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2

15 Abstract

16 Electrochemical conversion of NO3
- into ammonia (NH3) recycles nitrogen and offers 

17 a route to NH3 production that is more valuable than dinitrogen gas. However, today’s 

18 development of NO3
- electroreduction remains hindered by the lack of a mechanistic 

19 picture of how catalyst structure may be tuned to enhance catalytic activity. Here we 

20 demonstrate enhanced nitrate reduction reaction (NO3
-RR) performance on Cu50Ni50 

21 alloy catalysts, including a 0.12 V upshift in the half-wave potential and a 6-fold increase 

22 in activity compared to pure Cu at 0 V vs. reversible hydrogen electrode (RHE). Ni 

23 alloying enables tuning of the Cu d-band center and modulates the adsorption energies of 

24 intermediates such as *NO3
-, *NO2, and *NH2. Using density functional theory (DFT) 

25 calculations, we identify a NO3
-RR-to-NH3 pathway and offer an adsorption energy-

26 activity relationship for the CuNi alloy system. This correlation between catalyst 

27 electronic structure and NO3
-RR activity offers a design platform for further 

28 development of NO3
-RR catalysts. 

29
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3

30 Introduction

31 Human activities  to an anthropogenically-induced increase over time in the concentration 

32 of environmental nitrate (NO3
-):1, 2 the combustion of fossil fuels emits nitrous oxides (NOx); 

33 fertilizer-intensive agriculture releases NO3
- into soil and groundwater; and NO3

--containing 

34 waste is discharged from industrial sources. The accumulation of NO3
- induces acid rain and 

35 photochemical smog3, 4 and the uptake of NO3
- in mammals results in its in vivo conversion to 

36 nitrite (NO2
-),5, 6 a cause of methemoglobinemia and a known carcinogen. 

37 Closing the nitrate-nitrogen cycle1, 2, 7, 8 is therefore of interest: it is desirable to transform 

38 nitrates to harmless9-11 or – better yet – to value-added products.12, 13 The electrochemical 

39 reduction of nitrate provides a route to ammonia production,9, 13 with widespread use as a 

40 fertilizer precursor, chemical feedstock and fuel:

41 NO3
- + 6H2O + 8e- → NH3 + 9OH-, E0 = 0.69 V vs. RHE (pH = 14)14     (1)

42 Achieving higher-performance NO3
-RR electrocatalysts remains challenging, in 

43 significant part because the relationship between catalyst structure and activity is poorly 

44 understood. 

45 To date, Faradaic efficiencies (FE) greater than 90% for NO3
- reduction to NH3 have been 

46 achieved on Cu-based catalysts, but typically these require potentials more negative than -0.27 

47 V vs. RHE in NO3
--containing 1 M KOH electrolytes, corresponding to an overpotential 

48 exceeding 0.96 V.15-19 Previous studies found that alloying Cu with Ni results in a positive shift 

49 in the NO3
-RR half-wave potential (E1/2), the potential at which the current is equal to one half 

50 of the mass transfer limiting current, by ~0.1 V,18, 19 a finding that corresponds to enhanced 

51 catalytic activity at a given potential. A mechanism wherein Cu performs the adsorption of 

52 NO3* and Ni is the binding site of H* was proposed by Simpson and Johnson;20 however, this 
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4

53 mechanism does not explain enhanced NO3
-RR activity on CuNi alloys: Ni converts NO3

- to 

54 NH3 inefficiently,19 so that replacing surface Cu atoms with Ni would be expected to reduce 

55 the density of active sites for NH3 production. 

