Synthesis of Aromatic Compounds Using Combinations of Ring-Closing Olefin Metathesis, Dehydration, Oxidation, and Tautomerization

Kazuhiro Yoshida,* Takeharu Toyoshima, and Tsuneo Imamoto*

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522

Received May 21, 2008; E-mail: kyoshida@faculty.chiba-u.jp, imamoto@faculty.chiba-u.jp

An approach to aromatic compounds using combinations of ring-closing olefin metathesis (RCM), dehydration, oxidation, and tautomerization is reported. The RCM reaction of 1,7-diene-3,5-diols, which were readily prepared by the allylation of aldol products, gave corresponding cyclized products, 4-cyclohexene-1,3-diols, in high yields. The subsequent dehydration or oxidation of 4-cyclohexene-1,3-diols led to versatile substituted benzenes including phenol and resorcinol derivatives.

One important aspect of modern organic chemistry is the development of highly regioselective methods for the synthesis of substituted aromatic compounds.¹ Electrophilic aromatic substitution is considered to be one of the most powerful and general methods for the synthesis of aromatic compounds in industry as well as in the laboratory. However, one weak point of this method is its lack of regioselectivity. Unless there is structural bias, the synthesis often gives a mixture of regioisomers. One possible solution to this problem is the direct construction of aromatic rings from acyclic precursors.² Although the preparation of acyclic precursors usually requires several steps, this approach has an advantage to enable perfect regioselective access to the desired aromatic compounds. Recently, the construction of aromatic rings using ring-closing olefin metathesis (RCM)^{3,4} has emerged as an interesting and efficient method in this field.⁵⁻⁷ We also have reported that RCM/dehydration and RCM/tautomerization are valuable processes for the synthesis of benzene and phenol derivatives (eqs 1 and 2).⁸ However, from a practical viewpoint, these processes have a limitation: the selective construction of an internal cis double bond is required to obtain the acyclic precursors.

Very recently, we proposed a facile and improved route to phenol derivatives, as outlined in one part of Scheme 1 (route 1–2–3–4–5).⁹ In this strategy, phenol derivatives 5 were synthesized by sequential dehydration and tautomerization of key intermediates 4, after cyclization of 5-hydroxy-1,7-octadien-3-ones 3 that were easily prepared from aldol products 1. Because the double bond constructed by the dehydration of

Scheme 1.

4 has cis configuration, this strategy makes it possible to avoid the requirement of selective synthesis of the internal cis double bond of the acyclic precursors. In the present paper, we report further improvement of this methodology. The main improvement is that the cyclization can now be conducted under mild conditions since 1,7-diene-3,5-diol 2 was chosen as the reactive precursor in preference to 3. First, we describe the cyclization of 2 (route 2-6). Then, we discuss the conversion of 6into phenol (route 6-4-5), benzene (route 6-7), and resorcinol (route 6-4-8).

Results and Discussion

Electron-deficient dienic systems are known to be weakly reactive in RCM reactions.¹⁰ In this regard, high reaction temperatures (40 to 100 °C) were required to achieve complete conversion in most of the RCM reactions of 3 into 4 in our previous study.9 Therefore, we started this investigation with the

	HO R ³ F	R ² OH R ¹ 9 (7.5 CH Temp 2	mol%) 2Cl ₂ 5., 2 h	$\begin{array}{c} OH \\ R^2 \\ HO \\ R^3 \\ R^4 \end{array} \\ R^4 \end{array}$	1		Ph	
Entry	Substrate	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Temp.	Yield ^{b)} /%
1	2a	Н	Me	Et	Н	Н	rt	90 (6a)
2	2b	Me	Н	Н	Me	Н	rt	80 (6b)
3	2c	Me	Н	$4-ClC_6H_4$	Н	Н	rt	82 (6c)
4	2d	CH ₂ OSiMe ₂ ^t Bu	Н	Me	Н	Н	rt	>99 (6d)
5	2e	Н	Н	Ph	Н	Me	rt	86 (6e) ^{c)}
6	2f	Н	Н	Н	Н	CH ₂ OBn	40 °C	54 (6f)

Table 1. Synthesis of 4-Cyclohexene-1,3-diols 6 by Ruthenium-Catalyzed Ring-Closing Olefin Metathesis^a)

a) Reactions were carried out with 1,7-diene-3,5-diol **2** and ruthenium catalyst **9** (7.5 mol %) in CH₂Cl₂ for 2 h. b) Isolated yield by silica gel chromatography. c) When the amount of catalyst **9** was decreased to 2.5 mol %, the isolated yield of **6e** was decreased to 40%.

