R. A. S.; Giri, R. J. Org. Chem. 2016, 81, 787–802.