56 We noted that upshifts in the half-wave potential (E1/2) in reduction reactions typically 

57 suggest an increase in electrocatalytic activity. This, we posited, could arise due to a modulated 

58 intermediate adsorption energy in CuNi alloys compared to pure Cu. Drawing parallels with 

59 oxygen reduction reaction (ORR) literature, we noted that platinum-nickel (PtNi) alloy 

60 catalysts typically exhibit an upshifted half-wave potential of ~0.1 V compared to pure Pt 

61 catalysts.21, 22 Decreasing adsorption energies for oxygenated species on PtNi alloys leads to 

62 increased activity, an instance of scaling relations for ORR catalysts.23 This has been associated 

63 with the shifted d-band center position and surface atomic arrangement reported by Marković 

64 and co-workers.22 

65 In sum, the introduction of heteroatoms modulates the electronic structure of catalysts, 

66 enabling the enhancement of electrocatalytic activity.22-25. We explore herein how such a 

67 strategy can be employed to design catalysts exhibiting enhanced NO3
-RR activity and 

68 selectivity.

69 We began by preparing a series of CuNi alloys with various Cu:Ni compositions, and 

70 observed a 0.12 V upshift in E1/2, and a 0.2 V lower overpotential required for peak NH3 FE. 

71 This occurred at a composition - Cu50Ni50 alloy catalysts - that simultaneously produced a 6-

72 fold increase in NO3
-RR activity compared to the case of pure Cu at 0 V vs. RHE (pH = 14). 

73 We utilized X-ray photoelectron spectroscopy (XPS), operando X-ray adsorption spectroscopy 

74 (XAS) and ultra-violet photoelectron spectroscopy (UPS) to investigate the electronic structure 

75 of the catalysts and found that the Cu d-band center upshifted toward the Fermi level in CuNi 
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5

76 alloys. In addition, we investigate the reaction pathway with DFT calculations, and build an 

77 intermediate adsorption energy-NO3
-RR performance relationship for the CuNi alloy system.

78 Results and discussion 

79 Catalyst synthesis and characterization. We began by electrodepositing catalysts on 

80 both rotating disk electrodes (RDEs) and polytetrafluoroethylene (PTFE) membranes covered 

81 with 300 nm thick Cu seed layers (300 nm Cu/PTFE). We used electron microscopy to 

82 investigate the morphological and crystalline structure of the catalysts. The CuNi catalysts with 

83 Cu-to-Ni ratios of 80:20, 50:50, and 30:70 in the deposition solutions, labeled Cu80Ni20, 

84 Cu50Ni50, and Cu30Ni70, exhibited dendritic morphologies (Fig. 1a, Fig. S1, and S2) with 

85 dendrite diameters in the range of 200-400 nm. Using high resolution transmission electron 

86 microscopy (HRTEM) we observed lattice spacings of 0.208 and 0.179 nm for the Cu(111) 

87 and Cu(200) facets (Fig. 1b) of the Cu50Ni50 catalysts due to the formation of the CuNi alloy 

88 phase; compared to pure Cu dendrites exhibiting lattice spacings of 0.210 and 0.181 nm for 

89 Cu(111) and Cu(200) facets that agree with cubic Cu (Fig. 1d).26 The Cu-to-Ni ratio in the 

90 Cu50Ni50 catalyst, quantified by electron energy loss spectroscopy (EELS, Fig. 1e-h), was 

91 ~52:48. We observed similar ratios at other randomly-selected positions (Fig. S3 and Table S1), 

92 arguing against a main role for catalyst heterogeneity in catalytic performance. XRD reveals a 

93 decrease in Cu lattice spacings when Ni is incorporated (Fig. 1i and S4). The Cu(111) and 

94 Cu(100) d-spacings of the Cu50Ni50 catalyst revealed by XRD agrees with the results observed 

95 with HRTEM.

96 We also looked for evidence of changes in the electronic properties of the Cu and Cu:Ni 

97 catalysts. XPS indicated a notable decrease in the Cu2p binding energy and an increase in the 

98 metallic Ni2p binding energy for the alloyed catalysts (Fig. 1j and S5). Among the three alloyed 

99 catalysts, we found the largest Cu2p binding energy shift of ~0.35 eV in Cu50Ni50. This can be 
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6

100 explained through electron redistribution27 which leads to an opposite shift of the Cu3d band 

101 toward the Fermi level,28 tuning the adsorption energy of both H* and NO3*.