RCM reaction of 2, which does not have electron-deficient alkene moieties. The route including cyclization of 2, followed by oxidation of 6, seemed to be the most practical.

The results of the RCM reaction of **2** are listed in Table 1. In most cases, the RCM of **2** with Grubbs' second-generation catalyst **9**¹¹ proceeded well to afford cyclized products **6**. Irrespective of the formation of disubstituted or trisubstituted double bond, the RCM reaction was completed in 2 h at room temperature. An exception was found with substrate **2f** having a benzyloxymethyl group as the R⁵ substituent, which was cyclized at high temperature (40 °C) into **6f** in moderate yield (54%). This result is ascribed to the competitive isomerization of the allylic olefin of **2f** to produce a significant amount of the by-product, 7-benzyloxymethyl-5-hydroxy-7-octen-3-one.¹²

The RCM reaction of 2g was compared with that of 3gunder the same conditions (15 °C, 2 h) to determine the difference in reactivities between 2 and 3 (Scheme 2). As a result, incomplete conversion in the reaction of 3g gave corresponding cyclic product 4g only in 21% yield as predicted, whereas a high yield (85%) of 6g was obtained from 2g.

We next examined the conversion of 6 into phenol derivatives 5. Table 2 summarizes the results of the partial oxidation of 6 at allylic alcohol position and the dehydration of 4 to form 5. Several oxidizing agents, such as Dess-Martin periodinane, MnO₂, or PCC, could be used for the oxidation of **6**. The reactions proceeded well in most cases, but only the best results are selected for entry in Table 2.¹³ For the following dehydration, we employed a catalytic amount of *p*-toluenesulfonic acid as Brønsted acid catalyst, and phenol derivatives **5** were obtained in high yields. In the case of **4d** that has an acid-sensitive silyl ether, basic conditions (mesylation of the hydroxy group with *t*-BuOK, followed by elimination) were required to retain the silyl group (Table 2, Entry 4).¹⁴

It is possible to perform the conversion of 2 into 4 sequentially without the isolation of 6. As shown in Scheme 3, RCM reactions of 2h and 2i, followed by sequential oxidation with PCC, gave good yields of 4h and 4i, respectively.¹⁵ Treatment of 4h with *p*-toluenesulfonic acid led to aromatization to give corresponding phenol 5h quantitatively. On the other hand, the same process for 4i resulted in isomerization of the carbon– carbon double bond from terminal to internal at R^3 position. Therefore, basic conditions (*t*-BuOK, MsCl) were applied to 4i to obtain 5i.

4-Cyclohexene-1,3-diols **6** are promising intermediates because the sequential dehydrations process of **6** affords benzene derivatives **7** and the sequential oxidations process of **6** at the two hydroxy groups affords resorcinol derivatives **8**, as outlined in one part of Scheme 1. In fact, the dehydration of **6** with *p*toluenesulfonic acid proceeded smoothly to give corresponding benzene derivatives **7** (Table 3). Moreover, it was also proved that a combination of Dess–Martin and Swern oxidations of **6f** afforded resorcinol derivative **8f** via **4f** (Scheme 4).^{16,17}

Conclusion

We have presented an efficient method for the production of aromatic compounds from acyclic precursors. The key step was the RCM reaction of 2 to form 6. The choice of 2 as the precursor, instead of less reactive intermediate 3 having electron-deficient olefin, rendered the RCM reaction conditions milder. The formation of a variety of products (benzene, phenol, and resorcinol), which is attributed to the diversity of the transformations of 6, and no formation of inseparable regioisomers are proof of the versatility of this method for the synthesis of aromatic compounds.

Table 2. Synthesis of 5-Hydroxy-2-cyclohexenones 4 by Oxidation of 6^{a} and Synthesis of Phenol Derivatives 5 by Dehydration of 4^{b}

