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ARTICLE INFO ABSTRACT

Article history A series of N-aryl Zab) or benzyl @c,d) substituted piperidoimidazolinium saléd thei
Received palladium complexes3é-d) were prepared and characterizedidy**C NMR, IR spectroscoj
Received in revised form and elemental analysis. The crystal structureS8aofind 3c have been determined by ray
Accepted crystallography. Thermogravimetric analysis (TGAaswvapplied to complexe8d-d). The
Available online palladium complexes have been employed as cat@lySuzukiMiyaura cross coupling. Tl

N-aryl substituted comple8b was ahighly efficient precatalyst and successfully enypld ir
Suzuki-Miyaura cross coupling reactions(bétero)aryl chlorides with arylboronic acids im.

Keywords In addition, the oxidative additiostep of the reaction mechanism involving chloroleergzan
Piperidoimidazolin-2-ylidene the catalysts3a, 3b, 3c and 3d were computationally investigated by the DEBB97X-D
Palladium method and complete agreement were obtained wéthadtalytic results. To measurelonating
Suzuki-miyaura coupling and n-acceptor properties of the new ligands, the rhodrmarbonyl complexes were a
PEPPSI-Pd-NHC prepared.

DFT calculations 2009 Elsevier Ltd. All rights reserved

1. Introduction

N-heterocyclic carbenes (NHCs) have attracted gréereist This work

in various fields of chemistry since the discovefythe first A
stable NHCs in the late 1980s and early 199@mong them, [\ ; O—\ :
five-membered heterocycles imidazol-2-ylidene and Mes’NYN‘MeS Mes/NYN\Mes N \%=o,1:
imidazolin-2-ylidene Q) and ring expanded analogue ML ML, : '
tetrahydropyrimidin-2-ylideneB) are now known as normal A B : .
NHCs (Figure 1¥. By varying the number and the location of e :
the heteroatoms in the core structure of the NHCs,
unsymmetrical NHCs (UNHCs) can be generated. The i@riat
of the substituents bound to the backbone can laisd to
uNHCs. Many structural modifications, including stettining
and changing the ligand backbone structure, had paesued
on uNHC ligands. More recent studies have shown that th
annulations of the 1,5- or 3,4-position of the igddle ring also
influence the electronic and steric properties hed tesulting
complexes:®> Due to their steric demand and the synergy
inductive and mesomeric effects of the heteroatomacinity
to the carbenic center, their stability and domgatability is
excellent as an uNHCs liganigor this purpose, herein, we  Imidazol-2-ylidene,  4,5-dihydro-imidazol-2-ylidene or
compared NHC ligand (typ€) with the analoguesA(andB)  benzimidazol-2-ylidene based NHC systems were used in
and also investigated the influence of N-substitsieon the almost all these studies. In a recent study, Casteil. have
catalytic activity of the system. published ring expanded PEPPSI-Pd complexes anit the

catalytic activity on cross coupling transformagdfiThey used

aryl halides for Suzuki-Miyaura reaction and ob¢gingood

yields.

Figure 1.

Organ and co-workers reported pyridine stabilized NHC
palladium complexes (PEPPSI-Pd) showing high agtivit
éowards C-C and C-N cross-coupling reactibrixtensive
studies on the structure and activities of PEPRBtémplexes
have been published since 2008.Both modification of the

HC moiety and replacement of 3-chloropyridine by eoth
igands have attracted great interest in order btain better
catalytic performancé-
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In this work, a series of facile-prepared PEPPSLR&$C
complexes and their catalytic application in Suzdkyaura
cross-coupling aryl chlorides with aryl boronic adierivatives
is reported. Moreover, the present study includesaik:d
investigations of the sterically hindered N-Aryl stituted
piperidoimidazolin-2-ylidene PEPPSI-Pd compl#x in terms
of catalytic activity on a broad variety of substs catalytic
conditions (solvent, base, temperature). In comspariwith the
previously reportedtudies’™ "2 the complex3b (0.01 mol %)
gave better yield using aryl chloride in a sharidi

2. Results and Discussion

2.1.Synthesis and characterization of Pd(Il) and Rh(l)
Complexes

Our synthetic strategy was based on the construofidghe
annulated N-heterocyclic carbene core from readitgilable
building  blocks,  2-aminomethyl-piperidine  and
piperidinemethanol (Figure 2). The benzyl substiut
piperidoimidazolinium salts were prepared accordingour
previous studie¥In the'H and**C spectra of N-aryl or benzyl
substituted  piperidoimidazolinium  salts 2afd), the
characteristic peaks due to N-CH-N protons and cezrlweere
observed at 8.412§), 8.42 @b) and 8.552d) ppm and at 156.5
(2a), 156.4 @b) and 159.5d) ppm in the'H and*C NMR
spectra, respectively.
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C: C5H2(CH3)3-2,4,6; d: CGHQ[CH(CH3)2]3—2,4,6

Figure 2. The synthesis of the piperidoimidazolinium s2ksd.

Because the nature of substitution pattern of theleyed
NHC ligand has great influence on the catalytic atgtiV?
PEPPSI-Pd complexes  3d-d) with different
piperidoimidazolin-2-ylidene were prepared in pymigli
However, Organ showed that an (NHC)P4@}ridine)
complex is more active than the (NHC)Pg@lchloropyridine)
complex, suggesting that this improved activity [dobe due
either to a higher dissociation rate of the pymdar to a higher
tendency to recoordinate to the species in soldfiofhe

reaction of the ligand precursors with excess NaBd an

Pd(OACc) in neat pyridine under argon atmosphere affo8ds (
d) in 45 to 80 % yields (Figure 3). The Pd(ll) coexss are air
and moisture stable yellow solids. The comple@sd) were
characterized by NMR spectroscopy and exhibit gababdlity
in CH,Cl,, CHCkL and DMSO. The“C NMR spectra display
the resonance due to the carbene carbon atorfis=at79.1,
176.8, 178.4, 179.4 ppm for the compledasd respectively.
The benzylic protons in N-benzylic piperidoimidame2-

Thermogravimetric to

complexes

analysis (TGA) was applied

3a-d. TGA measurements of the complexes showed a
significant weight loss, occurring in different steip the range
180-450 °C (see ESI). This is attributed to decositpm of
pyridine and piperidoimidazolin-2-ylidene. Metallled or Pd
salts (PdBr, PdBJ remained thermally intact under an inert gas
atmosphere. The thermal decompositions of N-Aryksitited
complexes %ab) occur in one step whereas N- benzyl
substituted complexes3¢d) occur in multiple steps. The
lower thermal stability oBc, d may be attributed to the benzyl
substitution on NHC ligand. The thermal stability dfe
complexes played an important role on catalytiovagt

In recent studies of PEPPSI-Pd-NHC complegxem,e
authors report that the catalytic properties ofs thipe
complexes in cross-coupling reactions can changealith

2-both the larges- donating of NHC ligands and steric hindrance

imported by the bulky N-aryl substituents emploggdtems.

