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Abstract

A series of forty different pyrazole containing kenidazole hybrids &45) have been
designed, synthesized and evaluated for their fatemti-proliferative activity against three
human tumor cell lines - lung (A549), breast (MOF-@nd cervical (HeLa). Some of the
compounds, specificall9, 17, and28, showed potent growth inhibition against all thdl ce
lines tested, with 1§ values in the range of 0.83-1.81 uM. Breast canelts were used for
further detailed studies to understand the mechaniscell growth inhibition and apoptosis
inducing effect of compounds. The morphology, eeigration and long term clonogenic
survival of MCF-7 breast cancer cells were severgfgcted by treatment with these
compounds. Flow-cytometry revealed the compoundessted MCF-7 cells in the G1 phase
of the cell cycle via down regulation of cyclin @2d CDK2. Fluorescent staining and DNA
fragmentation studies showed that cell proliferatieas inhibited by induction of apoptosis.
Moreover, the compounds led to collapse of mitochiah membrane potential 8m) and
increased levels of reactive oxygen species (RG3¢ woted. The ease of synthesis and the
remarkable biological activities make these compisupromising new frameworks for the

development of cancer therapeutics.
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1.0 Introduction

Cancer is a major cause of death worldwidausT the incidence of and mortality rate
from cancer has become globally important (Jlemotherapy using drugs that target cell
division, angiogenesis or that induce cancer ogditld by various signaling pathways is one
strategy to treat cancer. However, due to sidetsffand the development of drug resistance
in cancer cells, there is need to design, syntheaizd develop more potent and safer

chemotherapeutic agents [2].

Apoptosis is a programmed cell death that pysmportant role in the maintenance of
tissue homeostasis. Generally, it is consideret dpaptosis is regulated by pro and anti-
apoptotic proteins, such as the Bcl-2 and inhibibdr apoptosis protein (IAP) family
members, and executed through caspases; mainkyeianajor and inter-related pathways,
the mitochondrial-dependent ‘intrinsic’ pathway ahé death receptor-mediated ‘extrinsic’
caspase-8 pathway [3]. Disruption or inappropriggulation of these processes results in
several diseases including cancer [4]. Thus, targetitical regulators of apoptosis with the
goal of inducing apoptosis in cancer cells has getras an attractive strategy in cancer

therapy [5].

Pyrazoles are an important class of hetetmcgompounds and are promising scaffolds
in medicinal chemistry. Much attention has been paipyrazole based compounds because
of their broad range of biological effects, incluglianti-inflammatory, anti-microbial, anti-
oxidant, anti-depressant, anti-influenza and aatieer activities [6-10]. Several recent
reports suggest pyrazole derivatives as promigmtigancer agents, indicating their use in the
development of new anticancer agents [11-Adjong the anticancer pyrazoles, 1,3-diphenyl

pyrazoles have been reported to be highly poteshieffitient cytotoxic agents [15-17].



On the other hand, benzimidazole ring systems also emerged as an important
heterocyclic system due to its wide range of bimlalg activities, as well as synthetic
applications in medicinal chemistry [18-19]. Redgntarious benzimidazole derivatives
have been reported to have potential anti-tumarfanotiferative activity against different
cancers [20-22]. Due to the structural similaritythee benzimidazole nuclei with some of the
naturally occurring moieties such as purines, thasily interact with biomolecules of living
systems. Moreover, benzimidazoles attached to dtetarocyclic moieties have resulted in

compounds (hybrid molecules) with improved antigg&ractivities [23-24].

A pharmacophore hybridization approach far $ynthesis of new bioactive compounds
is an effective strategy and is being used in moadeedicinal chemistry. Hybridization of
two different bioactive molecules with complemegtgharmacophoric functions or with
different mechanisms of action often show enhaneffects [25-26]. Prompted by these
observations, and continuing our work on benzimiazand pyrazole derivatives with
significant anti-cancer activities [27-28], we dyasized pyrazole containing benzimidazole

derivatives §-45) with a view to producing promising anti-canceeats.

2.0 Results and Discussion

2.1 Chemistry

The synthetic route for 2-(1,3-dipheny-pyrazol-4-yl)-H-benzoflimidazoles 6-45)
is outlined in Scheme 1. These analogs were symttedy adapting a reported procedure
[13,16].The key aldehyde intermediaida-d) were prepared in two steps. Condensation of
the acetophenoneda-d) with phenyl hydrazine?) in ethanol produced the corresponding
acetophenone phenyl hydrazone3a-d). This was followed by cyclization of the

acetophenone phenyl hydrazones via the Vilsmeireka@action. The desired target



compounds &-45) were obtained in good yields by refluxing aldehyatermediates4a-d)

with different substitute®-phenylenediamine$é-d) in ethanol and sodium metabisulphate.