		$\begin{array}{c} OH \\ R^2 \\ HO \\ R^3 \\ R^4 \end{array} \\ R^5 - $	[O] rt	HO = HO = HO	R ¹ p-	$\begin{array}{c} \text{OH} \\ \hline \text{IsOH} (10 \text{ mol\%}) \\ \hline \text{benzene} \\ 70 \ ^{\circ}\text{C} \\ \end{array} \begin{array}{c} \text{R}^2 \\ \text{R}^3 \\ \text{R}^4 \\ \end{array} \begin{array}{c} \text{OH} \\ \text{R}^1 \\ \text{R}^5 \\ \text{R}^4 \end{array}$			
		6		4		5			
Entry	Substrate	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Oxidant	Yield ^{c)} /%	Yield ^{c)} /%
1	6a	Н	Me	Et	Н	Н	DMP	98 (4a)	85 (5a)
2	6b	Me	Н	Н	Me	Н	MnO_2	86 (4b)	>99 (5b)
3	6c	Me	Н	$4-ClC_6H_4$	Н	Н	PCC	84 (4c)	>99 (5c)
4	6d	CH ₂ OSiMe ₂ ^t Bu	Н	Me	Н	Н	PCC	86 (4d)	88 (5d) ^{d)}
5	6e	Н	Н	Ph	Н	Me	DMP	93 (4e)	>99 (5e)
6	6f	Н	Н	Н	Н	CH ₂ OBn	DMP	85 (4f)	90 (5f)
7	6g	Н	Me	Ph	Н	Me	PCC	97 (4g)	97 (5g)

a) 4-Cyclohexene-3,5-diol **6** was treated with Dess-Martin periodinane (2.3 equiv), MnO_2 (30 equiv), or PCC (3 equiv). b) A solution of 5-hydroxy-2-cyclohexenone **4** in benzene was treated with *p*-toluenesulfonic acid (*p*-TsOH; 10 mol %) and stirred overnight at 70 °C. c) Isolated yield by silica gel chromatography. d) The reaction was carried out with 5-hydroxy-2-cyclohexenone **4**, *t*-BuOK (4.4 equiv), and MsCl (3.2 equiv) in CH₂Cl₂ at rt for 2.5 h.

Scheme 3.

Table 3. Synthesis of Benzene Derivatives **7** by Dehydration of **6**^a)

		$ \begin{array}{c} $	<i>p</i> -TsOH (10 mo benzene 70 °C	I%) F → F	$ \begin{array}{c} H \\ R^{2} \\ R^{3} \\ R^{4} \\ 7 \end{array} $		
Entry	Substrate	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Yield ^{b)} /%
1	6c	Me	Н	$4-ClC_6H_4$	Н	Н	>99 (7c)
2	6d	CH ₂ OSiMe ₂ ^t Bu	Н	Me	Н	Н	73 (7d) ^{c)}
3	6e	Н	Н	Ph	Н	Me	91 (7e)
4	6g	Н	Me	Ph	Н	Me	>99 (7g)

a) A solution of 4-cyclohexene-1,3-diol **6** in benzene was treated with *p*-toluenesulfonic acid (*p*-TsOH; 10 mol %) and stirred overnight at 70 °C. b) Isolated yield by silica gel chromatography. c) Desilylated product.

Experimental

General. All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen or glove box techniques under prepurified argon. NMR spectra were recorded on a JEOL JNM LA-500 spectrometer (500 MHz for ¹H and 125 MHz for ¹³C) and LA-400 spectrometer

(400 MHz for ¹H and 100 MHz for ¹³C). Chemical shifts are reported in δ referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-*d* (δ 77.0) for ¹³C NMR.

Materials. THF was distilled from sodium benzophenoneketyl under argon prior to use. Et_2O was distilled from sodium benzophenone-ketyl under argon prior to use. Dichloromethane was distilled from CaH₂ under nitrogen and stored in a glass

Scheme 4.

flask with a Teflon stopcock under nitrogen. Ruthenium complex (PCy₃)(Imes)Cl₂Ru=C(H)Ph (**9**) was prepared according to reported procedures.^{11b} 1,7-Octadiene-3,5-diols **2** were prepared according to reported procedures.⁹ Dess–Martin periodinane,¹⁸ and activated MnO_2^{19} were prepared according to reported procedures. Pyridinium chlorochromate, *p*-toluenesulfonic acid were used as received.

Preparation of 4-Cyclohexene-1,3-diols 6. General Procedure A: To a solution of 1,7-octadiene-3,5-diol 2 (0.16 mmol) in CH_2Cl_2 (15.5 mL, 0.01 M) was added 7.5 mol% catalyst 9 (0.012 mmol) in one portion under nitrogen at room temperature. After stirring for 2 h, the reaction mixture was concentrated under reduced pressure and purified by PTLC on silica gel to give 4-cyclohexene-1,3-diols 6.