Ar

n 0,1
Pd(OAc),, NaBr
2a. | O(OAc) NaBr )—Pd N >
Pyndlne

Figure 3. The synthesis of the palladium complegesd.

With this in mind, the rhodium complexedatc were
prepared by reaction of the rhodium dimer [Rh(u-
OMe)(COD)} with two equivalents of the
piperidoimidazolinium salts2a-c (Figure 4). They were
purified by chromatography on silica gel. These plaxes
were observed to be stable towards air and moisitiiey
exhibit characteristi¢®C chemical shift, which provide a useful
diagnostic tool for metal carbene complexes. Thestmo
significant resonance in th®€C NMR spectra ofda-c is
assigned to the metal carbene carbon at 2@&)1 209.5 4b)
and 211.2 4¢) ppm. Coupling constant (**Rh-°C) for the
new complexes 4@-¢ are comparable to those found for
rhodium-NHC complexes that have been described

previously***®
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¢: CeHa(CHg)3-2,4,6; X=Br; ¢": CgHa(CHz)3-2,4,6; X=Cl

Figure 4. The synthesis of the rhodium complexes.

Thev(CO) measurement of [MCI(NHC)(C&) (M = Rh, Ir)
is the most commonly used method to determinerelectonor
ability of NHCs'>*® The [Ni(NHC)(CO)] complexes are also
used but rhodium or iridium preferred because efttxicity of
[Ni(CO);] used as starting material in this case. To ddterpt
donating ability of piperidoimidazolin-2-ylideneghnd, the

ylidene Pd complexes3¢, 3d) display a singlet corresponding COD complexes4a, 4c) were converted straight forwardly to

to a total of two protons at 5.29d} and 5.303d) ppm.

the corresponding carbonyl derivativés and 5c, which



allowed the electronic nature of the aryl or bersybstituted
piperidoimidazolin-2-ylidene ligand to be inferrédm the IR
spectra. The N-aryl substituted carbene complaxexhibited
lower wave numbera: 2071.0 and 1992 cm-1,(CO) cm'=
2032; 5c: 2072 and 1993 cfh v,(CO) cm' = 2033).
Additionally, the complexc” did not give rise to difference
when it was compared &z (Figure 5).
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Figure 5. The carbonyl stretching frequencies of [Rh(NHC)XXg}
complexes (X: Cl, Br).

This observation is in accordance with earlier regoy
Hahn® The aryl substituted piperidoimidazolin-2-ylide(&s)
was found to be relatively better electron donomtbanzyl-

(S) and C3B (R) in3c. Four C-H...Br and a C-H..N type
intramolecular interactions are present in thetahystructure of
3a (Figures S2 and Table S2, ESI). The molecular ipgckf
the complexes are stabilized by a combination of @+H...Br
and two C-H..x type intermolecular interactions for 3a and
two C-H...Br, a C-H..x and a=...n type intermolecular
interactions for 3c (Figures S3-6 and Table S3).HSir both
structures, these interactions those Br atoms wegblmay
cause a departure from the ideal value of 180tréors angles
of Br-Pd-Br.
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Figure 6. The molecular structures 8& and3c with displacement
ellipsoids drawn at the 30% probability level. Oniplecule A of3aand
the major components of the disordered aton8caifre shown for clarity.
Selected bond lengths (A) and angles (°):Complexd1-C1 1.949(7),
Pd1-N1 2.089(6), Pd1-Br2 2.4301(11), Pd1-Brl 2.450p% C1-Pd1-N1
177.9(3), Br2-Pd1-Brl 171.78(4), Complés Pd1-C1 1.962(7), Pd1-N1

analogues Hc, 5¢"). Moreover, it is seen obviously that the2.095(6), Pd1-Br2 2.4178(15), Pd1-Brl 2.4112(1@yRel1-N1 176.5(3),

values of carbonyl frequencies of the complexX&s Hc, 5¢")
fall into between the types of NHE andB. This observation
indicates that the electronic and steric influenoésthe N-
substituents are contributed to some extent on eleetron
donating property of the NHC ligand.

2.2.Structural Studies

The molecular structures of complex8a and 3c were
determined by single crystal X-ray diffraction aysa$. Details
of data collection and refinement are presente@wgsporting
Information (Table S1, ESI). The structural anaydisplay the
presence of slightly distorted square-planar coatitn
environments defined by the coordination of theah&t the
pyridine ligand, the NHC ligand and the bromine atdms
trans arrangement as shown in Figure 63l the asymmetric
unit contains two symmetry independent moleculeaptizl A
andB, which do not differ significantly except disordérdHC
ring appeared in molecul (Figure S1, ESI). The palladium-
NHC bond lengths iBa and 3c are in agreement with the
values found in our previously characterized Pd-NH
complexes®"” The NHC ring of3a adopts an envelope
conformation in molecul@ and also in the minor component
of molecule B, and a twisted conformation in the min
component of moleculeB. In 3c, the conformation of
disordered NHC ring is envelope and twisted for thgopmand
minor components, respectively. In molecéleof 3a, NHC
ring is rotated with respect to the coordinatiomplay 88.3(4).
In molecule B of 3a, NHC ring with major and minor
components are oriented at dihedral angles of 68.74nd
77.5(6)°, respectively, with the coordination plawehereas
corresponding angles are 73.8(6)° and 78.8(63tirrollowing

G

Br2-Pd1-Brl 176.23(7).

2.3.Catalytic Suzuki-Miyaura Coupling Reaction with Pd(
Complexes

We investigated the activity of complex8a-d as catalysts
for the coupling of 4-chloroacetophenone with phbagbnic
acid under air and argon atmosphere (Figure 7).chOmeplex
3b was found to be the most active catalyst amongfdlese
complexes tested. The sequence of the activit3bis 3a >
3c > 3d. The aryl-substituted complexe8a( 3b) were more
efficient than their benzyl analogue3c(3d). To confirm the
decomposition of complexe84, 3c) to Pd nanoparticles, the
complexes 3a, 3c) were investigated (initial, with the addition
of KOH and at 65C) in CDCh. A direct comparison between
catalysts3a and3c was performed byH NMR analysis, which
revealed different catalytic behavior for two conxgle (see
ESI). The catalysBa also proved to be competent in this
transformation, giving yields comparable thosetfar catalyst
c. A shorter induction period was present 8arrelative to3c,
ch may be related to the reduction to the adﬁdespeues
The performance of the catalytic activity of thengmexes
revealed that improvement in activity could be hestnot only
by using the rigid architecture of the NHC ligandt hiso by
changing the substituents on the nitrogen atomsNHC
ligands.

