

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3979-3982

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

SAR of 3,4-Dihydropyrido[3,2-d]pyrimidone p38 Inhibitors

Luping Liu,^{a,*} John E. Stelmach,^a Swaminathan R. Natarajan,^a Meng-Hsin Chen,^a Suresh B. Singh,^a Cheryl D. Schwartz,^b Catherine E. Fitzgerald,^b Stephen J. O'Keefe,^b Dennis M. Zaller,^b Dennis M. Schmatz^b and James B. Doherty^a

^aDepartments of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA ^bDepartments of Inflamation Research, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

Received 2 July 2003; revised 19 August 2003; accepted 27 August 2003

Abstract—Development for a class of potent 3,4-dihydropyrido(3,2-d)pyrimidone inhibitors of p38a MAP kinase is described. Modification of N-1 aryl and C-6 arylsulfide in 3,4-dihydropyrido(3,2-d)pyrimidone analogues for the interaction with the hydrophobic pockets in p38 active site is also discussed. © 2003 Elsevier Ltd. All rights reserved.

Tumor necrosis factor- α (TNF- α) and interleukin-1 (IL-1) are proinflammatory cytokines produced in response to infection and other cellular stresses. MAP kinase p38 is a key player in the intracellular signal transduction cascade required for the biosynthesis of the inflammatory cytokines IL-1 and TFN- α .^{1,2} The identification of SB-203580^{1,3} as a p38 MAP kinase inhibitor led to the development of trisubstituted imidazoles as promising class of p38 antagonists by several groups.⁴⁻⁶ Potent, selective and functionally active pyrido-pyrimidones, such as 1, derived from VX-745, have been previous described.⁷ In this case, substitutents at the 7-position enhanced activity through increased rigidity, preorienting the aryl sulfide in a favorable disposition, and possibly formed a salt bridge with ASP-168 in p38 active binding site.8,9

X-ray crystallographic and mutagenesis studies of p38a with trisubstituted imidazoles as molecular probes have revealed key binding interaction in the p38 active site.^{10,11} The pyridine nitrogen forms a hydrogen bond with the amide N–H of Met 109 and the aryl group penetrating into a hydrophobic pocket not accessed by ATP (Fig. 1). A mnemonic constructed to rationalize the observed SAR in the imidazole series was utilized⁸ to predict the relative binding orientations of **1** in the p38 active site. The primary contact is made through the

0960-894X/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2003.08.059

carbonyl oxygen to form a hydrogen bond with amide Met-109. The 2,4-difluoroaryl sulfide at C-6 position penetrates into the hydrophobic pocket-1. The 2,6dichlorophenyl substituent at N-1 position is assumed to occupy the hydrophobic pocket-2 in the active site.

In this communication, we would like to report SAR efforts that help characterize hydrophobic pockets 1 and 2 in the enzyme active site with insights gleaned through molecular modeling and X-ray crystallographic analysis.

The general preparation procedures were summarized in Scheme 1. We used a modified synthetic method as reported before.⁸ Diazotization of amine **3** in HF-pyridine gave 2-fluoropyridine moiety **4**. NBS bromination

^{*}Corresponding author. Tel.: + 1-732-594-7744; fax: + 1-732-594-8080; e-mail: luping_liu@merck.com

Figure 1. Relative binding orientations of 11 to p38.

Scheme 1. Synthesis of 10: (a) 1.2 equiv NaNO₂, HF-pyridine, 70%; (b) 1.2 equiv NBS, 0.1 equiv Bz₂O₂, 80 °C, CCl₄, sun lamp, 1 h, 95%; (c) 2 equiv PMB–NH₂, CH₂Cl₂, 91%; (d) 1.5 equiv Ar–SH, 2 equiv DIPEA, 1,4-dioxane, reflux, 4 h, 71%; (e) Ar–NCO, DIPEA, CH₂Cl₂, 82%; (f) 1.2 equiv CuI, 2 equiv DIPEA, DMF, 150 °C, 2 h, 33%; (g) TFA, 110 °C, 80%.

produced 5. Displacement of bromine with 4-methoxybenzyl amine gave 6. Replacement of fluorine with thiophenol gave 7. Treatment of 7 with 2,6-dichlorophenyl isocyanate gave urea 8. Cyclization of 8 under copper iodide catalysis yield 9. Deprotection by refluxing in trifluoroacetic acid (containing 10-25% anisole) gave the corresponding pyridine-urea analogue 10 (Scheme 1).