1-Ethyl-2-methyl-4-cyclohexene-1,3-diol (6a): The reaction was carried out according to General Procedure A; purified by PTLC (hexane/EtOAc = 1/1) (diastereomeric mixture: 90% yield); Two of the diastereomers (0.50/0.50) were separated to clarify the spectral characterization. ¹H NMR (CDCl₃): δ 0.83 (d, J = 6.8 Hz, 1.5H), 0.90 (t, J = 7.6 Hz, 1.5H), 0.94 (t, J = 7.6 Hz, 1.5H), 1.10 (d, J = 6.8 Hz, 1.5H), 1.42 (br s, 1.0H), 1.50–1.60 (m, 3.0H), 1.67 (br s, 1.0H), 1.89–2.16 (m, 1.5H), 2.28 (dq, J = 18.3, 2.5 Hz, 0.5H), 3.97–4.03 (m, 0.5H), 4.63–4.69 (br m, 0.5H), 5.59–5.79 (m, 2.0H). ¹³C NMR (CDCl₃): δ 6.45, 8.02, 9.13, 10.56, 32.29, 32.57, 35.07, 36.40, 41.04, 43.44, 68.33, 71.78, 74.26, 75.10, 125.27, 125.65, 129.51, 130.46. HRMS (FAB) calcd for C₉H₁₅O (M⁺ – OH) 139.1123, found 139.1120.

4,6-Dimethyl-4-cyclohexene-1,3-diol (6b): The reaction was carried out according to General Procedure A; purified by PTLC (hexane/EtOAc = 1/1) (diastereomeric mixture: 80% yield); The following data are for a mixture of two diastereomers (0.50/0.50). ¹H NMR (CDCl₃): δ 0.98 (d, J = 7.3 Hz, 1.5H), 1.11 (d, J = 7.1 Hz, 1.5H), 1.70–1.83 (m, 3.0H), 1.78 (s, 3.0H), 2.00–2.15 (m, 1.5H), 2.41 (br m, 0.5H), 3.55–3.62 (m, 0.5H), 4.08–4.13 (m, 1.0H), 4.18–4.22 (m, 0.5H), 5.26–5.28 (m, 0.5H), 5.32–5.35 (m, 0.5H). ¹³C NMR (CDCl₃): δ 14.70, 18.51, 20.24, 20.56, 35.50, 37.70, 39.67, 40.53, 67.98, 68.90, 69.68, 70.33, 128.86, 129.90, 134.25, 134.60. HRMS (FAB) calcd for C₈H₁₃O (M⁺ – OH) 125.0966, found 125.0967.

1-(4-Chlorophenyl)-4-methyl-4-cyclohexene-1,3-diol (6c): The synthesis of **6c** was already reported in our previous communication.⁹

4-(*tert*-Butyldimethylsilanyloxymethyl)-1-methyl-4-cyclohexene-1,3-diol (6d): The reaction was carried out according to General Procedure A; purified by PTLC (hexane/EtOAc = 1/1) (diastereomeric mixture: >99% yield); The following data are for a mixture of two diastereomers (0.75/0.25). ¹H NMR (CDCl₃): δ 0.10–0.11 (m, 6.0H), 0.91 (s, 2.25H), 0.91 (s, 6.75H), 1.29 (s, 0.75H), 1.34 (s, 2.25H), 1.68 (dd, *J* = 13.2, 8.1 Hz, 1.5H), 1.70– 1.73 (m, 0.5H), 2.05–2.15 (m, 2.0H), 2.21–2.35 (m, 1.0H), 3.28–3.32 (m, 0.75H), 3.66–3.68 (m, 0.25H), 3.93–3.96 (m, 0.25H), 4.20–4.38 (m, 2.0H), 4.54–4.60 (m, 0.75H), 5.58–5.63 (m, 0.75H), 5.68–5.73 (m, 0.25H). 13 C NMR (CDCl₃): δ –5.50, –5.48, –5.44, –5.42, 18.16, 18.20, 25.82, 29.88, 29.98, 39.52, 39.83, 40.80, 44.26, 66.71, 66.81, 67.47, 67.63, 68.38, 69.91, 122.67, 123.88, 136.25, 137.33. HRMS (FAB) calcd for C₁₄H₂₇O₂Si (M⁺ – OH) 255.1780, found 255.1788.

5-Methyl-1-phenyl-4-cyclohexene-1,3-diol (6e): The reaction was carried out according to General Procedure A; purified by PTLC (hexane/EtOAc = 1/1) (86% yield); One of the diastereomers of **2e** was used for this reaction. ¹H NMR (CDCl₃): δ 1.46 (d, J = 5.5 Hz, 1H), 1.77 (s, 3H), 1.85 (s, 1H), 1.99 (dd, J = 12.9, 8.9 Hz, 1H), 2.19 (d, J = 18.2 Hz, 1H), 2.34 (dd, J = 13.0, 6.2 Hz, 1H), 2.51 (d, J = 18.2 Hz, 1H), 4.55–4.65 (m, 1H), 5.62 (s, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃): δ 23.12, 43.60, 44.84, 66.71, 74.02, 124.43, 124.83, 127.23, 128.44, 134.01, 147.39. HRMS (FAB) calcd for C₁₃H₁₅O (M⁺ – OH) 187.1123, found 187.1118.