<Scheme 1>

2.2 Invitro anticancer activity

All the newly synthesized 2-(1,3-dipheny-pyrazol-4-yl)-H-benzof]imidazoles 6-
45) were evaluated for their cytotoxicity againstegathuman tumor cell lines: lung (A549),
breast (MCF-7), cervical (HeLa) and against norkeathtinocyte (HaCaT) cells using the 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliubromide (MTT) growth inhibition assay.
5-Fluorouracil was used as a positive control dreresults are summarized in TabléA$
shown in Table 1, compoun@s17 and28 exhibited potent broad spectrum anti-proliferative
activity against the three cancer cell lines, wiflap values of 0.83-1.811M. These were
superior to 5-fluorouracil which showed sifCvalues of 2.13-4.1aM. The highest growth
inhibitory activity observed in the series was agaithe MCF-7 cancer cell line, with
compound9 being most potenflCs,-0.83 uM), followed by the compound$7 (IC5,-0.93
nM) and28 (ICso-1.17 uM). The other two cancer cell lines, A54@ &elLa, also showed
sensitivity towards these three compounds withmote than 1.81/M concentration. All
compounds, with the exception aB-15, 23-25, 33-35 and 43-45, exhibited higher or
comparable cytotoxic activity against certain dalles with respect to the standard, 5-
Fluorouracil. The intermediates 1,3- diphenyl pwlazcarboxaldehyde4(a-d) displayed
moderate growth inhibition on the tested cancesaeith ICso values of 8.66-29.5 pM. We
also investigated the effect of these compoundsi@mal human keratinocytes (HaCaT)
proliferation. Interestingly, most of the synthesizzompounds had no effect on keratinocyte
cell growth (1Go >50 uM). The exceptions were compouidfdsi4, 19, 24, 31 and43, that

exhibited 1Go values in the range of 21.35-44.67 uM (Table. These results indicate



selectivity of 1,3-diphenylH-pyrazole derivatives towards tumor cells compatedhe

normal HaCaT cells.

By investigating the variation in selectyidf the three cell lines to the compounds, it
was revealed that structural variations and maatiim on the B ring of pyrazolo-
benzimidazole derivatives led to different cytotoactivities. Structure—activity relationships
in these hybrids demonstrated that compoun®s 17-19, 27-29 and 37-39, with mono-
substituted halogens (fluorine, chlorine, and brajion the benzimidazole B ring, exhibited
more potent activities than compourids 20, 30 and40 or 10, 21, 31 and42 with methoxy
and methyl substitutions, respectively. An elettwithdrawing trifluoromethyl (Cg)
substitution on the B-ring of compound®, 22, 31 and 41 resulted in moderate to lower
cytotoxic activity. In addition, the presence of dichloro groufd, (24, 34 and44) on the
phenyl ring and dimethyl group43, 23, 33 and43) on the benzimidzole B ring also caused
lower inhibitory activities. In contastyarying the substitution groups on the A-ring dimt n
impact anti-proliferative activity of these hybrids

<Table.1>

Anin silico study of compound6-45 was performed in QikProp 3.7 (Schrodinger, 2013)
[29] to determine the Lipinski’'s parameters and firedicted human oral absorption (%
ABS) (Table. S1 Supplementary information). Accaglito the ‘Lipinski’s rule of five’,
compounds that violate more than one of these r@hes of violations), may face
bioavailability issues. It was observed that al tompounds followed the rule, indicative of
their ‘drug-like’ nature. The predicte percent famoral absorption (% ABS) was 100%
indicating complete absorption via the oral rol®reover, the number of likely metabolic

reactions (#metab) was between 0-3, indicating tqwepensity for metabolic degradation.



2.3 Morphological analysis

Based on promising cytotoxic activity, theedmrmost potent compounds from this series,
compunds9, 17 and 28 were used for further mechanistic studies. To rdatee whether
these compounds could cause loss of cell viabiMZF-7 cells were treated with thes{C
concentrations for 48 h and cells were observe@muaghase contrast microscope. As shown
in Figure 1, as determined by the distinctive moipbical features of cells including
detachment and cell shrinkage, numbers of viabled=sMCells were significantly reduced
after treatment with the compounds compared torohnintreated cells.