The catalytic activities have impressed by both tiged
architecture of the NHC ligand and the substituentstie
nitrogen atoms in NHC ligands. Moreover, the therstability
of the complexes played an important role on ctitabctivity.
Because of the higher thermal stability and loweergn

atoms in NHC rings are chiral centers with the absolubarriers,3a and3b exhibit higher catalytic activity. The above

configurations: C3 (S), C24A (S) and C24B (RBa and C3A

experimental results stabilities 8t to comparisorBa, which
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prompted us to investigate the mechanism by thesifyen within 2 min.

functional theory (DFT) method.
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Figure 7. Time dependency of catalytic Suzuki-Miyaura cougli
reaction by complexe3a-d under in air (a) and argon atmosphere (b).

The mechanism of Suzuki-Miyaura coupling reactiaith
Pd(Il) complexes includes oxidative addition, traesallation
steps and reductive eliminatidh® The first step (the oxidation
step) of this coupling reaction is generally theengst step that
determined the reaction rate. Recently, it is shahet the
[PAd(NHC)(R-allyl)CI] type catalysts are rather actiire the
Suzuki-Miyaura coupling reacti6hand their activity comes

Formation of active catalyst

YO

(CHz)n

(CHg),CHOH, KOH
-Py, -2KBr, -(CH;),CO

N
>— Pd(0)
N
\

©CHI  gug

Oxidative Addition (Rate Determining) Step

Cl----- ?@
N \\‘\ .'II
N (actlvatlon
Pd(ll) free energy) Pd(o)
N
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Reactant complex

Ar = a: -CgHy(CH3)3-2,4,6;n =0
b: -CgH3[CH(CH,)] -2,6:n = 0
C:-CH,CeHo(CHy)5-2,4,6;n =1 N
d: -CH,CgH[CH(CHy)5l5-2,4,6;n = 1

Pd(I1)

(CH2)n
Ar

Product

Figure 8. Representative initial steps of the mechanismualLi&i-Miyaura
coupling reaction with Pd(ll) complexe3ad).

Figure 8 depicts the representative initial stefsthe
Suzuki-Miyaura coupling reaction mechanism, thedative
addition paths of th8a’, 3b’, 3¢ and3d’ active catalysts with
chlorobenzene while the corresponding activation &iblee
energy barrier values of these paths obtained wiB97X-D
method, % probability based on Boltzmann distrifuti
formula, the calculated and experimental percenitiain
conversion rates are given in the Table 2. Th&97X-D
barrier height order i8b < 3a < 3c < 3d, leading to the

from monoligated [NHC-P complexes which serves as activetheoretical activity sequence &b > 3a > 3c > 3d. The
catalytic specie& In the light of these information, we difference in activation free energy barriers let calculate
proposed a mechanism for the oxidative additionp ste&probability of molecules passing through theseridwa: %

(accepting as the rate determining step) involvitige
monoligated [NHC-PY complex (Figure 8). Specifically, we
computationally determined the activation energyribes of
oxidative addition step involving benzene chloraled active
catalysts,3a’, 3b’, 3¢’ and3d’, with DFT-w-B97X-D method
that gives better accuracy than the commonly uséd-D
B3LYP due to inclusion of dispersion interactions.

Table 2. Activation free energy barriers of oxidative aduit paths of the
3a, 3b’, 3¢’ and3d’ active catalysts with benzene chloride.

. %lnitial %lnitial
Active AG* AAGY | . .
catalyst | (kcal/mol | (kcal/mol A)Par ob C?]n:/ae;resm C(:]n;/aet;sm
s ) ) (theo) (expy
3b’ 11.26 0.00 100.00 67.24 48.72
3a’ 11.96 0.71 34.90 23.47 28.21
3c 12.86 1.61 9.13 6.14 15.38
3d’ 13.31 2.06 4.68 3.15 7.69

3Prob = 100 expAG*/RT) at 298 K Conversion percent under air atmosphere

initial conversion rate, which can be defined as bemof
molecules passing through activation barrier urederctly the
same conditions out of 100 molecules, is calculatsithg %
probabilities. The last column gives experimentahwersion
percent under air atmosphere within 2 min. As seem fthe
table, theoretical and experimental initial coni@srates well
agree with each other.

Figure 9 displays the important geometrical paransetf all
species involved the oxidative addition paths ef3&’, 3b, 3¢
and3d’ active catalysts. As seen from the figure, chlonzieae
approaches to active catalyst from its C atom h#&ddo the Cl
atom, hence each oxidative addition step starts avitlactive-
catalyst-chlorobenzene  complex redc_3a’, reac_3b’,

reac_3c’, reac_3d). Then, both the C and Cl atoms continue to

approach Pd atom of the active catalyst (see T&tsres),
finally the C and Cl atoms completely separate femnh other
producing the oxidized active catalyst-chlorobemzeomplex.
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Figure 9. Important geometrical parameters of species iroxigative addition path (the distances given arA units)

The conditions employed for the catalytic experiteeare
depicted on Table 3. In order to improve the reidgtiof our
catalytic system, we examined the influence of theeb We

After optimizing the reaction conditions, the pallad
complex Bb) was also tested for various substrates in Suzuki-
Miyaura reaction (Table 4). Generally, moderate wod

used CgCO,;, KOH, K;PO, NaOH and K(Bu (entries 1-5). conversions 70-93% were obtained (Table 3). Forbarghic

The highest yield of the desired product was obthingh

acids with electron-withdrawing or electron donatig@ups,

KOH as the base (entry 1). Preferred solvent foruuz such as fluorine, methyl, methoxy and formyl grqupise
Miyaura cross-coupling reactions wa®rOH as MeOH and reactions could afford the corresponding biarylsnioderate to
EtOH solvents lowered the catalytic activity. The @ase of good yields. Apart from the electronic features, ithgact of
the reaction temperature from 82 to %5 led to decrease the steric hindrance aryl chlorides with 2,6-dimethylpyi&oronic

yield (entries 8, 9). If the loading cataly8b was further

acid was also investigated (Table 4, entries 11-p3ya

reduced to 0.01 to 0.001 mol%, the cross-couplimglyct was substituted chloride was compared watttho-substituted ones,

obtained in satisfying yields of 95 and 70 % (er#rl, 10).

Table 3. Different reaction conditions for Suzuki-Miyaura

the former gave the 85% yield (Table 4, entry M/hen the
aryl chloride had multiple substituents, the reattiyield
exceeded 75% (Table 4, entries 1, 13) over 2 m#nute

Coupling with complex3b for 2 min.