5-Benzyloxymethyl-4-cyclohexene-1,3-diol (6f): The reaction was carried out according to General Procedure A; purified by PTLC (hexane/EtOAc = 1/4) (diastereomeric mixture: 54% yield); The following data are for a mixture of two diastereomers (0.50/0.50). ¹H NMR (CDCl₃): δ 1.78–1.82 (m, 0.5H), 1.93–2.07 (m, 1.5H), 2.15–2.43 (m, 2.5H), 2.52 (dd, *J* = 16.4, 8.6 Hz, 0.5H), 2.62 (dd, *J* = 17.6, 4.2 Hz, 0.5H), 2.73 (dd, *J* = 16.1, 3.4 Hz, 0.5H), 3.96 (s, 1.0H), 4.12 (s, 1.0H), 4.23–4.37 (m, 2.0H), 4.51 (s, 1.0H), 4.57 (s, 1.0H), 5.92–5.95 (m, 0.5H), 6.21–6.23 (m, 0.5H), 7.28–7.40 (m, 5.0H). ¹³C NMR (CDCl₃): δ 34.72, 35.07, 37.62, 39.73, 64.00, 64.80, 65.01, 65.47, 72.14, 72.28, 73.37, 73.66, 125.37, 126.14, 127.67, 127.72, 127.76, 127.83, 128.37, 128.45, 134.19, 136.08, 137.98, 137.99. HRMS (FAB) calcd for C₁₄H₁₇O₂ (M⁺ – OH) 217.1229, found 217.1230.

2,5-Dimethyl-1-phenyl-4-cyclohexene-1,3-diol (6g): The reaction was carried out according to General Procedure A; purified by PTLC (hexane/EtOAc = 1/1) (diastereomeric mixture: >99% yield); One of the diastereomers was separated to clarify the spectral characterization. ¹H NMR (CDCl₃): δ 0.84 (d, J = 6.8 Hz, 3H), 1.56 (br s, 1H), 1.73 (s, 3H), 1.85 (s, 1H), 2.01 (dq, J = 8.6, 6.8 Hz, 1H), 2.12 (d, J = 18.2 Hz, 1H), 2.61 (d, J = 18.2 Hz, 1H), 4.07–4.14 (m, 1H), 5.59 (s, 1H), 7.25 (tt, J = 7.4, 1.6 Hz, 1H), 7.36 (dd, J = 8.3, 7.4 Hz, 2H), 7.43 (dd, J = 8.3, 1.6 Hz, 2H). ¹³C NMR (CDCl₃): δ 11.69, 22.96, 44.76, 46.93, 72.50, 76.82, 124.64, 124.84, 126.65, 128.29, 133.73, 146.03. HRMS (FAB) calcd for C₁₄H₁₇O (M⁺ – OH) 201.1279, found 201.1269.

Preparation of 5-Hydroxy-2-cyclohexenones 4. General Procedure B: To a solution of **6** (0.0588 mmol) in CH_2Cl_2 (1.1 mL) was added Dess–Martin periodinane (0.135 mmol) in one portion under air. The reaction mixture was stirred for 3 h at room temperature. After removal of the solvent in vacuo, the residue was passed through a short silica gel pad (eluent: Et_2O). The solution was concentrated under reduced pressure and purified by PTLC on silica gel to give 5-hydroxy-2-cyclohexenone **4**. General Procedure C: To a solution of 6 (0.136 mmol) in hexane (5.0 mL) was added MnO_2 (4.07 mmol) in one portion under air. The reaction mixture was stirred for 37 h at room temperature and passed through Celite. The residue was washed with CH_2Cl_2 thoroughly. The filtrate was concentrated under reduced pressure and purified by PTLC on silica gel to give 5-hydroxy-2-cyclohexenone 4.

General Procedure D: To a mixture of **6** (0.128 mmol) and molecular sieve 4 Å (powder, 135 mg) in CH₂Cl₂ (4.0 mL) was added PCC (0.383 mmol) under air. After stirring for 3.5 h at room temperature, the reaction mixture was filtered through Celite, concentrated under reduced pressure, and purified by PTLC on silica gel to give 5-hydroxy-2-cyclohexenone **4**.