<Figure 1>

2.4 Colony formation inhibition assay

In order to investigate the long term cytatopotential of compoundS, 17 and 28,
clonogenic cell survival assay was performed. Bsay measures the ability of a single cell
to grow into a colony. Because it reflects all modé cell death or arrest, it is considered a
standard for measuring long term cell viability [38s shown in Figure 2, exposure of MCF-
7 cells to the compounds inhibited the colony faroraof MCF-7 cells, with all reducing
clonogenic survival by approximately 50%. Theseailtesare in agreement with §ivalues,

indicating the compounds can effectively suppresg/th and proliferation of MCF-7 cells.

<Figure 2>

2.51n vitro cell migration assay

In vitro cell migration assay/wound healing assay was therfiormed. Migration of
cancer cells is a key step in tumor metastasis,asnsuch, measures of migration capacity
correlate with the metastatic potential of cancelisc[31]. Migration was assessed by
comparing the number of cells moving into the irethgvound area in control and treatment

wells. Photographs, taken at different time intex\@uring the assay (0, 24, 48 and 72 h),



showed the number of invasive breast cancer celletpating into the respective wound
areas were inhibited after treatment with thesepmmds(9, 17 and28) when compared to
the control group (Figure 3). These results indicdtat the compounds can suppress the
migration of MCF-7 cells.

<Figure 3>

2.6 Effect on mRNA expression levels of markers of cell adhesion

Cellular migration and invasiveness are aber&d to be associated with decrease in the
expression of cell adhesion markers, such as Eetadhndp-catenin [32]. E-cadherin is a
trans-membrane protein acting at cell-to-cell jioret where it influences epithelial-
mesenchymal transition. Studies have shown dowualagn of the E-cadherin expression in
tumors of many organs, including human breast [B&patenin plays an important role in the
regulation of the Wnt signaling pathway that isciali for cell-to-cell interactions in organ
development [34]. To evaluate the effect of thesmmoundy9, 17 and28) on E-cadherin
and B-catenin levels, total RNA was extracted from coommb treated MCF-7 cells and
relative E-cadherin-catenin expression levels were determined by RIR-FREesults shown
in Figure 4 indicate the pyrazolo-benzimidazole ridd enhanced the expression of E-
cadherin (1.6-2.2 times) arfdcatenin (1.4-1.6 times) in MCF-7 cancer cells. @oomd9,
which more potently inhibits cell migration, inceeal expression of E-cadherin 2.2 times.
These results suggest the hybrids, at least in pay inhibit cell migration via up-regulation

of cell adhesion markers in MCF-7 cells.

<Figure 4>

2.7 Cdll cycleanalysis
We then used flow cytometry to explore the effadftshe compound®, 17 and28 on cell

cycle. MCF-7 cells were treated with thesd@oncentrations of the compounds for 24 h,



fixed with ethanol and stained with propidium iogelidAs shown in Figure 5, treatment of
MCF-7 cells with compound9, 17 and 28 increased cell cycle arrest at the G1 phase,
resulting in cell population increase in the G1g#hé85.2%, 84.7% and 81.3%, respectively)
compared to the control cells (72.3%). In line witks finding, the cell populations in S and
G2/M phases decreased significantly after treatmienhese results demonstrate that, in
MCF-7 cells, cell cycle arrest in the GO/G1 phasatgbutes to the cytotoxicity of the

compounds.

<Figure 5>

2.8 Effect of compounds on expression levels of cell cycle check point markers

To study possible mechanisms responsiblari@st at G1 phase, we examined effects on
expression levels of some cell cycle specific gesigsh as cyclins and cyclin dependent
kinases (CDKs) by RT-PCR. As shown in Figure 6attreent with hybrids9, 17 and 28
resulted in significantly decreased levels of oyd1; a known regulator of G1/S phase
transition. There was a small increase of 1.1 Botiines in levels of cyclin B1, whereas the
MRNA levels of CDK1 were not significantly changet@ihus, pyrazole-benzimidazole
hybrids may decrease levels of cell cycle regutasarch as cyclin D1 and CDK2 in MCF-7

cells, leading to the cell cycle arrest and inlitof cell growth.