102 In the case of the pure Ni catalysts, only the XRD peaks of the Cu/PTFE support were 

103 observed (Fig. 1i). XPS measurements exhibited a very similar Cu2p binding energy compared 

104 to pristine Cu/PTFE (Fig. S6). SEM, elemental mapping, and Ni2p XPS (Fig. S5 and 7) reveal 

105 only Ni, accompanied by NiOx formed by oxidation in air, fully covering the Cu/PTFE fibers.

106 NO3
-RR activity and kinetics. To investigate the electrocatalytic activity and kinetics of 

107 NO3
- reduction, we tested each catalyst on rotating disk electrodes (RDEs). With the Cu50Ni50 

108 catalyst, we found an onset potential of ~0.25 V vs. RHE (pH = 14) for NO3
- reduction (Fig. 

109 2a). The current density then increased sharply to its transport-limited ceiling of ~170 mA cm-2 

110 (according to equation 1 in Supporting information) at 100 rpm in 1 M KOH + 100 mM KNO3 

111 (pH = 14) electrolyte. On the pure Cu catalysts, we found that a much more negative cathodic 

112 potential was required to reach this same NO3
--transport-limited current: the current density 

113 was only 100 mA cm-2 at -0.2 V vs. RHE which was only 60% of that obtained by operating 

114 the Cu50Ni50 catalyst at the same potential. The pure Ni catalyst is almost inactive for NO3
- 

115 reduction (Fig. S8a and b). 

116 The current density, normalized to the electrochemically active surface area (ECSA),  

117 increases exponentially to ~1 mA cm-2 along with the cathodic potential for the case of Cu50Ni50. 

118 In contrast, an evident multi-electron transfer process (Fig. 2a and b) was seen on the pure Cu 

119 catalyst. Cu50Ni50 catalysts exhibited a 40% lower ECSA, determined by its double-layer 

120 capacitance, compared to pure Cu (Fig. S9a-c). This translated to a 6-fold increase in ECSA-

121 normalized current density for Cu50Ni50, compared to pure Cu at 0 V vs. RHE (Fig. 2b). The 

122 intrinsic NO3
-RR activity was significantly improved using the CuNi alloy systems.
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7

123 To gain insight into the kinetics, we plotted Koutecký–Levich (K-L) curves for NO3
- 

124 reduction on the Cu50Ni50 and pure Cu catalysts (Fig. 2c) using their current density vs. 

125 potential (j-V) profiles in 1 M KOH + 10 mM KNO3 (pH = 14) electrolyte (Fig. S10 and S8c). 

126 K-L analysis revealed a four-electron-transfer process for NH3 production on both the Cu50Ni50 

127 and Cu catalysts. The kinetic current density obtained using the Cu50Ni50 catalyst was 

128 calculated from the intercept of the K-L plot and was 220 mA cm-2 at -0.25 V vs. RHE, 2x 

129 higher than in the case of pure Cu controls (Table S2). 

130 We investigated the E1/2 of NO3
-RR on catalysts with different Cu:Ni ratios in 1 M KOH 

131 + 10 mM KNO3 electrolyte. On Cu30Ni70, Cu50Ni50, Cu80Ni20 alloys, we found increasing NO3
-

132 RR E1/2 compared to the pure Cu catalyst. For instance, at 100 rpm, Cu50Ni50 catalyst exhibited 

133 the highest E1/2 of 0.08 V vs. RHE among all catalysts, while an E1/2 of -0.045 V vs. RHE was 

134 seen in the case of pure Cu (Fig. S11). The improvement in E1/2 further increased to ~120 mV 

135 when catalysts were tested in 100 mM KNO3 at the same rotating rate (Fig. 2a). For all NO3
- 

136 concentrations, Cu50Ni50 catalysts perform better than the pure Cu as evidenced by the 

137 upshifting of E1/2 and the reduced overpotential required for the same current density (Fig. 2d 

138 and S7d). 