General Procedure E: To a solution of 1,7-octadiene-3,5-diol 2 (0.169 mmol) in CH₂Cl₂ (16.9 mL) was added 7.5 mol % catalyst 9 (0.0127 mmol) in one portion under nitrogen at room temperature. After stirring for 2 h, the reaction mixture was concentrated under reduced pressure. To a mixture of the residue and molecular sieve 4 Å (powder, 178.5 mg) in CH₂Cl₂ (5.0 mL) was added PCC (0.506 mmol). After stirring for 3.5 h, the reaction mixture was filtered through Celite, concentrated under reduced pressure, and purified by PTLC on silica gel to give 5-hydroxy-2-cyclohexenone 4.

5-Ethyl-5-hydroxy-6-methyl-2-cyclohexenone (4a): The reaction was carried out according to General Procedure B and purified by PTLC (hexane/EtOAc = 1/1) (98% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

5-Hydroxy-2,4-dimethyl-2-cyclohexenone (4b): The reaction was carried out according to General Procedure C and purified by PTLC (hexane/EtOAc = 1/1) (86% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

5-(4-Chlorophenyl)-5-hydroxy-2-methyl-2-cyclohexenone (4c): The reaction was carried out according to General Procedure D and purified by PTLC (hexane/EtOAc = 1/1) (84% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

2-(tert-Butyldimethylsilanyloxymethyl)-5-hydroxy-5-methyl-2-cyclohexenone (4d): The reaction was carried out according to General Procedure D and purified by PTLC (hexane/ EtOAc = 1/1) (86% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

5-Hydroxy-3-methyl-5-phenyl-2-cyclohexenone (4e): The reaction was carried out according to General Procedure B and purified by PTLC (hexane/EtOAc = 1/2) (93% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

3-Benzyloxymethyl-5-hydroxy-2-cyclohexenone (4f): The reaction was carried out according to General Procedure B and purified by PTLC (hexane/EtOAc = 1/1) (85% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

5-Hydroxy-3,6-dimethyl-5-phenyl-2-cyclohexenone (4g): The reaction was carried out according to General Procedure D and purified by PTLC (hexane/EtOAc = 1/1) (97% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

6-Hydroxy-3-methylbicyclo[4,4,0]-3-decen-2-one (4h): The reaction was carried out according to General Procedure E and purified by PTLC (hexane/EtOAc = 1/1) (64% yield); This product

was characterized by comparison of the spectroscopic data with those reported previously.⁹

5-Hydroxy-3-methyl-5-(2-methylallyl)-2-cyclohexenone (4i): The reaction was carried out according to General Procedure E and purified by PTLC (hexane/EtOAc = 1/1) (65% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.⁹

Preparation of Phenol Derivatives 5. The synthesis of **5** from **4** was already reported in our previous communication.⁹

Preparation of Benzene Derivatives 7. General Procedure F: To a solution of 4-cyclohexene-1,3-diol **6** (0.0558 mmol) in benzene (1.0 mL) was added *p*-toluenesulfonic acid (0.00558 mmol) at room temperature under air. The reaction mixture was warmed to $70 \,^{\circ}$ C and stirred overnight. The resulting mixture was concentrated under reduced pressure and purified by PTLC on silica gel to give benzene derivative **7**.

4-Chloro-4'-methylbiphenyl (7c): The reaction was carried out according to General Procedure F and purified by PTLC (hexane/EtOAc = 4/1) (>99% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.²⁰

p-Tolylmethanol (7d): The reaction was carried out according to General Procedure F and purified by PTLC (hexane/EtOAc = 10/1) (73% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.²¹

3-Methylbiphenyl (7e): The reaction was carried out according to General Procedure F and purified by PTLC (hexane only) (91% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.²²

2,5-Dimethylbiphenyl (7g): The reaction was carried out according to General Procedure F and purified by PTLC (hexane only) (86% yield); This product was characterized by comparison of the spectroscopic data with those reported previously.²³

Preparation of 5-Benzyloxymethyl-1,3-benzenediol (8f). The synthesis of **8f** from **4f** was already reported in our previous communication.⁹

We appreciate the financial support from the Sumitomo Foundation, the Mitsubishi Chemical Corporation Fund, the Research for Promoting Technological Seeds from JST, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information

¹H NMR and ¹³C NMR spectra of new compounds, and ¹H NMR spectra of known compounds. This material is available free of charge on the Web at: http://www.csj.jp/journals/bcsj/.