Entry  Solvent Base Loading T [°C] Yield[%)] Cavell group’s synthesized various Pd-PEPPSI coxegle
3b(mol%) and obtained 96% yield at 8 within 1 h for coupling

1 PION KOH 0oL a2 95 reaction of phenyl chloride with the phenylboroniidd” Lee

) and co-workers performed the Suzuki-Miyaura reactising
2 1-ProH KeP Oy 0.01 82 0 aryl bromides at 86C and the yield’s up to 100 after Z'iThe
3 i-ProH CsCO, 0.01 82 53 Pd-PEPPSI complexes were synthesized by Organ’spgrou
4 i-PrOH NaOH 0.01 82 33 showed 95% yie_ld at 6%C with_in 24 h using aryl chloridés.

] In comparison with these studies, our results acefzable.
5 i-ProH tBUOK 0.01 82 31
6 EtOH KOH 0.01 78 54
7 MeOH KOH 0.01 65 22
8 i-PrOH KOH 0.01 50 35
9 i-ProH KOH 0.01 25 12
10 i-PrOH KOH 0.001 82 70
11 i-ProH KOH 0.0001 82 28
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Table 4. The Suzuki-Miyaura reaction of aryl chlorides withenylboronic Table 5. The Suzuki-Miyaura reaction of heteroaryl chlosiath
acids using catalyst arylboronic acids using catalyab.

a—ci + 7N JOH  3b, KOH, 2 min, —
' ) B IPA, 82 °C AR =
R OH g a = \ 2
R

. & )B(OH),
Entry Ar R Yield
(%) — \
=N @
1 2,5-Me-Ph H 75
2 4-CN-Ph H 89 O-@ O—@wo@—@
3 4-CHO-Ph H 93 70% 74% 77%
4 2-Me-Ph H 77 =
) [ ) cHo L)
5 4-Me-Ph H 70 Q_Q Q_@ QO
63% 87% 86%
6 4-MeO-Ph H 71
/ \ - —=
7 Ph H 80 Q‘@F Q‘@ QO Q‘@
8 4-CN-Ph 4-MeO 82 o eo ez
9 Ph 4-MeO 77 O Q‘@
10 4-Me-Ph 4-MeO 74 o4 4%
1 4-Me-Ph 2,6-Me 85 Reaction conditions: heteroaryl halide (1.0 mmatylboronic acid (1.2
12 2-Me-Ph 2,6-Me 73 mmol), KOH (2.0 mmol), catalystb (0.01 mol %), IPA1 mL), 10 min, in
air.
13 2,4-Me-Ph 2,6-Me 71 i )
Double coupling of 1,4-dichlorobenzene and 2,6-
14 4-Me-Ph 4-F w dichloropyridine with arylboronic acid derivatives svalso
15 2-Me-Ph 4-F 74 performed efficiently to give dicoupling product¥able 6).
16 4-Me-Ph 4-CHO 73 The _efﬂmency ar!d select_lwty towards dlarylate@d]lct were
obtained in higher times. Phenylboronic  acidi-
17 4-MeO-Ph 4-CHO 72 Formylphenylboronic acid, 2,6-dimethylphenylboromitid, 4-
18 4-CN-Ph 4-CHO 71 fluorophenylboronic acid were all successfully teshtvith 1,4-
) . ToT ; 970
19 2-Me-Ph 4-CHO 75 dichlorobenzene to provide products in hl_gh ylea_as 97%).
Encouraged by the very good results obtained wighctitalyst
20 Ph 4-CHO 72 3b for 1,4-dichlorobenzene, we decided to focus research
21 4-NQ-Ph 4-CHO 85 on a more difficult substrate 2,6- dichloropyridinés

expected, the double couplings of benzeneboronid, at

fluorophenylboronic acid with 2,6- dichloropyridirefforded

corresponding heteropolyarenes. An increase of #aetion
The new complexes have been demonstrated to tie to 1 h resulted in increase of the yield td62

significantly different from those of the relatedd- and six- o ) )

membered NHC-Pd-PEPPSI systems in cross-couplin Table 6..T.he Su‘zukl-M|yaura.1 reat.:tmn qf1,4-d|chlorobenzené,6-

reactions. Overall, this procedure is suitable fos synthesis dichloropyridine with arylboronic acids using dgsa 3b.

Reaction conditions: aryl halide (1.0 mmol), arytiidc acid (1.2 mmol),
KOH (2.0 mmol), catalyst (0.01 mol %), IRA mL).

of diverse biaryls through the cross-coupling rieectof C"@C' _ Q//’@v@
different aryl electrophiles and aryl boronic acids C/}Bomz

Heteroaryl chlorides (3-chloropyridine, 2-chlorothieene, )\/j\ | \/ —
3-chlorothiophene) were also tested under our opéchi & 7N L

R R

conditions using different aryl boronic acids (bemeboronic

acid, 4-formylphenylboronic acid, 2,6-dimethylphésgronic FmF
acid, 4- fluorophenylboronic acid) and were produaed3- Q O O

77% yield, demonstrating the applicability of hetsyclic 0% Gomm oo omn 45% (30 min)
substrates in this procedure (Table 5). Initiall- orc— )« )-cro 54% (30 min)
chloropyridine was explored. Reacting 4-formylphé&aybnic o7% (30 min) D

acid with 3-chloropyridine formed 74% of the expecte 78% (30 min)
product. The arylboronic acids in combination with 2 F77 o 0 min)
chlorothiophene gave the cross-coupling productgeiy good 62%(60 min)

yields. Having chloride at the 3-position of thiopkering, the Reaction conditions for double coupling: aryl halid1.0 mmol),

decreasing the yields of the products was observetpared to  arylboronic acid (2.4 mmol), KOH (4.0 mmol), castigb (0.01 mol %),
its 2-position analogue. IPA (1 mL), in air.

