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ABSTRACT
Here, we have developed a 3-component one-pot sequential
approach to 3-substituted indoles. The main advantages of this pro-
cess are step economy, reduced waste, and operational simplicity.
The method involves in situ generation of 3-indolylalcohols from the
reaction of indoles and aldehydes in the presence of base. Further,
nucleophilic substitution of 3-indolylalcohols with various nucleo-
philes affords 3-substituted indole derivatives. The reaction does not
requires any hazardous and expensive metal catalyst. In addition, the
reaction is carried out in (1:1) ethanol–water which is considered as
environmentally benign solvent. On the other hand, nonsequential 3-
component reaction results in the formation of unwanted bisindolyl-
methanes.
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Introduction

Sequential transformation is one of the most powerful tools in modern day synthetic
organic chemistry owing to its step economy.[1–3] Contrary to the traditional stepwise
approach, this method offers easier access to the more complex molecules from simple
and easily available starting materials. Some of the important examples of this method
include cascade,[4,5] domino,[6–8] and tandem reactions.[9,10] Different reactions knitted
into a sequence using one-pot process and multiple reagents and catalyst afford structur-
ally complex molecules. Over the years multicomponent reactions (MCRs) have gained
attention due to atom economy and found applications in combinatorial chemistry and
diversity-oriented synthesis.[11–16] Numerous pharmaceuticals and natural products were
synthesized through MCRs. The interest has also increased due to the replacement of
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hazardous solvents with environment friendly solvents such as water, ethanol,
PEG, etc.[17,18]

Nitrogen containing heterocyles are known to have wide biological activity. Indole
derivatives are most important and naturally found in plants,[19] fungi,[20] and marine
organism.[21] They also exhibit several pharmacological activities,[22–24] act as free radical
scavengers and show a broad spectrum of antioxidant activity.[25–27] Furthermore, the
indole nucleus plays a vital component in several drugs. 3-Substituted indoles are versatile
intermediates for the synthesis of a wide range of indole compounds.[28–30] For example,
some bioactive 3-substituted indole derivatives are shown in Figure 1. Arvelexin [A]
shows potent activity against influenza virus A (H3N2).[31] Indolomycin [B] is a potent
antibacterial drug which is effective against Staphylococcus aureus and Helicobacter
pyroli.[32] 3-(a,a-Diarylmethyl)indole [C] which was synthesized in our laboratory is
found to be active against Methicillin-resistant S. aureus bacteria.[33] Indole-3-carbinol
has anticancer activity in many types of human prostate cancer cells.[34]

Results and discussions

The compounds in Figure 1 show excellent biological activities. Inspired by this, we
looked for an efficient method to synthesize such type of 3-substituted indole com-
pounds (see Scheme 1). In the very beginning, we planned to isolate 3-indolylalcohols
from the reaction of indole and aldehydes in the presence of a base in order to utilize
them as electrophiles. However, due to low stability of 3-indolylalcohols, we could not
isolate it. Therefore, it was decided to perform the nucleophilic substitution of 3-indoly-
lalcohols generated in situ from the 3-component reaction of indoles, aldehydes, and vari-
ous nucleophiles. We attempted to synthesize compound 4a by using our reported
method.[35] But we obtained bisindolylmethane (BIM). The use of Brønsted or Lewis acids
also offered solely BIM 5a. We then observed that the sequential addition of the substrates
catalyzed by base and acidified by an acid gave us good yield of 4a. Therefore, here we
report a sequential 3-component approach to 4 via 3-indolyl alcohols.
We began our model experiment with the reaction of indole (1a) and benzaldehyde (2a)

in the presence of base catalysts. After a careful screening of variety of bases/acids, we found
that sodium hydroxide (1 equiv) in EtOH–H2O (1:1) as solvent at RT for 2 h and then add-
ing acetic acid (up to pH 5), nucleophile 3-methyl-1-phenyl-1H-pyrazol-5-amine (3a, 1
eqv.) and heating at 90 �C for 1.5 h is the optimum condition for the synthesis of 4a
(Table 1, entry 6). Lowering the NaOH loading decreased the product yield since all the

