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A flexible route to analogues of dihydroimidazo[5,1-a]isoquinolines is described. The synthesis hinges on
a sequential Ugi coupling, followed by a Bischler-Napieralski reaction to form the imidazole isoquinoline
core. This route facilitates the introduction of a range of substitutions throughout the carbon framework.
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Cribrostatin 6 (1) is the first known naturally occurring example
of an imidazole isoquinoline containing compound. In the course of
several of our medicinal chemistry programs, we were interested
in pursuing structures similar to compound 2. The compounds con-
tained a very similar carbon framework to cribrostatin 6 (blue).
There have been several synthetic approaches to the imidazole
isoquinoline core, including those that have led to the total synthe-
sis of cribrostatin itself.! These synthetic approaches, although
elegant, do not allow for the rapid introduction of different
functional groups onto the core structure.
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In our approach to the imidazole isoquinoline core, a key
requirement would be the ability to rapidly create novel analogues
for testing in biological assays. We were most interested in modi-
fications to the imidazole ring, but also wanted a route that would
still be amenable to modifications of the isoquinoline ring as well.
We envisioned an Ugi multicomponent coupling? that would allow
for the assembly of the different R group-containing fragments,
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followed by a Bischler-Napieralski® reaction to form the desired
imidazole isoquinoline ring system (Scheme 1). It has been previ-
ously reported that the imidiazole isoquinoline ring system can
be assembled via a Bischler-Napieralski reaction in low yield
(11%).* We thought that we could improve the yield and efficiency
of this reaction. Additionally, with careful selection of aldehyde 6,
acid 7, and isonitrile 5 components for the Ugi coupling, we could
assemble a large degree of chemical diversity in this tandem reac-
tion sequence.

The desired isonitrile substrate for the Ugi coupling was rou-
tinely synthesized from the corresponding amine (Scheme 2).
The amine was heated in neat ethyl formate to provide formamide
9. The formamide was then cleanly converted to the desired
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Scheme 1. Ugi-Bischler-Napieralski approach.
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Scheme 2. Synthesis route for isonitriles.
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Table 1
Synthesis of dihydroimidazolisoquinones®
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¢ Isolated yield.

isonitrile 5 using POCl;. With the isonitrile in hand, we could at-
tempt the desired Ugi-Bischler-Napieralski sequence (Table 1).

Methanol was an acceptable solvent for the Ugi coupling; how-
ever, optimal results were obtained by pre-forming the imine in
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trifluroethanol, then adding the isonitrile.® A variety of modifica-
tions were tolerated on the phenyl ring (entries 1-6). Electron-
withdrawing (entry 1) and electron-donating (entries 3-6) groups
were well tolerated. Trisubstitution on the aryl ring (entry 2) did
not hinder the reaction. It was interesting to note that in the case
of entry 5, the Bischler-Napieralski cyclization gave only the less
sterically hindered product. The coupling-cyclization sequence
also tolerated a variety of aromatic and heteroaromatic aldehydes
(6) including thiophene (entries 1-3), pyridine (entries 4, 5 and
7-9), phenyl (entry 6), imidiazole (entry 10), and thiazole (entry
11). Additionally, the reaction sequence was tolerant of modifica-
tions of the acid coupling partner (7) with Me (entries 4, 5, 8 and
10) and phenyl (entry 7) being well tolerated.

In summary, we have optimized a new two step Ugi-Bischler-
Napieralski sequence for the synthesis of biologically active dihy-
droimidiazoleisoquinolines. These conditions have been applied
on a large scale to provide gram quantities of the desired products.
Future efforts will focus on expanding the scope of the reaction to
new substrate classes.
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