3. Conclusions

New ligands and eleven metal complexes related with ou
previously reported piperidoimidazolin-2-ylidenessym were



prepared and fully characterized. The moleculaucttires of which was washed with diethylether until no colored unitges
the complexes3a and 3c were determined by X-ray remained. The resulting white powder was washed withrwate
crystallography. The catalytic activities of the lladium (3x50.0 mL), and with technical grade diethyl etl{@&x30.0
complexes 3a-d) were investigated in the Suzuki-MiyauramL), dissolved in CKCl,, and the solution was dried with
coupling between aryl chlorides and arylboronic acid this sodium sulfate. After filtration, the concentratemusion was
transformation, aryl-substituted pre-catalysts i§igently layered with hexane, and the triflate s2db was isolated as
surpassed benzyl substituted pre-catalysts inieffdy. Pre- colorless crystals upon cooling at -XDovernight.
cat_al_ysjtSd with a 2,4,6-tr|(|sop_ropyl)lt_)e_nzyl arm shp\_/ved lower 2a: Yield: 60%: m.p = 210-213C. 'H NMR (CDC, 5,
activity; however the catalytic activity of 2,6-di¢ipropyl) :

: . ppm): 8.35 (s, 1 H, NB), 6.91 (s, 2 H, NgH,(CH,)3), 4.43-
substituted pre-catalyst3lf) was higher than that of 2,4,6- C R

- . : 4.46 (m, 1 H, piperidinét), 4.26-4.32 (m, 2 H, piperidini),
mesityl substituted 3g@). Moreover, the DFT calculations

PR . 3.41-3.47(m, 1 H, NB,CH), 3.62-3.66 (m, 1 H, Ni&,CH),

revealed that catalyst8a and 3b exhibit higher catalytic 1.62-2.15 (m, 6 H, piperiding), 2.28, 2.24 (s, 9 H
activity than catalyst8c and 3d due to having lower energy NCoH,(CH2)). °C NMR (CDCh, 5. ppm): 156.4 (KCH).

barriers. 140.4, 135.6, 130.6, 130.1 (A}, 120.1 CF,S0;), 60.2
4. Experimenta| Section (NCHZCH), 56.8, 46.4, 32.5, 25.9, 22.3 (piperid)a-21.2,
17.7 (NGH,(CH:):). Anal.Calc. for GH,sFsN,05S: C, 52.03;
The glass equipment was heated under vacuum in twderH, 5.91; N, 7.14. Found: C, 52.15; H, 6.03; N, 7.33.
remove oxygen and moisture and then they were fillét . .
argon. The solvents were analytical grade and léidtiinder 2b: Yield: 62%; m.p = 170-172C. "H NMR (CDCl, 3,
argon atmosphere from sodium (toluene, diethylrethexane, PPM): 844 (s, 1 H, NB), 743 (t J = 4.0 Hz, 1 H,
tetrahydrofuran), s (dichloromethane). Toluene, NCeHs[CH(CHy)lp),  7.21 (d, J = 4:0 HZ 2 H,
tetrahydrofuran, dichloromethane, ethanol, hexgpentane, NCeHaCH(CHs)]5), 4.37-4.49 (m, 1 H, piperiding), 4.27-
diethyl ether, acetonitrile, and methanol were atedifrom J. 4-33 (M, 2 H, piperidingd), 3.64-3.70 (m, 2 H, NB,CH),
T. Baker and Merck. All reagents were purchased frof-82-2.88 (m, 2 H, NEHCH(CH)J,), 1.6i7-2.2213(m, 6 H,
commercial sources and used as received. Ethyl6Miziso- piperidine-H), 1.37, 1.41 (d,= 4.0 Hz, 12 HPr-H). “C NMR
propyl-phenylformamidinate, ethyl N-mesityl-formatiriatg? (CDCl, 3, ppm): 156.4 (ITH), 147.1, 146.6, 131.3, 129.9 (Ar-
and 2¢® were prepared according to literatutel and ®c  ©) 125.1 €FSQ;), 60.2 (NCH,CH), 55.2, 46.6, 32.8, 288,
NMR spectra were taken with Varian AS 400 Mercunf®-2 (Piperidinec), 18.7 (NGH;[CH(CH,),];). Anal. Calc. for
instrument operating at 400 MHz (1H), 100845, CDCl, CaoHzsFNOsS: C, 55.28; H, 6.73; N, 6.45. Found: C, 55.21; H,
was employed as solvent. Chemical shif{sare given in ppm 6.63,N, 6.88.

relative to TMS; coupling constants (J) in Hz. 2d: Different benzylbromides (15.0 mmol) and
Thermogravimetric (TG) and differential thermograeimc piperidoimidazolg1.86 g, 15.0 mmol) were refluxed in toluene
(DTG) curves were obtained using a Perkin—Elmer P§ris (15.0 mL) for 4 h. The volume of the solution wadueed to
analyzer in the range 50-95C in alumina crucibles under 5.0 mL, and diethyl ether was added to the remaisaigtion,
nitrogen (flux rate: 20 cfimin”) at a heating rate of 2& min  which was vigorously stirred and then decantated. Jdiel
~ using alumina as reference. The yields of catalytiresidue was washed with diethyl ether (3 x 20.0 mL)ktain
experiments were measured by GC Agilent brand (78904y, orange solid, which was recrystallized from
series) on a HP-5 capillary column and with a FIDed®tr) in - methanol/diethyl ether (3 mL/20.0 mL). Yield: 52%;am 209-
Ege University in Faculty of Science at Department 0$11°C.'H NMR (DMSO, s, ppm): 8.10 (s, 1 H, N&g), 7.07 (s,
Chemistry. 2 H, NCH,C¢H,[CH(CHy)4]3), 2.78-3.32 (m, 5 H, piperidine;
4.1.Synthesis ofa-b NCH,C¢H,[CH(CHy)4]3), 1.35-1.73 (m, 6 H, pilps)eridinld),
1.12-1.19 (m, 18 H, NCHTH3[CH(CH3),]s). “C NMR
A neat mixture of 2-piperidine methanol (3.2 g, 26thol) (DMSO, 3, ppm): 160.2 (ICH), 149.3, 148.2, 132.6, 130.1 (Ar-
and ethyl N-(2,6-diisopropylphenyl)formamidinate. 38 g, C), 77.8 (NCH,CH), 64.5 (NCHCH), 60.9,
28.0 mmol) was stirred at 160 °C for 3 h in a flesjuipped (NCH,CsH3[CH(CHy),]5), 55.2, 46.6, 32.8, 28.8, 26.2
with a Dean-Stark condenser to remove ethanol. Thielue (piperidineC), 18.7 (NGH,[CH(CHs),]s). Anal. Calc. for
was dried under high vacuum, and the resulting @anilgla) C,HsBrN,: C, 65.55; H, 8.85; N, 6.65. Found: C, 66.74; H,
was used without further purification. By using them& 8.88; N, 6.80.
procedure as above, but with ethyl N-mesityl-forndate (2.8
g, 28.0 mmol) and 2-piperidinemethanol (3.2 g, 28uthol)

was obtained as a orange dib). But the compounds were not  The Pd(OAc)(65.0 mg, 0.3 mmol) was added2a (125.0