Our binding model of **11** proposes a tight fit of the thiophenol substituent in a hydrophobic pocket 1. The model suggests that no large substituents will be tolerated in the *para* and *meta* position of the thiophenol.

However, larger substituents should be tolerated in the *ortho* position. This model is consistent with the observed SAR in Table 1.

The data from $p38\alpha/\beta$ kinase assay⁸ (Table 1) shows that *meta-* and *para-substituted* thiophenols gave low to modest activities. The *ortho-substituented* compounds **23**, **24** and **25** are less active compared to compound **18**, but compounds **14**, **15** and **16** are more potent implying methyl or chloro is preferred and there might be size or electronic restrictions at this site. All *meta-substituted* thiophenols, such as **20**, **26**, and **28** gave low to modest activities. Substituents larger than a chlorine group in the *para* position, such as **27** and **29**, give reduced activity. The experimental data from the $p38\alpha/\beta$ kinase assay is thus consistent with the prediction from our computer modeling studies. The 2,4-disubstituted thiophenols, such as **10**, **11** and **12**, showed significantly improved activity.

In order to further probe the size of hydrophobic pocket 1, we adjusted the linker one carbon longer between the aromatic group and the core ring. The synthetic procedure for the linker modification is summarized in Scheme 2. Treatment of 6 with 2,6-dichlorobenzylisocyanates gave urea 30. Cyclization of 30 under copper iodide catalysis yields 31. Replacement of fluorine with a range of nucleophiles followed by deprotection by refluxing in trifluoroacetic acid (containing 10–25% anisole) gave the corresponding pyridine-urea analogues 32. (Scheme 2). The corresponding $p38\alpha/\beta$ data for the products are summarized in Table 2.

Table 1. p38 Inhibitory activities for designed pyrido-pyrimidones:C-6 arylsulfides

Compd	а	b	с	d	p38a	p38b
					IC ₅₀ (nM)	$IC_{50}(nM)$
10	Cl	Н	F	Н	11	57
11	F	Н	F	Η	25	250
12	Cl	Н	Cl	Η	32	190
13	Cl	Н	Н	Cl	49	50%@340
14	Cl	Н	Н	Η	94	393
15	Me	Н	Н	Η	110	800
16	Br	Н	Н	Η	120	1480
17	NH_2	Н	F	Η	200	1340
18	Н	Н	Н	Η	270	2370
19	Me	Н	Н	Me	260	980
20	Н	Cl	Н	Cl	350	47%@1250
21	Н	Н	Н	F	450	74%@1000
22	Н	Н	Н	Cl	515	1490
23	NH_2	Н	Н	Н	1420	2750
24	CF_3	Н	Н	Н	1850	66%@1000
25	OMe	Н	Н	Н	1990	3430
26	Н	Cl	Н	Н	2190	67@1000
27	Н	Н	CF_3	Η	51%@10,000	31%@10,000
28	Н	CF_3	Н	Η	1815	66%@80,000
29	Η	Н	-S-4-F-Ph	Н	-6%@10,000	6%@10,000

Scheme 2. Synthesis of **32**: (a) Ar-NCO, DIPEA, CH₂Cl₂, 82%; (b) 1.2 equiv CuI, 2 equiv DIPEA, DMF, 150 °C, 2 h, 35%; (c) BnNH₂ (or HSBn), DIPEA, 1,4-dioxane, 160 °C, 14 h, 48%; (d) TFA, 110 °C, 80%.

Table 2. p38 Inhibitory activities for 32-39

Compd	Х	R	R′	p38a	p38b	
				IC ₅₀ (nM)	IC ₅₀ (nM)	
32	NH	Н	Н	113	980	
33	NH	F	F	340	42%@1000	
34	NH	Н	Cl	14%@1000	12%@1000	
35	NH	Cl	Cl	9% <u>@</u> 1000	15%@1000	
36	S	Н	Н	42%@1000	13%@1000	
37	S	F	F	21%@1000	6%@1000	
38	S	Н	OMe	$-8\%\bar{@}1000$	3%@1000	

As we predicted, because of limited space in hydrophobic pocket 1, especially the tight fit in the paraposition of the aromatic group, the $p38\alpha/\beta$ data for the compounds **36**, **37** and **38** in Table 2 have much lower activities comparing with the corresponding compounds in Table 1. Moreover, bigger *para*-substituent R' of the aromatic group in both substituted benzyl amines, such as **32**, **33**, **34**, **35**, and benzyl thioethers, such as **36**, **37**, **38**, gave lower activities. Those observations further identified the tight fit in hydrophobic pocket 1 for the phenyl group.