Figure 1. 3-Substituted indoles having biological activity.
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–NH proton of indole are not abstracted (Table 1, entry 8). On the other hand, increase of
NaOH did not improve the yield due to the increased formation of bisindolylmethane
(Table 1, entry 5). An increase in the ratio of water in the solvent mixture reduced the yield
of 4a (Table 1, entry 7). This is due to the increased formation of bisindolylmethanes.[36]

We also performed the reaction at higher and lower temperature for the second step. But

Table 1. Optimization of the reaction condition.a

Acidification
Temp. (�C) Time (h) Yields (%)

Entry Base (eq) (pH) Solvent 1st step 2nd step 1st step 2nd step 4a 5a

1 NaOH (1.3) HCl (3) EtOH RT 90 2 1.5 – 68
2 NaOH (1.3) HCl (4) EtOH RT 90 2 1.5 – 52
3 NaOH (1.3) HCl (5) DMF RT 90 2 1.5 n.r.b n.r.
4 NaOH (1.3) HCl (5) H2O RT 90 2 1.5 n.d.c 76
5 NaOH (1.3) AcOH (5) EtOH–H2O (1:1) RT 90 2 1.5 80 11
6 NaOH (1.0) AcOH (5) EtOH–H2O (1:1) RT 90 2 1.5 86 5
7 NaOH (1.0) AcOH (5) EtOH–H2O (1:2) RT 90 2 1.5 70 18
8 NaOH (0.7) AcOH (5) EtOH–H2O (1:1) RT 90 2 1.5 51 14
9 NaOH (1.0) AcOH (6) EtOH–H2O (1:1) RT 90 2 1.5 76 16
10 NaOH (1.0) AcOH (5) EtOH–H2O (1:1) RT 100 2 1.5 82 12
11 NaOH (1.0) AcOH (5) EtOH–H2O (1:1) RT 80 2 2 75 10
12 KOH (1.0) AcOH (5) EtOH–H2O (1:1) RT 90 2 1.5 82 8
13 K2CO3 (1.0) AcOH (5) EtOH–H2O (1:1) RT 90 4 1.5 41 22
14 Et3N (1.0) AcOH (5) EtOH–H2O (1:1) RT 90 5 1.5 n.r. n.r.
15 DABCO (1.0) AcOH (5) EtOH–H2O (1:1) RT 90 5 2 n.d. 10
16 Cs2CO3 (1.0) AcOH (5) EtOH–H2O (1:1) RT 90 4 1.5 n.d. 12
17d Cu(OAc)2�H2O (10mol %) EtOH–H2O (1:1) RT 5 – 60
18d FeCl3�6H2O (10mol %) EtOH–H2O (1:1) RT 4 – 68
aReagents and conditions: Indole (1a, 1.0mmol, 117mg), benzaldehyde (2a, 1.0mmol, 106mg), 3-methyl-1-phenyl-1H-
pyrazol-5-amine (3a, 1.0mmol, 173mg). The 1st step was in RT and 2nd step was under heating. Products were puri-
fied by column chromatography and yields are for the isolated products.
bn.r.: no reaction.
cn.d.: not detected.
dThree component reaction using metal catalyst.

Scheme 1. Synthesis of 3-substituted indoles.
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no improvement in the yield was observed (Table 1, entries 10–11). Using stronger acids in
the 2nd step favors bisindolylmethane formation. The KOH is almost as good as NaOH as
base catalyst (Table 1, entry 12). Interestingly, the bases like Et3N, DABCO, and Cs2CO3

did not produce our required product. We further used metal catalysts Cu(OAc)2.H2O and
FeCl3�6H2O for carrying out the reaction using nonsequential 3-component approach
(Table 1, entries 17–18). However, the reaction afforded only bisindolylmethane.
Having identified the optimized conditions, we next investigated the substrate scope