4.3.General procedure of [PdB{NHC)Py] complexes

isolated exactly. mg, 0.3 mmol) and NaBr (60.0 mg, 0.6 mmol) which was
4.2.Synthesis of aryl substituted piperidoimidazol-2igtie dissolved in pyridine (5.0 mL) under argon atmosphd&he
derivatives salts2a-b reaction mixture was stirred 1 h at RT and therureftl for 48

h. Meanwhile the reaction progress was controlled Vater
Amidine 1a-b (42.5 mmol) was dissolved in 20 mL of driedchromatography. After removal of the solvent undacuum,
CH,CI, and cooled to -78C. Diisopropylethylamine (8.9 mL, the precipitate was purified by column chromatogsamim
51.0 mmol) was added to the solution, followed by theilica gel using CkCl, to give a yellow solid. The residue was
dropwise addition of trifluoromethanesulfonicanhgeri (7.1 recrystallized from ChCl, / (CHs),O (v/v = 3:10 mL)
: : 0
mL, 42.5 mmol). The solution was stirred for 30 main-78"C 3a: Yield: 45%: m.p = 296-298C. 'H NMR (CDCh, &,

and then warmed to room temperature. The volatilese we
removed uvrzder reduced pressuf:a touafford anvorzs:tngd " ppm): 8.69-8.71 (m, 2 H, P, 7.58-7.62 (m, 1 H, Pi,
" 7.14-7.18 (m, 2 H, P#4), 6.95 (s, 2 H, NgH,(CH5)3), 5.32 (dd,
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J = 16 Hz, 1 H, piperidinét), 3.91-3.96 (m, 2H, NB,CH), 4a: Yield: 57.7 mg, 45%; m.p = 190-19C. 'H NMR
3.35-3.48 (m, 2 H, piperidingy, 2.31, 2.47, 2.50 (s, 9 H, (CDCls, 3, ppm): 7.00, 6.87 (s, 2 H, NB,(CHs)s), 5.41-5.50
NCgH,(CHs)3), 1.18-2.00 (m, 6 H, piperiding). *C NMR  (m, 1 H, piperidineH), 4.79-4.93 (m, 2 H, piperiding), 3.73-
(CDCl,, 6, ppm): 179.1 (ICN), 152.6, 138.5, 137.7 (R®}, 3.83 (m, 2 H, NE&,CH, COD-H), 3.56-3.61 (m, 1 H, COD-
134.6, 129.8, 129.7, 124.4 (&), 59.9 (NHCH,CH), 57.6, CH), 3.18-3.28 (m, 2 H, NB,CH, COD-(H), 3.11-3.16 (m, 1
49.1, 32.8, 25.9, 23.7 (piperidit@®; 21.3, 20.2 (NgH,(CH3)3). H, COD-CH), 2.52, 2.05 (dJ = 4.0 Hz, 6 H, N@H,(CHs)),
Anal. Calc. for GHx;BroNsPd: C, 42.92; H, 4.63; N, 7.15. 2.34-2.39 (m, 2 H, piperiding), 2.32 (s, 3 H, NgH,(CHs)3),
Found: C, 42.88; H, 4.52; N, 7.30. 1.81-1.95 (m, 8 H, piperiding; COD-CH,), 1.39-1.65 (m, 8
3b: Yield: 50%: m.p = 328-336C. 'H NMR (CDCh, 5, v PiperidineH, COD-GHy). ~C NMR (CDCL, 3, ppm): 208.3

(d, Jrnc= 57.7, RN-Cuen), 138.2, 138.1, 137.6, 137.5, 136.1,
m): 8.73-8.75 (m, 2 H, Py, 7.59-7.64 (m, 1 H, Pyh), 7.39 e S
E’tp J): 8y (2 : Pﬁ)?" Lo s ¢ Py sz /3% 1351 (ArC), 97.2 (dJ = 9.2 Hz, CODEH), 69.4 (d,J = 14.0

NC.H{CH(CH2),), 7.16-7.19 (m. 1 H, NEL[CH(CH.)). Hz, COD<CH), 59.6 (hCHZCH), 574 49.5, 34.3, 32.9, 30.8,
- DT 30.6, 29.7, 27.6, 27.1, 23.7 (piperidi@e COD-CH,), 21.0 20.4
5.47 (dd,J = 4.4, 12.8 Hz, 1 H, piperidind), 3.43-4.04 (m, 6 . .
S (NCgHx(CH3)3). Anal.Calc. for GH3BrN,Rh: C, 54.05; H,
H, NCH,CH, piperidineH, NCH3[CH(CH,),], ), 1.59-2.09 (m, 6.43' N. 5.25. Found: C. 54.12° H. 6.51: N. 5.34
6 H, piperidineH), 1.46, 1.16 (t,J = 12.0 Hz, 12 H, ~—~ 7 7777 LY 7 T
NCsH3[CH(CH5),],). *C NMR (CDC}, 5, ppm): 179.6 (ITN), 4b: Yield: 75.2 mg, 45%; m.p= 201-20%. 'H NMR
152.3, 148.3, 137.4 (), 134.2, 129.4, 124.5, 124.2 (&)  (CDCl, 6, ppm): 7.29-7.34 (m, 2 H, NEI5J[CH(CHy),],), 7.11-
60.1 (NCH,CH), 59.5 (NGH3[CH(CHs),],), 49.3, 32.3, 28.3, 7.14 (m, 2 H, N@H;CH(CH)),],), 5.43-5.54 (m, 1 H,
26.9, 26.8 (piperidin€), 25.6, 24.4, 23.4 piperidineH), 4.83-4.94 (m, 2 H, piperidind), 3.71-3.88 (m,
(NCgH3[CH(CHs),],). Anal. Calc. for GHzBr,NsPd: C, 45.77; 3 H, NCH,CH, COD-H), 3.55-3.60 (m, 1 H, COD44), 3.33-
H, 5.28; N, 6.67. Found: C, 45.79; H, 5.53; N, 6.84. 3.45, 2.88-2.97 (m, 2 H, CODHj, 2.69-2.80, 2.27-2.39 (m, 2

3¢ Yield: 80%; m.p= 272-274C. 'H NMR (CDCh, H, NCHJ[CH(CHa)o],), 1.72-2.14, 1.62-1.55, 1.31-1.38 (m, 10
ppm)', 9.02.9.04 ('m o P 719776 m 1 H P’M)’ H, piperidineH, COD-G;), 1.09, 1.20, 1.49 (m, 12 H,
7.29-7.33 (m, 2 H, PH), 6.87 (5, 2 H, NCKCeH,(CHy)), 5.25  oerialCH(CHa)elz). 7C MR (CDGa. 3, ppm): 208.9 (ddje,