Investigation of hydrophobic pocket 2 has been performed by testing a series of analogues with different substituents in the N-1 aromatic ring. As demonstrated in Table 3, compounds possessing ortho substituted phenyl were dramatically more potent than the corresponding *ortho* unsubstituted **64**. It appears that the primary role of the *ortho* substituent is to maintain an appropriate orientation of the phenyl substituent.

Substituents with active proton at the *ortho* position, such as **50**, **51**, **52**, **53**, **54**, were not tolerated. Bulky group, such as **55**, will also dramatically reduce the activity.

Molecular modeling studies suggested an additional hydrogen bonding interaction with residue Y35 of p38 may be possible if a suitable hydrogen bond acceptor was present in the *para* position of the phenyl. A methyl ester substituent **56** in the *para* position did produce a slight increase activity over the parent compound **60**. A *para* acetyl moiety **57** also produced a slight increase in activity over the parent **60**. Amide analogues **59** and **61** produced same or attenuated activity especially for amides derived from larger amines.

In summary, we have described the results of optimization from our investigation for both hydrophobic

Table 3. p38 Inhibitory activities for designed pyrido-pyrimidones:N-1 arylsulfides

Compd	R1	R2	R3	p38a	p38b	Х
				IC ₅₀ (nM)	IC ₅₀ (nM)	_
39 40	Cl Cl	COOMe H	Me Et	36 38	250 200	
41 42	Cl	Н	ме F	47 48	80%@300 86%@2000	
43 44	Cl Cl	H NO ₂	Me Me	54 66	270 66%@1000	
45	Cl	Н	COOMe	80	67%@1000	
46	Me	Н	OMe	100	66%@1000	
47 48	Cl Me	H H	$\mathop{\rm CF_3}_{\rm H}$	110 180	950 52%@1000	Cl
49	Cl	CF_3	Cl	230	56%@1000	
50	Cl	Н	CH ₂ OH	46%@1000	23%@1000	
51	Cl	Н	COONH ₂	46%@1000	10%@1000	
52	Cl	Н	NH ₂	29%@1000	11%@1000	
53	Me	Н	ОН	20%@1000	16%@1000	
54	Cl	Н	СООН	14%@1000	0%@1000	
55	Ph	Н	Н	28%@1000	16%@1000	
56 57 58 59 60 61	Cl Cl Cl Cl Cl Cl	COOMe COMe H COONH ₂ H CONH- $(CH_2)_{2-}$	Cl Cl Me Cl Cl Cl	9 16 19 23 25 80	73 210 220 220 250 1230	F
62 63 64	Cl Cl H	NME ₂ COOH H H	Cl H H	96 69 600	530 530 26%@10,000	

pocket 1 and hydrophobic pocket 2 in p38 binding site for 3,4-dihydropyrido[3,2-d]pyrimidones. In order to fit hydrophobic pocket 2, the best aromatic groups in the N-1 position should have 2,6-disubstituents with size similar to chlorine, such as methyl. The *para* position in those aromatic rings have bigger space and possibly produce an additional hydrogen binding interaction with Y35 of p38 to increase activity, such as 56 and 57. As for the hydrophobic pocket 1, the optimized substituents in aromatic ring are also ortho chlorine or methyl group. The space in *para* and *meta* positions are very small, only fluorine and proton can fit in. Compounds 9, 10, 56, 57, 58, 59 and 60 are the best compounds in this analogues with $p38\alpha$ IC₅₀ < 30 nM. All of those best compounds have optimized substituents in the aromatic rings.

References and Notes

1. Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M. J.; Heys, J. R.; Landvatter, S. W.; Stricker, J. E.; McLaughlin, M. M.; Siemens, J. R.; Fisher, S. M.; Livi, G. P.; White, J. R.; Adams, J. L.; Young, P. R. *Nature* **1994**, *372*, 739.

2. Han, J.; Lee, J. D.; Bibbs, L.; Ulevitch, R. J. Science 1994, 265, 808.

3. (a) Badger, A. M.; Griswold, D. E.; Kapadia, R.; Blake, S.; Swift, B. A.; Hoffman, S. J.; Stroup, G. B.; Webb, E.; Reieman, D. J.; Gowen, M.; Boehm, J. C.; Adams, J. L.; Lee, J. C. *Arthritis Rheum.* **2000**, *43*, 175. (b) Griego, S. D.; Weston, C. B.; Adams, J. L.; Tal-Singer, R.; Dillon, S. B. *J. Immunol.* **2000**, *165*, 5211. (c) Fullerton, T.; Sharma, A.; Prabhakar, U.; Tucci, M.; Boike, S.; Davis, H.; Jorkasky, D.; Williams, W. *Clin. Pharmacol. Ther.* **2000**, *67*, 114.

