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Abstract: An atom-economical synthesis of 2-aminoimidazoles
catalyzed by a titanacarborane monoamide is reported. Reactions of
propargylamines with carbodiimides, in the presence of 5 mol%
[s:h1:h5-(OCH2)(Me2NCH2)C2B9H9]Ti(NMe2), afford a new class
of substituted 2-aminoimidazoles via [3+2] annulation in good to
excellent yields. A possible reaction mechanism is proposed.

Key words: catalysis, heterocycles, hydroamination, imidazole,
metallacarborane

The 2-aminoimidazole unit has been widely found in bio-
logically active molecules and natural products,1 and is
emerging as a valuable pharmacophore for biomedical re-
search.2 As a result, synthetic strategies for the construc-
tion of this unique structural scaffold has been well-
investigated.2–4 Generally, there are two predominant
methods among the various synthetic routes developed so
far. The first approach includes the condensation of a-
aminoketones with cyanamides or a-halogenated ketones
with acetylated guanidine derivatives.3a,b,f The second ap-
proach relies on the modification of an imidazole core.4 It
is noted that these processes involve either long experi-
mental procedures4 or unstable precursors.3a,b,f Until very
recently, two metal-catalyzed, short and efficient methods
for the construction of the 2-aminoimidazole core had
been reported.5,6 Three-component coupling reactions of
amines, aldehydes and terminal alkynes followed by lan-
thanide(III)-catalyzed hydroamination/cyclization lead,
ultimately, to formation of the 2-aminoimidazole skele-
ton.5 Reactions between secondary propargylamines and
S-methylisothioureas in the presence of a silver(I) salt re-
sult in the generation of 2-aminoimidazole derivatives.6

However, direct, atom-economic routes to 2-aminoimida-
zoles remain a challenge.

We have recently reported a highly reactive titana-
carborane monoamide [s:h1:h5-
(OCH2)(Me2NCH2)C2B9H9]Ti(NMe2) (1).7 This complex
can efficiently catalyze the hydroamination of carbodiim-
ides (Scheme 1, equation 1),8 hydroamination/cyclization
reactions of cyanoalkynes with amines (Scheme 1, equa-
tion 2) and propargylamines with nitriles (Scheme 1,
equation 3),9 as well as the transamination of guanidines

(Scheme 1, equation 4).10 Inspired by these results, we an-
ticipated that the catalytic hydroamination/cyclization re-
action between propargylamines and carbodiimides might
serve as a new approach for the construction of 2-ami-
noimidazoles. Herein, we describe a titanacarborane
monoamide catalyzed, direct and atom-economic synthe-
sis of 2-aminoimidazoles from propargylamines and car-
bodiimides via [3+2] annulation.

Scheme 1 Hydroamination reactions catalyzed by 1

A model reaction with the phenyl-substituted propargyl-
amine 2a and diisopropylcarbodiimide (3a) was initially
examined in C6D6 (Table 1). There was no reaction de-
tected in the absence of a catalyst at 115 °C after 18 h in a
sealed NMR tube (entry 1). Some commercially available
or commonly used metal complexes that are known to be
active catalysts in hydroamination reactions11 were also
examined (Table 1, entries 2–9). Alkali metal amides (en-
tries 2 and 3), group IV metal amides (entries 4–6) and
metallocenes (entries 7–9) showed no catalytic activity
for this reaction. However, addition of 5 mol% 1 under the
same reaction conditions resulted in the formation of the
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substituted 2-aminoimidazole 4aa in more than 95%
NMR yields (entries 10 and 11). Around 40% yield was
observed when the reaction temperature was decreased to
80 °C (entry 12), suggesting that the temperature is cru-
cial to such reactions.

We then extended the substrate scope to include various
propargylamines and carbodiimides on a preparative
scale.12 The results were summarized in Table 2. Most of
the reactions under the optimal reaction conditions gave
the expected 2-aminoimidazoles with excellent regiose-
lectivity (5-exo-dig) (entries 1–19).13 The corresponding
products were isolated in good to excellent yields, and
were characterized by 1H and 13C NMR analysis, and by
HRMS. The structure of compound 4aa was further con-
firmed by single-crystal X-ray analysis (Figure 1).14 It
was found that N,N¢-(i-Pr)2-, N,N¢-(Cy)2-, and N,N¢-(4-
Tol)2-carbodiimides are compatible with this reaction.
However, no desired product was isolated from the reac-
tion of propargylamines with N,N¢-(t-Bu)2- or N,N¢-
(TMS)2-carbodiimide, probably for steric reasons. On the
other hand, the following general trends were observed:
(1) the reaction works well for both primary and second-