139 NO3
-RR selectivity. We investigated NH3 selectivity using catalysts deposited on 

140 Cu/PTFE supports, e.g. the Cu50Ni50 catalyst on PTFE (labeled Cu50Ni50/PTFE), in a flow 

141 electrolyzer.29 We quantified the NH3 product concentration as a function of a range of NO3
- 

142 concentrations using an indophenol blue method (Fig. S12). To confirm that the NH3 produced 

143 indeed comes from NO3
- reduction, 15NO3

- electroreduction was performed using the same 

144 catalyst (Fig. S13). 

145 We achieved a 99 ± 1% Faradaic efficiency (FE) for NH3 at ~-0.15 V vs. RHE on the 

146 Cu50Ni50/PTFE catalyst in 1 M KOH + 100 mM KNO3 electrolyte (Fig. 2e and Table S3). The 
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147 peak FE for NH3, on Cu50Ni50/PTFE, shifted to a 50 mV lower overpotential compared to that 

148 of the pure Cu/PTFE (Fig. S14). The corresponding current density using Cu50Ni50/PTFE was 

149 more than 1.3 times higher than that obtained using pure Cu controls (Table. S5). We checked 

150 for catalyst reconstruction following NO3
- reduction after a 2-hour NO3

-RR operation in 100 

151 mM NO3
- and found that morphologies were retained in the case of both Cu50Ni50/PTFE and 

152 pure Cu/PTFE (Fig. S15). 

153 Alloying with Ni increased the NH3 FE at low overpotentials (potentials > -0.1 V vs. RHE) 

154 in different NO3
- concentrations. Cu50Ni50 catalysts enhanced the NH3 FE by over 20% at ~0 

155 V vs. RHE compared to pure Cu (Fig. 2f, Table S4 and 5). Specifically, the highest NH3 FE is 

156 65 ± 3%, 84 ± 2% and 93 ± 2% in 1, 2, and 10 mM NO3
- conditions at pH = 14, respectively. 

157 In contrast, pure Cu is only able to attain a FE of 42 ± 3%, 59 ± 3% and 87 ± 3% at the same 

158 NO3
- concentrations. 

159 We achieved a peak NH3 half-cell energy efficiency (EE) of 40% using Cu50Ni50/PTFE at 

160 50 mA cm-2 in 100 mM NO3
- (Fig. 2g). This corresponds to a full-cell EE of 31% for this 

161 catalyst at 50 mA cm-2 in the same electrolyte (Fig. S16), which is 1.3-fold improved compared 

162 to the case of the pure Cu catalyst. A 31% NH3 full-cell EE was also obtained using 

163 Cu50Ni50/PTFE at 2 mA cm-2 in 2 mM NO3
- (Fig. S16). This is ~6 times greater than that of the 

164 pure Cu catalyst under the same condition. 

165 By studying both the NH3 FE on Cu80Ni20 and Cu30Ni70 catalysts in 1 mM NO3
-, we found 

166 that the Cu50Ni50 catalyst was the most active and selective catalyst (Fig. S17 and 18). The NH3 

167 FE at -0.06 V vs. RHE was 58 ± 2%. Cu80Ni20 catalysts produced NH3 with a similar FE of 51 

168 ± 2%. Introducing 70% Ni into Cu caused a sharp decrease in NH3 FE from ~58% to ~31%. 

169 Depositing pure Ni largely blocked the Cu sites underneath and further reduced the NH3 FE to 

170 11 ± 1%.
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171 We implemented the Cu50Ni50 catalyst on a 3D porous electrode by depositing the 

172 Cu50Ni50 catalyst onto a Cu foam with a pore size of ~200 μm (Fig. S19). We achieved, as a 

173 result, a 90 mA cm-2 current density at -0.1 V vs. RHE, which is two-fold higher than the 

174 Cu50Ni50/PTFE electrode in 1 M KOH + 100 M KNO3 (Fig. 4h). The NH3 FE was steady at 

175 ~95% over 12 h of NO3
-RR and at a 39% NH3 half-cell energy efficiency (EE). 15% of the 

176 input NO3
- was converted into NH3 in a single pass (Fig. 4h and Table S7).