(5. 2 H. NGLCHACHY), 5.08.5.12 (ddJ = 4.4, 13.2 Hz, 1 €= 460 Rh€eanend, 149.3, 146.1, 135.9, 128.7, 124.9, 1235
H. piperidineH), 3.66-3.71 (m, 1 H, NB,CH), 3.26-3.35 (m, g*ggg_?)? fd) =50 g;'scgng%bGO&ié%d%Z614ég£§'
2 H, NCH,CH, piperidineH), 2.73-2.77 (m, 1 H, piperidini), 29.7 28’1 27 > ' 2'6 6 ' 2’5 2' '23 1 ’( MCH'(C’H )] )’
2.27, 241 (s, 9 H, NCH,(CHg)3), 1.36-1.96 (m, 6 H, '~ = & o o Caaa TNTE
o 13 Anal.Calc. for G/H;BrN,Rh: C, 56.36; H, 7.01; N, 4.87.
piperidineH). “C NMR (CDCE, 3, ppm): 178.4 (ICN), 152.4, Found: C. 56.41: H. 7.19- N. 5.02
138.4, 137.8 (RY), 137.7, 129.2, 128.3, 124.5 (M) 59.2 Ch SRS L D2 T S e
(NCH,CH), 53.8 (NCH,CeH,(CHs)s), 48.6, 48.3, 31.9, 25.5, 4c: Yield: 447.2 mg, 68%; m.p= 168-17AC. *H NMR
23.2 (piperidinec), 20.8, 20.9 (NCKCsH,(CH3)3). Anal. Calc. (CDCl, 8, ppm): 6.85 (s, 2 H, NCi€sH,(CHz)3), 5.25-5.48
for C,,HoBroNsPd: C, 43.91; H, 4.86; N, 6.98. Found: C,(m, 1 H, NM,CsH,(CHs)3), 4.87-5.12 (m, 3 H, COD{q,
44.01; H, 4.81; N, 7.11. NCH,CsH»(CHs)s, 3.45-3.56 (m, 4 H, CODA4, piperidineH),
o , _ . 3.09-3.21 (m, 2H, NB,CH), 2.57-2.64 (m, 2 H, piperidind),

3d: Yield: 68%; m.p = 322-324C. '"H NMR (CDC},, §, 236, 2.26 (5, 9 H, NC)EH,(CHy)s), 2.25-2.49 (m, 4 H,
ppm): 9.04 (ddJ=5.6 Hz, 2 H, PyH), 7.35 (t,J=7.6 Hz, 1 H, iveridineH). 1.86-1.97 1.29-1 50 8 H comHo. “c
PyH). 7.32 (LJ = 5.6 Hz, 2 H, Py), 7.0 (s, 2 H, PiperidineH), 1.86-1.97, 1.29-1.50 (m, 8 H, -
NCHZ,CGHz[CH(é:Hg)g]?,) 5.27_5.'35 ' (m 2’ H, NMR (CDGg, 3, ppm): 208.9 (ddJrhc = 46.0, RhC amends
NCH,CH,[CH(CH.),]). 5.07-5.10 (m, 1 H, piperidine), 138..2, 137.5, 129.2, 129.1 (gE{H,(CHs), 98.5, 98.4, 98.1,

98.0 (COD-CH), 70.1, 69.5, 67.8, 67.4 (COD-CH), 59.1
3.28-3.68-9 (m, 5 H, NB,CH, NCH,CsH,[CH(CHy),]3), 2.79- NCH.CH). 54.1 (NCH.C-H.(CH 48.3. 33.1. 32.2. 319
2.90 (m, 2 H, piperidinéd), 1.37-1.95 (m, 6 H, piperidik} (NCH,CH), 54.1 (NCH,CoHo(CHy)s), 48.3, 33.1, 32.2, 31.9,
1231 2’7 (rﬁ 18 H N,CQG:H [CH(CH, )2])’ 130 NMRl 31.7, 29.5, 28.4, 26.6, 26.1 (piperidine-C, CODR{H2.6
(C.ZDCI. 5 pp}n)' 178.9 (KEN)G 12525 12931' 148.9 (B (CgH2(CHg)3-0-CH,), 20.7 (GH,(CHs)s-p-CHg). Anal. Calc. for
1377 s 12’5.5 1'24.4 : 1213 ,(A‘l} .55’9.3 (I.\C,H2CHI) 53.’9 CusH3eBrN,Rh: C, 54.86; H, 6.63; N, 5.12. Found: C, 54.93; H,

(NCH,CeH,[CH(CHa),]s), 48.4, 46.5, 34.2, 31.6, 29.2 6.59; N, 5.25.
(piperidine-C), 255, 244, 243, 239, 232 4c Yield: 423.4 mg, 70 %: m.p = 160-162. 'H NMR
(NCH,CeH,[CH(CHz),]5). Anal. Calc. for GHuBrNsPd: C, (CDCl, 3, ppm): 6.80 (s, 2 H, NC}EeH,(CHy)s), 5.29-5.42
49.03: H, 6.03; N, 6.13. Found: C, 49.19: H, 6.125199. (M, 1 H, NGH,CeH,(CH,)), 4.80-5.08 (m, 3 H, COD4E,
4.4.General procedure of [RhBr(NHC)COD] complexes S.g;ﬁféﬂc)H§)305plef)igd(lrr:1ekzi)H3N3§22|3)4 §%142H61C(%Df"|_|
[Rh(u-OMe)COD} (54.0 mg, 0.12 mmol) was added2a  PiperidineH), 2.32, 2.21 (s, 9 H, NCiH,(CHy)), 2.24-2.42
(100.0 mg, 0.24 mmol) and NaBr (46.0 mg, 0.48 mmdijch (M. 4 H, piperidineH), 1.76-1.95, 1.47-1.21 (m, 8 H, COD-
was dissolved in dry toluene (6.0 ml) under argonosphere. CHz). “C NMR (CDCL, &, ppm): 211.0 (ddJrn.c = 45.0, Rh-
The reaction mixture was stirred 1 h at®25and then refluxed Cecarbend: 138.1, 137.4, 129.1, 128.9 (&) 98.2, 97.8 (dJ =
for 48 h. Meanwhile the reaction progress was coetialith 6.0 Hz, CODEH), 70.0, 67.5, (d) = 14.0 Hz, CODEH), 58.1
layer chromatography. After removal of the solvemder (NCHzCeHx(CHy)z), 54.1 (NCH,CH), 48.0, 47.8, 33.2, 32.2,
vacuum, the rhodium compound was purified by columd2-1, 31.9, 29.4, 28.5, 26.1, 23.3, (piperid®e€COD-CH,),
chromatography on silica gel using €, to give a yellow 20.7 20.8 (NCHCsH,(CHg)s). Anal.Calc. for GsHseCINoRh: C,
solid. The residue was recrystallized from JCH / (CHs),0  59.70; H, 7.21; N, 5.57. Found: C, 59.87; H, 7.75; M95

(Viv=3:10mL) 4.5.General procedure of [RhX(NHC)(Cromplexes



The complex 4a) (120.0 mg, 0.2 mmol) was dissolved inof optimization. To be able to obtain better energjues,
CH,CI, (6.0 mL) and carbon monoxide was passed through thingle point energy calculations were performed witB97X-
solution for 3 h. After the completion of the tinwe|atiles were D employing the triple split valence basis set 6-8&(d,p) was
removed in vacuo and residue was washed with mgdntane used for C, H, O, N, and Cl atoms, while LANL2TZ+EEP
to give a yellow solid. was employed for the Pd center in isopropyl alcahedium

5a: Yield: 85.6 mg, 79%: m.p= 185C: v, (CO) cm’ through integral equation formalism polarized coatim
. . . , ) M= ] a .