ary propargylamines without obvious differences in the
reaction rate (Table 2, entries 4–6 vs. 7–9); (2) reactions
of propargylamines bearing an alkyl-substituted internal
alkyne do not generate 2-aminoimidazoles, possibly due
to their relatively low reactivity (entries 20 and 21); (3)
the nature of the substituents on the phenyl ring does not
significantly influence the reactions (entries 1–3 and 10–
19), and (4) the reaction system is tolerant of many func-
tional groups, such as halides, trifluoromethyl, methoxy,
and terminal alkynes.

Figure 1 Molecular structure of 4aa

It is noted that an intermediate was always observed by
NMR analysis of the reaction of propargylamine with a
carbodiimide when it was heated at 90 °C for a few hours.
To gain some insight into the reaction pathway, attempts
to separate the intermediate were made. Interaction of 2a
with 3c in the presence of 5 mol% 1 at 90 °C for three
hours gave, after flash column chromatographic separa-
tion, the guanidinoalkyne 5ac in 76% isolated yield
(Scheme 2). With this compound in hand, two parallel re-
actions (5ac in C6D6 vs. 5ac with 5 mol% 1 in C6D6) were
carried out at 115 °C, which were closely monitored by 1H
NMR analysis. The experimental results showed that no
obvious difference was observed for these two reactions
and both of them resulted in the clean formation of 2-ami-
noimidazole 4ac, indicating that the catalyst might not be
involved in the cyclization step.

Scheme 2 Synthesis and conversion of the intermediate 5ac

Table 1 Metal Complexes in Reaction of 2a with 3aa

Entry Catalyst (5 mol%) Temp (°C) Time (h) Yield (%)b

1 None 115 18 0

2 LiN(TMS)2 115 18 <5

3 NaN(TMS)2 115 18 <5

4 Ti(NMe2)4 115 18 <5

5 Zr(NMe2)4 115 18 <5

6 Hf(NMe2)4 115 18 <5

7 Cp2TiMe2 115 18 <5

8 Cp2ZrMe2 115 18 <5

9 Cp2HfMe2 115 18 <5

10 1 115 18 >95

11 1 115 8 >95

12 1 80 18 ~40

a Reaction conditions: An NMR tube was charged with a C6D6 solu-
tion (0.5 mL) of the catalyst (5 mol%) and ferrocene (internal stan-
dard, 0.05 mmol), to which was added 2a (0.1 mmol) and 3a (0.1 
mmol) in a dry-box. It was heated after the valve was closed.
b NMR yield using ferrocene as the internal standard.
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Table 2 Synthesis of 2-Aminoimidazoles 4 from 2 and 3 
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Given the aforementioned experimental data and the well-
established chemistry of complex 1,8–10 a possible reac-
tion mechanism for this catalytic [3+2] annulation reac-
tion of 2 with 3 is proposed in Scheme 3. The interaction
of 1 with propargylamine 2 yields A, which enters the cat-
alytic cycle.7–10 Insertion of carbodiimide 3 into the Ti–N
bond in A leads to the formation of guanidinate complex
B.7,8,10 Reaction between B and propargylamine 2 releases
the guanidinoalkyne 5, regenerating A to complete the
catalytic cycle.8,10 The guanidinoalkyne 5 cyclizes in a 5-
exo-dig pattern to afford 2-aminoimidazole derivative
4¢.15 When a primary amine was used as the starting mate-
rial (R3 = H), isomerization of 4¢ gives 2-aminoimidazole
4, which is driven by the formation of an aromatic system.
On the basis of the availability of only one active Ti–N
bond in 1, and the fact that the reaction of 1 with primary/
secondary amines produces Ti amide (instead of Ti imido)
species,7–10 the involvement of Ti=N can be ruled out.

In summary, we have developed a new methodology for
the synthesis of 2-aminoimidazoles in good to excellent
yields from propargylamines and carbodiimides via [3+2]
annulation in the presence of a catalytic amount of the ti-
tanacarborane monoamide. A possible reaction mecha-
nism, involving the hydroamination of carbodiimides and
the cyclization of guanidinoalkynes, is proposed after the
isolation and characterization of the intermediate.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Scheme 3 Proposed reaction mechanism
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