177 Electronic structure studies. To shed light on the electronic structure of the CuNi alloy 

178 catalysts under NO3
-RR conditions, we turned to operando hXAS.30 The Cu50Ni50 catalyst in 1 

179 M KOH + 10 mM KNO3 electrolyte at a series of applied potentials exhibited pure metallic 

180 features in both Ni and Cu K-edge spectra under steady-state operation conditions (Fig. 3a-d, 

181 Fig. S20). We then calculated the operando coordination numbers (CNs) of Ni at different 

182 potentials. The CNs of metal-metal bonds stayed above 11.5 at all potentials (Table S6 and 7). 

183 This result suggests that, in our work, there is unlikely to be a prominent role for subsurface 

184 oxygen species as previously reported in related catalysts under distinct electrochemical (acidic) 

185 conditions.31 

186 Since the adsorption energy of intermediates is strongly correlated with the d-band center 

187 position of catalysts,32 we performed UPS studies for the pure Cu and the CuNi alloys (Fig. 

188 3e). The pure Cu catalyst exhibited a d-band center location of -2.84 eV (E-EF, Fermi level) on 

189 the background-corrected spectrum. Increasing the Ni composition in the alloys causes an 

190 upshift of the d-band center towards the Fermi level by 0.14, 0.28 and 0.32 eV for Cu80Ni20, 

191 Cu50Ni50 and Cu30Ni70, respectively. These results were in agreement with the XPS results, 

192 wherein we observed the 2p electron redistribution which leads to a positive shift of the Cu3d 

193 band towards the Fermi level. This indicates decreasing anti-bonding occupation and stronger 
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194 adsorbate bonding,32 which means that alloying Ni with Cu greatly enhances the adsorption 

195 energies of intermediate species. 

196 Taken together, the activity, selectivity and d-band center positions, allow us to reason 

197 that enhanced NO3
-RR intermediate adsorption, arising due to the shifted d-band center 

198 position, improved the NO3
-RR activity and selectivity on CuNi alloys. However, introducing 

199 an excess of Ni, i.e. the Cu30Ni70 catalyst, reaction intermediates too strongly, which lowers 

200 the activity and selectivity. 

201 DFT studies. We sought to investigate, using DFT, the relationship between intermediate 

202 adsorption and the NO3
-RR activity of different CuNi catalysts (Fig. 4a). The stability of CuNi 

203 alloy systems were screened via doping Ni into Cu at various layers and distributions (Fig. S21, 

204 22, and Table S8). Thermodynamics first force Ni atoms to replace the subsurface Cu when 

205 the Ni:Cu ratio is less than 1:1. The substitution takes place on Cu surfaces with a further 

206 increase in the ratio (Fig. S22).  

207 The electrochemical reaction NO3
- + 6H2O + 8e- →  NH3 + 9OH- was represented by a 

208 series of deoxidation reactions: *NO3
- →  *NO2 →  *NO →  *N followed by hydrogenation 

209 reactions of  *N → *NH → *NH2 → *NH3 according to a previous report.33 With the stable CuNi 

210 structures we built, we took different adsorbed orientations of intermediates on all possible 

211 active sites into account (Fig. S23 and 24). For all intermediates, the most stable adsorption 

212 configurations (Fig. 4a) with the lowest total energies were employed to illustrate the NO3
-RR 

213 pathway, and hence assess the activities of different catalysts.

214 A full NO3
-RR pathway in 1 M KOH (pH = 14), including the deoxidation/hydrogenation 

215 reactions and intermediates,33 was then calculated (Fig. 4a). On pure Cu, the first NO3
- 
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216 adsorption step is the potential-dependent step (PDS) of which the maximum reaction free 

217 energy is 0.40 eV at -0.14 V vs. standard hydrogen electrode (SHE). Introducing Ni atoms 

218 moves the PDS from NO3
- adsorption to the hydrogenation of the *NH2 intermediate (*NH2 + 

219 H2O + e- →  *NH3 + OH-, Figure 4b), as the result of enhanced adsorption caused by the 

220 upshifted d-band center (Fig. 3e). A volcano-type relationship between the *NO3
- adsorption 

221 energy and the NO3
-RR experimental overpotentials was seen (Fig. 4c). By increasing Ni 