4. (a) Badger, A. M.; Bradbeer, J. N.; Votta, B.; Lee, J. C.; Adams, J. L.; Griswold, D. E. J. *Pharmacol. Exp. Ther.* **1996**, 279, 1453. (b) Adams, J. L.; Boehm, J. C.; Gallagher, T. F.; Kassis, S.; Webb, E. F.; Hall, R.; Sorenson, M.; Garigipati, R.; Griswold, D. E.; Lee, J. C. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 2867. 5. Badger, A. M.; Olivera, D.; Talmadge, J. E.; Hanna, N. Circ. Shock **1989**, *27*, 51.

6. (a) Gallagher, T. F.; Seibel, G. L.; Kassis, S; Laydon, J. T.; Blumenthal, M. J.; Lee, J. C.; Lee, D.; Boehm, J. C.; Fier-Thompson, S. M.; Abt, J. W.; Sorenson, M. E.; Smietana, J. M.; Hall, R. F.; Garigipati, R. S.; Bender, P. E.; Erhard, K. F.; Krog, A. J.; Hofmann, G. A.; Sheldrake, P. L.; McDonnell, P. C.; Kumar, S.; Young, P. R.; Adams, J. L. Bioorg. Med. Chem. 1997, 5, 49. (b) Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Claremon, D. A.; Libby, B. E.; Ngyuen, K. T.; Pitzenberger, S. M.; Selnick, H. G.; Smith, G. R.; Tebben, A.; Vacca, J. P.; Varga, S. L.; Agarwal, L.; Danheck, K.; Forsyth, A. J.; Fletcher, D. S.; Frantz, B.; Hanlon, W. A.; Harper, C. F.; Hofsess, S. J.; Kostura, M.; Lin, J.; Luell, S.; O'Neil, E. A.; Orevillo, C. J.; Pang, M.; Parsons, J.; Rolondo, A.; Sahly, Y.; Visco, D. M.; O'Keefe, S. J. J. Med. Chem. 1999, 42, 2180. (c) Collis, A. J.; Foster, M. L.; Halley, F.; Maslen, C.; Mclay, I. M.; Page, M. P.; Redford, E. J.; Souness, J. E.; Wilsher, N. E. Bioorg. Med. Chem. 2001, 693.

7. (a) Bemis, G. W.; Salituro, F. G.; Duffy, J. P.; Harrington, E. M. US Patent **2000**, *6*, 080. (b) Salituro, F.; Bemis, G.; Cochran, J. Intl. Patent, 1999, WO 99/64400.

8. Natarajan, S. R.; Wisnoski, D. D.; Singh, S. B.; Stelmach, J. E.; O'Neill, E. A.; Schwartz, C. D.; Thompson, C. M.; Fitzgerald, C. E.; O'Keefe, S. J.; Kumar, S.; Hop, C. E. C. A.; Zaller, D. M.; Schmatz, D. M.; Doherty, J. B. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 273.

Stelmach, J. E.; Liu, L.; Patel, S. B.; Pivnichny, J. E.; Scapin, G.; Singh, S.; Hop, C. E. C. A.; Wang, Z.; Strauss, J. R.; Cameron, P. M.; Nichols, E. A.; O'Keefe, S. J.; O'Neill, E. A.; Scmatz, D. M.; Schwartz, C. D.; Thompson, C. M.; Zaller, D. M.; Doherty, J. B. *Med. Chem. Lett.* **2003**, *13*, 277.

10. Wang, Z. L.; Canagarajah, B. J.; Boehm, J. C.; Kassis, S.; Cobb, M. H.; Young, P. R.; Abdel-Meguid, S.; Adams, J. L.; Goldsmith, E. J. *Structure* **1998**, *6*, 1117.

 (a) Wilson, K. P.; McCaffrey, P. G.; Hsiao, K.; Pazhanisamy, P.; Galullo, V.; Bemis, G. W.; Fitzgibbon, M. J.; Caron, P. R.; Murcko, M. A.; Su, M. S. S. *Chem. Biol.* **1997**, *4*, 423.
(b) Gum, R. J.; McLaughlin, M. M.; Kumar, S.; Wang, Z. L.; Bower, M. J.; Lee, J. C.; Adams, J. L.; Livi, G. P.; Goldsmith, E. J.; Young, P. R. *J. Biol. Chem.* **1998**, *272*, 15605.