<Figure 6>

2.9 Studies of apoptosis

Apoptosis is one of the major pathways tleaids to the process of cell death and is
associated with chromatin condensation, nucleanlshg and fragmented nuclei. Tumor
cells often have irregular apoptotic pathways amttliction of tumor cell apoptosis by natural

or synthetic compounds is considered an effectinarajpy for cancer [35-36]. Moreover,



many pyrazole and benzimidazole derivatives incaymeptosis in different cancer cell lines
[37-40]. Hence it was of interest to investigate tbffects of the hybrid compounds on
apoptosis inducing effect of these hybrids in MCBr&ast cancer cells.
2.9.1 Hoechst staining

To examine apoptosis inducing effect, MCF-&llsc were treated with the g
concentration of compound® 17 and 28 for 24 h and morphological changes studied
following Hoechst 33242 staining. As shown in Fguf, control cells treated with DMSO
exhibited uniformly dispersed chromatin, whereas32% of compound treated cells showed
typical apoptotic characteristics; including conskron of chromatin (brightly stained cells)
and appearance of nuclear fragmentation (arrowhieadsate an apoptotic nucleus). Among
them, compoun® was the most potent in inducing apoptosis (42%ptgi@ cells) compared
to the other two compounds; thatlig (26% apoptotic cells) an#8 (32% apoptotic cells).
These results demonstrate the hybrids have thefmdteo induce cellular apoptosis in MCF-

7 cells.

<Figure 7>

2.9.2 DNA fragmentation assay

During the apoptotic process, activated raggs degrade the higher order chromatin
structure of DNA into mono and oligo nucleosomal ®Magments. Thus, fragmentation of
DNA leads to loss of DNA content which results icleracteristic DNA ladder on agarose
gel electrophoresis [41]. Thus, DNA fragmentati@say was carried out to further confirm
the apoptosis inducing effect of these hybrids. MCEells were treated with the 4
concentration of compund$ 17 and 28 for 24 h and chromosomal DNA was extracted.
Apoptotic degradation of DNA was analyzed by agargsl electrophoresis. A typical DNA

smeared ladder pattern, indicative of fragmentaticas observed in DNA from the pyrazole-
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benzimidazole compound treated cells (Figure 8 ®bserved smear is the result of DNA
breaks at multiple positions across the chromosddi®\. The smear intensity was most
obvious in DNA from compound and28 treated cells, whereas compoutidresulted in
moderate smear formation. In contrast, there wile lor no degradation of DNA from
control cells. The findings support the concept tompound9, 17 and28 induce apoptosis

in MCF-7 cells.

<Figure 8>

2.9.3 Effect of compounds on mitochondrial membrane potential

The maintenance of mitochondrial membrane pote(@#m) is important for mitochondrial
integrity and bioenergetic function. Previous répauggest loss of mitochondrial membrane
potential leads to apoptosis [4Zp examine this possibility, MCF-7 cells were tezhtvith
hybrid compound®, 17 and28 for 24 h and incubated with rhodamine 123. Mitaulhoa
that maintain normal ®m retain the dye, which gives strong green fluazase. However,
loss of mitochondrial membrane potential leadsdpadarization which results in less uptake
of rhodamine 123 [43]. As shown in Figure 9a, coredawith the untreated control,
compounds9, 17 and 28 treated cells exhibit a marked reduction in greloréscence.
Quantitation of fluorescence intensity demonstrdtezl compound treated cells exhibit 44-
62% loss of mitochondrial membrane potential coragan the control cells (Figure 9b).
Among the hybrids, compoun@ is more potent in inducing mitochondrial depolatian
(62%). The results suggest that, in MCF-7 celldlapse of mitochondrial membrane

potential also contributes to the apoptotic effeftthhe compunds.

<Figure 9>
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2.9.4 Effect of compounds on reactive oxygen species (ROS) levels

The increase in levels of the ROS in the mitochmmdmay result in oxidative damage to the
mitochondrial membrane which leads to apoptosi$. [ldus, we next examined the effects
of these hybrid®, 17 and 28 on ROS generation using carboxy-2',7'-dichloratisoein
diacetate (Carboxy-DCFDA) dye which upon cleavagenitracellular esterases oxidizes to
highly fluorescent carboxy-2',7'-dichlorofluoresteiCarboxy-DCF). As shown in Figure
10a, increased ROS production was observed in gontptreated cells that showed strong
green fluorescence in comparison to the controllsceQuantitative analysis by
spectrofluorometry revealed that the ROS levelseim®ed 2-4 times higher when compared
to control cells (Figure 10b). This data suggegtstoxicity of the hybrids is also dependent
on ROS production.