222 concentration in CuNi alloys, a stronger adsorption of *NO3
- on the surface further modifies 

223 the energetics of NO3
-RR. However, on Cu30Ni70 alloy and pure Ni, the reaction free energy 

224 for *NH2 hydrogenation increases to -0.39 and -0.34 eV at -0.14 V vs. SHE, as high Ni fractions 

225 lead to *NH2 intermediate adsorptions exceeding the optimal values. This fact, along with a 

226 possible decrease in the number of Cu sites (Fig. S23 and 24), works against the formation of 

227 *NH3 and the selectivity toward NH3 decreases as a result. 

228 Conclusions

229 This work presents the relationship between intermediate adsorption energies and NO3
-

230 RR activity on CuNi catalysts. By replacing 50% Cu with Ni, we achieved significantly 

231 improved NO3
-RR-to-NH3 performance. This includes a 0.12 V upshift in the half-wave 

232 potential, a 0.2 V lower overpotential required to achieve the optimal NH3 FE, and a 6-fold 

233 increase in NO3
-RR activity on Cu50Ni50 alloy catalysts compared to pure Cu at 0 V vs. RHE 

234 in alkaline conditions (pH = 14). The electronic structure studies revealed an upshifting of the 

235 d-band center toward the Fermi level, a feature that enhances intermediate adsorption energies. 

236 This relationship was then validated by our DFT calculations, wherein we found that 

237 introducing Ni atoms moves the PDS from NO3
- adsorption to *NH2 hydrogenation due to the 

238 enhanced adsorption energy of NO3
- on the CuNi surface, and as a result, lowers the 

239 overpotential. Our work demonstrates the effect of the d-band center positions and the induced 
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240 adsorption properties on the NO3
-RR activity and selectivity. This work highlights a promising 

241 route to design catalysts for selective NO3
-RR to NH3.
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272 Figures

273

274 Figure 1. Materials characterization of copper-nickel alloy catalysts. (a, b) Representative 

275 SEM and HRTEM images of the Cu50Ni50 catalyst. (c, d) Representative SEM and HRTEM 

276 images of the pure Cu catalyst. The scale bars are 200 nm in a and c, and 10 nm in b and d. 

277 (e-h) The STEM image and EELS mapping analysis of the Cu50Ni50 catalyst. The scale bars 

278 are 100 nm. (i, j) XRD patterns and XPS Cu2p spectra of catalysts with different Cu:Ni ratios.

279
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280

281 Figure 2. Nitrate-to-ammonia electroreduction performance. (a) j-V plots of nitrate 

282 reduction (80% iR corrected) on the Cu50Ni50, pure Cu and pure Ni RDE at 100 rpm in 1 M 

283 KOH + 0.1 M KNO3 electrolyte. (b) ECSA-normalized current densities. (c) Koutecký–Levich 

284 plots of nitrate reduction on Cu50Ni50 and Cu at -0.25 V vs. RHE in 1 M KOH + 10 mM KNO3 

285 electrolyte. (d) j-V plots of nitrate reduction (80% iR corrected) on the Cu50Ni50 RDE at 400 

286 rpm. (e) Nitrate-to-ammonia Faradaic efficiency on the Cu50Ni50/PTFE catalyst in different 

287 nitrate concentrations. (f) Comparison of the highest NH3 Faradaic efficiency on the 

288 Cu50Ni50/PTFE and pure Cu/PTFE catalysts in different nitrate concentrations. (g) Comparison 

289 of the cathodic (half-cell) NH3 energy efficiency (EE) obtained using the Cu50Ni50/PTFE and 

290 pure Cu/PTFE catalysts. (h) Stability and single-pass conversion test of nitrate reduction at -

291 0.1 V vs. RHE using a Cu50Ni50/Cu foam catalyst.
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292

293

294 Figure 3. Electronic structure. (a) Operando Cu K-edge hXAS spectra of the Cu50Ni50 

295 catalyst at different applied potentials. (b) Fourier-transformed operando Cu K-edge hXAS 