References

1 For a comprehensive review, see: *Modern Arene Chemistry*, ed. by D. Astruc, Wiley-VCH, Weinheim, **2002**.

 For example, see: a) R. L. Danheiser, S. K. Gee, J. Org. Chem. 1984, 49, 1672. b) P. Turnbull, H. W. Moore, J. Org. Chem. 1995, 60, 644. c) T. Takahashi, Z. Xi, A. Yamazaki, Y. Liu, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 1998, 120, 1672. d) K. H. Dötz, P. Tomuschat, Chem. Soc. Rev. 1999, 28, 187. e) A. R. Katritzky, J. Li, L. Xie, Tetrahedron 1999, 55, 8263. f) S. Saito, Y. Yamamoto, Chem. Rev. 2000, 100, 2901. g) D. Suzuki, H. Urabe, F. Sato, J. Am. Chem. Soc. 2001, 123, 7925. h) C. B. de Koning, A. L. Rousseau, W. A. L. van Otterlo, Tetrahedron 2003, 59, 7. i) Y. Yamamoto, T. Arakawa, R. Ogawa,
K. Itoh, J. Am. Chem. Soc. 2003, 125, 12143. j) T. Shibata, T.
Fujimoto, K. Yokota, K. Takagi, J. Am. Chem. Soc. 2004, 126, 8382. k) X. Bi, D. Dong, Q. Liu, W. Pan, L. Zhao, B. Li, J. Am. Chem. Soc. 2005, 127, 4578. l) N. Asao, Synlett 2006, 1645. m) K. Tanaka, T. Osaka, K. Noguchi, M. Hirano, Org. Lett. 2007, 9, 1307. n) S. Serra, C. Fuganti, E. Brenna, Chem.—Eur. J. 2007, 13, 6782. o) M. Gayral, J. M. Brown, Synlett 2007, 2823.

3 For a comprehensive review, see: a) Handbook of Metathesis, ed. by R. H. Grubbs, Wiley-VCH, Weinheim, 2003. For reviews, see: b) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413. c) A. Fürstner, Angew. Chem. 2000, 112, 3140; Angew. Chem., Int. Ed. Engl. 2000, 39, 3012. d) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18. e) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243.

4 For reports on the pharmaceutical application of RCM in multi-kilogram scale (>400 kg of cyclized product), see: a) T. Nicola, M. Brenner, K. Donsbach, P. Kreye, *Org. Process Res. Dev.* **2005**, *9*, 513. b) N. K. Yee, V. Farina, I. N. Houpis, N. Haddad, R. P. Frutos, F. Gallou, X.-j. Wang, X. Wei, R. D. Simpson, X. Feng, V. Fuchs, Y. Xu, J. Tan, L. Zhang, J. Xu, L. L. Smith-Keenan, J. Vitous, M. D. Ridges, E. M. Spinelli, M. Johnson, K. Donsbach, T. Nicola, M. Brenner, E. Winter, P. Kreye, W. Samstag, *J. Org. Chem.* **2006**, *71*, 7133. c) Y. S. Tsantrizos, J.-M. Ferland, A. McClory, M. Poirier, V. Farina, N. K. Yee, X.-j. Wang, N. Haddad, X. Wei, J. Xu, L. Zhang, *J. Organomet. Chem.* **2006**, *691*, 5163.

5 For a review, see: T. J. Donohoe, A. J. Orr, M. Bingham, *Angew. Chem.* **2006**, *118*, 2730; *Angew. Chem., Int. Ed. Engl.* **2006**, *45*, 2664.