8 . T
2032 2% NMR (COCL 5, pp) 681 (.2 4 NELCHI). — Doces o oo ooy o . "
472 (d,J = 12 Hz, 1 H, piperidinét), 3.89-3.99 (m, 2 H, '

NCH,CH, piperidineH), 3.39-3.43 (m, 1 H, NB,CH), 3.18- 4.8.X-ray Crystallography

3.27 (m, 1 H, piperidinéd), 2.17-2.34 (m, 2 H, piperidind),

2.29 (s, 9 H, NgH,(CHs)5), 1.89-2.00 (m, 2 H, piperidinie) Single crystal X-ray diffraction data fdda and 3c were
157-1.64 (m, 2 H, piperidingd). C NMR (CDCh, 5, ppm): collected on an Agilent Diffraction Xcalibur diffracteter with

200.1 (d,Jrnc= 39.0 Hz, RiC.apen), 185.9 (d,J = 52.0 Hz, an Eos CCD area detector using graphite-monochraimdte

CO), 182.8 (d,J = 60.0 Hz,CO), 138.4, 134.9, 129.9, 128.9 Ka radiation §=0.71073 A) at room temperature. The data
(Ar-&:) 60.3 5'7_4 48.6 321'1 é2.8 2?;_3 (pip’eri(m)e-’Zl.l collection, cell refinement, and data reduction were executed

223 (NGH,(CHz).). Anal. Calc. for GyHpBrN,O,Rh: C, using the CrysAlisPro”® program. The absorption corrections
44.74: H, 5.01: N, 5.80. Found: C, 44.82; H, 5.13: 1885 " were done analytically using a multifaceted crystadel®
Y Y ' Y ' The crystal structures were solved by direct methosisg

5c: Yield: 74.2 mg, 82%; m.p= 168-17; v,(CO)cm™:  SHELXS-97° and the refinement (on F2) was carried out by
2033.0. 'H NMR (CDCh, 8, ppm): 6.86 (s, 2 H, ful-matrix least square techniques using SHELXL®AI
NCH,CeHx(CHs)s), 5.05-5.11 (m, 1 H,NCH,C¢Hy(CHs)s),  non-hydrogen atoms were refined anisotropically.ndtirogen
4.55-4.71 (m, 2 H, piperidine; NCH,Ce¢H2(CHs)s), 3.67-3.71, atoms were treated as riding atoms (C-H= 0.95 to &9
3.13-3.41, 2.77-2.87 (m, 4 H, piperidife-NCH,CH), 2.33, Molecular graphics are prepared using ORTEP-and
2.26 (s, 9 H, NCHCeH,(CHa)s), 2.24-2.41 (m, 2 H, piperidine- PLATON* software. In both structures, some of the atoms of
H), 1.44-1.89 (m, 4 H, piperidine). °C NMR (CDCk, 3, the NHC rings (N5, C24, C25, C26, C27, C283mand N2,
ppm): 199.3 (dJrn.c= 45.0 HZ, RhCcamend, 186.7 (dJ = 70.0 C3, C4, C5, C6, C7 iBc) were disordered over two different
Hz, CO), 182.8 (dJ = 77.0,CO), 137.8, 129.4, 129.3, 128.3 orientations (letters A and B for minor and majomponents,
(Ar-C), 59.9, 59.4, 54.1, 48.8, 32.3, 25.5, 23.1 (pteeC, respectively). The refinements converged to finaupancies
NCH,CeH2(CHz)s), 20.5, 20.9 (NCHCeHy(CHz)s). Anal.Calc.  of 0.521(6)/0.479(6) irBa and 0.514(8)/0.486(8) ic. Equal
for CigH26BrNORh: C, 45.89; H, 5.27; N, 5.63. Found: C,Uij constraints (EADP) were used for all of the disoedkatom
45.93; H, 5.25; N, 5.68. pairs.

5¢": Yield: 59.7 mg, 74%; m.p= 162-16€; v,(CO)cm™: CCDC 1053359 3a) and 1053360 3¢) contain the
2032.3. 'H NMR (CDCL, 3, ppm): 6.84 (s, 2 H, supplementary crystallographic data for this pafbese data
NCH,CeH2(CH3)s), 5.02-5.09 (m, 1 H,NCH,CeHx(CHs)s), can be obtained free of charge from The Cambridge
4.53-4.69 (m, 2 H, piperidine; NCH,CsHx(CHs)s), 3.64-3.75,  Crystallographic Data Centre via
3.12-3.42, 2.76-2.85 (m, 4 H, piperidife-NCH,CH), 2.32, http://www.ccdc.cam.ac.uk/data request/cif.
2.26 (s, 9 H, NCKCsH,(CHy),), 2.24-2.37 (m, 2 H, piperidine-
H), 1.37-1.87 (m, 4 H, piperiding). “*C NMR (CDCk, 3,  Acknowledgements
ppm): 199.2 (ddJgh.c = 40.0 Hz, RhC apend, 186.3 (dd,J =
16.0 Hz,CO), 182.7 (d,J = 76.0,CO), 137.8, 129.4, 128.6,  All calculations reported in this paper were perfodmat
128.3 (ArC), 59.9, 59.4, 54.1, 48.9, 32.4, 26.2, 23.High Performance and Grid Computing Center (TRUBA

(piperidineC, NCH,CeH,(CH)s), 20.5, 20.9 resources), ULAKBIM. The authors also acknowledge oku
(NCH,CsH2(CHg)s). Anal. Cale. for GeH26CIN,O,Rh: C, 50.40; Eyliil University for the use of the Agilent Xcaliburo&
H, 5.79; N, 6.19. Found: C, 50,62; H, 5.63; N, 6.35. diffractometer (purchased under University Rese@wmt no.

2010.KB.FEN.13). Financial support from Ege Universit

(project 20160FEN -046 and 2010 FenQ76) is gratefully
A two-necked 25.0 mL flask fitted with a reflux conden acknowledged.

and septum was charged with aryl halide (1.0 mmol),

phenylboronic acid (1.2 mmol), KOH (2.0 mmol), References
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