for the synthesis of 4 by subjecting various aldehydes and nucleophilic groups.
When alononitrile and imidazole were used as nucleophile, we obtained relatively less
yield of the product (4g and 4f, Scheme 2). 1,3-Dimethyl-6-aminouracil also produced
good yield (4h, Scheme 2). When N-substituted indoles were taken as nucleophiles we
obtained excellent yield of unsymmetrical bisindolylmethanes (4i and 4l–4o, Scheme 2).
Naphthols also afforded excellent yield of the products (4j–k, Scheme 2). Compounds 4
containing a wide range of substituents were obtained in good to excellent yields, as
summarized in Scheme 2. All the products were characterized by NMR spectroscopy as
well as analyzing X-ray structure of 4d (Figure 2). The compound was crystallized from
1:1 mixture of dichloromethane and petroleum ether by slow evaporation.
A plausible mechanism is proposed for the reaction based on the literature report

(Scheme 3).[37] The N–H proton of indole is abstracted by the base (NaOH) and the
indole anion thus formed attacks the aldehyde to generate the 3-indolylalcohol [X]. In
presence of acid, [X] then gets converted to alkylideneindolenine intermediates [Y].
This intermediate was then attacked by various nucleophiles to give the desired product.
Moreover, the intermediate [Y] also reacts with indole to furnish small amount of sym-
metrical bisindolylmethanes 5 as side product in some cases.

Conclusion

We here developed a 3-component one-pot sequential approach to 3-substituted indoles.
The reaction proceeds via the formation of 3-indolylalcohols. The reaction does not
require any hazardous metal catalyst. A plausible mechanism is proposed for
the reaction.

Experimental

Representative procedure for the synthesis of compound 4a

Indole (1a, 1mmol, 117mg), benzaldehyde (2a, 1mmol, 106mg), and NaOH (1mmol,
40mg) were taken in a round bottom flask. To this EtOH–H2O (1:1, 2mL) as solvent
was added. The reaction mixture was stirred for 2 h at room temperature. The pro-
gress of the reaction was monitored by TLC. After completion of the first step, the
reaction mixture was acidified up to pH 5 by adding acetic acid, added 3-methyl-1-
phenyl-1H-pyrazol-5-amine (3a, 1mmol, 173mg) and then heated at 90 �C for 1.5 h.
Solvent was removed under vacuum and extracted with dichloromethane (DCM). The
solvent was evaporated under vacuum and the crude product was purified by column
chromatography to obtain the desired product 4a[38] in the pure form. White solid,
(325mg, 86%); 1H NMR (500MHz, CDCl3): d 8.48 (bs, 1H, indole –NH), 7.51–7.49
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(m, 2H), 7.40–7.31 (m, 8H), 7.27–7.24 (m, 2H), 7.19 (t, J¼ 7.9Hz, 1H, Ar–H of
indole C6H benzene ring), 7.04 (t, J¼ 7.8Hz, 1H, Ar–H, indole C5H benzene ring),
6.62 (s, 1H, indole –C2H, heterocyclic ring), 5.53 (s, 1H, aliphatic –CH(Indole)(Ph)),
3.26 (bs, 2H, –NH2), 2.18 (s, 3H, –CH3); 13C NMR (125MHz, CDCl3): d 148.2

Scheme 2. The substrate scope for the synthesis of compound 4. Reagents and conditions: 1
(1mmol), 2 (1mmol), 3 (1mmol). The first mentioned time indicates the reaction at room temperature
and the second one is under heating.
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Figure 2. ORTEP of compound 4d with 35% polarizability ellipsoids (CCDC 1815249).

Scheme 3. A plausible mechanism for the reaction.
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(pyarozole CNH2), 142.9 (pyarozole CCH3), 142.7 (C1Ph(pyrazole)), 138.4, 136.7,
129.3, 128.6, 128.5 (2C), 128.4, 126.8, 126.6, 126.4, 123.8, 123.7, 122.2, 119.6, 119.4,
117.5 (Indole C6H or C3H), 111.2 (Indole C6H or C3H), 102.9 (pyrazole –CHCNH2),
38.1 (C(Indole)(Ph)), 12.5 (CH3). The characterization data of all compounds could be
found in the supporting information provided with this article.
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