296 spectra of the Cu50Ni50 catalyst at different applied potentials. (c) Operando Ni K-edge hXAS 

297 spectra of the Cu50Ni50 catalyst at different applied potentials. (d) Fourier-transformed 

298 operando Ni K-edge hXAS spectra of the Cu50Ni50 catalyst at different applied potentials. (e) 

299 The UPS spectra and d-band center positions of pure Cu catalysts and the CuNi alloys.

300
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301

302 Figure 4. DFT calculations. (a) Reaction free energies for different intermediates on CuNi 

303 surface. (b). Hydrogenation reaction of *NH2 (*NH2 + H2O + e- → *NH3 +OH-) on Cu30Ni70 

304 surface. (c) The volcano-type relationship between experimental overpotentials of NO3
-RR at 

305 5 mA cm-2 in 10 mM KNO3 and adsorption energies of *NO3
- on all CuNi alloys. Red, pink, 

306 blue, grey and orange spheres correspond to oxygen, hydrogen, nitrogen, nickel and copper 

307 atoms, respectively.
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Figure 1. Materials characterization of copper-nickel alloy catalysts. (a, b) Representative SEM and HRTEM 
images of the Cu50Ni50 catalyst. (c, d) Representative SEM and HRTEM images of the pure Cu catalyst. The 
scale bars are 200 nm in a and c, and 10 nm in b and d. (e-h) The STEM image and EELS mapping analysis 
of the Cu50Ni50 catalyst. The scale bars are 100 nm. (i, j) XRD patterns and XPS Cu2p spectra of catalysts 

with different Cu:Ni ratios. 
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Figure 2. Nitrate-to-ammonia electroreduction performance. (a) j-V plots of nitrate reduction (80% iR 
corrected) on the Cu50Ni50, pure Cu and pure Ni RDE at 100 rpm in 1 M KOH + 0.1 M KNO3 electrolyte. (b) 
ECSA-normalized current densities. (c) Koutecký–Levich plots of nitrate reduction on Cu50Ni50 and Cu at -
0.25 V vs. RHE in 1 M KOH + 10 mM KNO3 electrolyte. (d) j-V plots of nitrate reduction (80% iR corrected) 
on the Cu50Ni50 RDE at 400 rpm. (e) Nitrate-to-ammonia Faradaic efficiency on the Cu50Ni50/PTFE catalyst 

in different nitrate concentrations. (f) Comparison of the highest NH3 Faradaic efficiency on the 
Cu50Ni50/PTFE and pure Cu/PTFE catalysts in different nitrate concentrations. (g) Comparison of the 
cathodic (half-cell) NH3 energy efficiency (EE) obtained using the Cu50Ni50/PTFE and pure Cu/PTFE 
catalysts. (h) Stability and single-pass conversion test of nitrate reduction at -0.1 V vs. RHE using a 

Cu50Ni50/Cu foam catalyst. 
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Figure 3. Electronic structure. (a) Operando Cu K-edge hXAS spectra of the Cu50Ni50 catalyst at different 
applied potentials. (b) Fourier-transformed operando Cu K-edge hXAS spectra of the Cu50Ni50 catalyst at 

different applied potentials. (c) Operando Ni K-edge hXAS spectra of the Cu50Ni50 catalyst at different 
applied potentials. (d) Fourier-transformed operando Ni K-edge hXAS spectra of the Cu50Ni50 catalyst at 
different applied potentials. (e) The UPS spectra and d-band center positions of pure Cu catalysts and the 

CuNi alloys. 
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Figure 4. DFT calculations. (a) Reaction free energies for different intermediates on CuNi surface. (b). 
Hydrogenation reaction of *NH2 (*NH2 + H2O + e- → *NH3 +OH-) on Cu30Ni70 surface. (c) The volcano-

type relationship between experimental overpotentials of NO3
-RR at 5 mA cm-2 in 10 mM KNO3 and 

adsorption energies of *NO3
- on all CuNi alloys. Red, pink, blue, grey and orange spheres correspond to 

oxygen, hydrogen, nitrogen, nickel and copper atoms, respectively. 
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