6 For reports on the direct synthesis of carbocyclic aromatic compounds using RCM, see: a) A. Iuliano, P. Piccioli, D. Fabbri, Org. Lett. 2004, 6, 3711. b) E. R. Walker, S. Y. Leung, A. G. M. Barrett, Tetrahedron Lett. 2005, 46, 6537. c) M. C. Bonifacio, C. R. Robertson, J.-Y. Jung, B. T. King, J. Org. Chem. 2005, 70, 8522. d) S. C. Pelly, C. J. Parkinson, W. A. L. van Otterlo, C. B. de Koning, J. Org. Chem. 2005, 70, 10474. e) S. K. Collins, A. Grandbois, M. P. Vachon, J. Côté, Angew. Chem. 2006, 118, 2989; Angew. Chem., Int. Ed. 2006, 45, 2923. For reports using RCM/elimination protocol, see: f) P. Evans, R. Grigg, M. I. Ramzan, V. Sridharan, M. York, Tetrahedron Lett. 1999, 40, 3021. g) K. S. Huang, E. C. Wang, Tetrahedron Lett. 2001, 42, 6155. h) Y. Chen, H. V. R. Dias, C. J. Lovely, Tetrahedron Lett. 2003, 44, 1379. i) P.-Y. Chen, H.-M. Chen, L.-Y. Chen, J.-Y. Tzeng, J.-C. Tsai, P.-C. Chi, S.-R. Li, E.-C. Wang, Tetrahedron 2007, 63, 2824. For reports using RCM/oxidation protocol, see: j) S. Kotha, K. Mandal, Tetrahedron Lett. 2004, 45, 2585. k) S. Ma, F. Yu, J. Zhao, Synlett 2007, 583. 1) S. Kotha, V. R. Shah, K. Mandal, Adv. Synth. Catal. 2007, 349, 1159. For a report using RCM/tautomerization protocol, see: m) W. A. L. van Otterlo, E. L. Ngidi, E. M. Coyanis, C. B. de Koning, Tetrahedron Lett. 2003, 44, 311.

7 For selected recent reports on the synthesis of heterocyclic aromatic compounds using RCM, see: a) M. Arisawa, A. Nishida,

M. Nakagawa, J. Organomet. Chem. 2006, 691, 5109. b) T. J. Donohoe, N. M. Kershaw, A. J. Orr, K. M. P. Wheelhouse, L. P. Fishlock, A. R. Lacy, M. Bingham, P. A. Procopiou, Tetrahedron 2008, 64, 809.

8 a) K. Yoshida, T. Imamoto, J. Am. Chem. Soc. 2005, 127, 10470. b) K. Yoshida, F. Kawagoe, N. Iwadate, H. Takahashi, T. Imamoto, Chem. Asian J. 2006, 1, 611. c) K. Yoshida, S. Horiuchi, N. Iwadate, F. Kawagoe, T. Imamoto, Synlett 2007, 1561. d) K. Yoshida, Y. Shishikura, H. Takahashi, T. Imamoto, Org. Lett. 2008, 10, 2777.

9 K. Yoshida, T. Toyoshima, T. Imamoto, *Chem. Commun.* 2007, 3774.

10 a) J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem., Int. Ed. 2002, 41, 4035. b) A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 11360. c) A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen, O. Kataoka, S. B. Garber, J. S. Kingsbury, J. P. A. Harrity, Org. Biomol. Chem. 2004, 2, 8.

11 a) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, *Org. Lett.* **1999**, *1*, 953. b) T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E. Wilhelm, M. Scholl, T.-L. Choi, S. Ding, M. W. Day, R. H. Grubbs, *J. Am. Chem. Soc.* **2003**, *125*, 2546.

12 For a discussion on the mechanism of olefin isomerization in metathesis reactions, see: C. D. Edlin, J. Faulkner, D. Fengas, C. K. Knight, J. Parker, I. Preece, P. Quayle, S. N. Richards, *Synlett* **2005**, 572.

13 It must be noted that two-step yields of 4 from 2 via 6 were better than those via 3 with the exception of the special case of 4f, see: Ref. 9.

14 The mesylated phenol was obtained under the conditions.

15 The reason why we chose 2h and 2i as substrates to investigate these sequential experiments is that we observed that both intermediates 6h and 6i were somewhat unstable to isolation.

16 Attempts to obtain **8f** from **6f** at once were unsuccessful. For example, Swern oxidation of **6f** gave a mixture of **4f**, **5f** (major), and **8f**.

17 The cyclized product **6b** is also a potential precursor of resorcinol derivative. However, the synthesis of **8b** from **6b** was unfortunately unsuccessful. Although we have screened various oxidation conditions, the formation of phenol derivative **5b** preferentially occurred.

18 a) R. E. Ireland, L. Liu, J. Org. Chem. 1993, 58, 2899.
b) R. K. Boeckman, Jr., P. Shao, J. J. Mullins, Org. Synth. 2000, 77, 141.

19 J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, T. Walker, *J. Chem. Soc.* **1952**, 1094.

20 Z. Xiong, N. Wang, M. Dai, A. Li, J. Chen, Z. Yang, *Org. Lett.* **2004**, *6*, 3337.

21 M. S. Abaee, R. Sharifi, M. M. Mojtahedi, *Org. Lett.* **2005**, 7, 5893.

22 T. Chen, J. Gao, M. Shi, Tetrahedron 2006, 62, 6289.

23 D. Liu, W. Gao, Q. Dai, X. Zhang, Org. Lett. 2005, 7, 4907.