<Figure 10>

2.9.5 Effect on the mitochondrial mediated apoptotic pathway

Mitochondria play an important role in cell deathnaling pathways such as apoptosis [45].
Mitochondrial dependent apoptotic pathway is reaaby proteins of the Bcl-2 family
which are associated with both pro and anti-apapteffects in cancer cells. The relative
equilibrium of proapoptotic (Bax) and anti-apoptot{Bcl-2) proteins is critical for
maintaining cellular homeostasis. A change in tle/Bcl-2 ratio induces the release of
cytochrome C from mitochondria into the cytosoldieg@ to activation of caspases and
induction of apoptosis [46]. To examine the possibble of mitochondrial mediated
apoptotic pathway, the effect of these hybi{@s17 and 28) on the expression of levels of
Bcl-2, Bax and caspases-3 and 7 was analysed by@R-As shown in Figure 11, treatment
of MCF-7 cells with IGy concentrations 09, 17 and 28 resulted in significantly increased
levels of bax (proapoptotic) and reduced levelBd#2 (anti-apoptotic) mRNASs. In addition,

as shown in Figure 11, the compounds upregulatpcesgion of the proapoptotic, caspase-3

12



and 7. Thus, these mitochondrial mediated pathwagg also play a role in induction of

apoptosis by pyrazole-benzimidazole hybrids.

<Figure 11>

3.0 Conclusion

In summary, we synthesized a series of pyrazoleibedazole hybrids &45) and
investigated their antiproliferative activities éour different human tumor cell lines. The
results reveal most of the synthesized compoundmifisiantly inhibit cancer cell
proliferation; some with superior antiproliferatiaetivity than 5-fluorouracil. Compoun@s

17 and28 showed potent broad spectrum cytotoxic activitgiast all tested cancer cell lines.
Preliminary structure-activity relationships amahg series are discussed. The compounds
inhibit in vitro cell migration, possibly through restoration ofc&dherin, p-catenin
expression and also inhibit the long term colonagsarvival of MCF-7 cells. Moreover, the
compounds induces G1 phase cell cycle arrest in M@Ells through down regulation of
cyclin D1 as well as CDK2. The apoptotic effectsttidse compounds on MCF-7 cells was
studied by Hoechst staining and the DNA ladder yasBResults suggest the compounds
induce apoptosis via increased production of ROSya#on of Bax/Bcl-2 ratio, and
activation of caspase-3 and 7. Therefore, thesdtsamply that the pyrazolyl-benzimidazole
hybrids respresent targets for further optimizatgo development of anticancer agents to
treat breast cancer.

4.0 Experimental Section

4.1 Chemistry

All reagents and solvents used were of commercadayand were used without any further
purification. Progress of reactions was monitoréy thin layer chromatography (TLC)
performed on silica gel glass plates containing-&Zb4 and visualized on TLC was achieved

under UV light or with iodine indicator. Melting pds were measured with an Electro-
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thermal melting point apparatus, and are uncordedteand**C NMR spectra were recorded
on INOVA (400 MHz) or Gemini Varian-VXR-unity (2001Hz) or Bruker UXNMR/XWIN-
NMR (300 MHz) instruments. Chemical shifts (d) asported in ppm downfield from
internal TMS standards. Signal multiplicities aepnesented by s (singlet), d (doublet), t
(triplet), ds (double singlet), dd (double doublet) (multiplet) and br s (broad singlet). ESI
spectra were recorded on Micro mass, Quattro L@guSSI+ software with capillary voltage
3.98 kV and ESI mode positive ion trap detectorspiectra were recorded on KBr disc using
a FTIR bruker Vector 22 Spectrophotometer.

4.1.1 General procedurefor the synthesisof 1, 3 diphenyl pyrazole car boxaldehydes (4a-

d)

The 1,3-diphenyl-H-pyrazole-4-carboxaldehydes intermediatds-d) were synthesized
based on a literature method as followara-substituted acetophenonesa{d, 20 mmol)
interact with phenylhydrazine 2( 25 mmol) in anhydrous ethanol to form
acetophenonephenylhydrazonga-¢), which were added to a cold solution of DMF (2B)m
and POd (5 mL) and stirred at 50—60 °C for 6 h. The raesglmixture was poured into ice-
cold water, a saturated solution of sodium bicadt®was added to neutralize the mixture,
extracted with ethyl acetate and then concentratedacuo. The resulting residue was
purified by column chromatography to afford pure 3-@iphenyl-H-pyrazole-4-
carbaldehydes4é-d) in good vyields. The spectroscopic data of theaioled aldehyde

compounds was in agreement with the reported d&tdT].

4.1.2 General procedure for the synthesis of 2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole derivatives (6-45)

A solution of NaS;0s5 (40 mmol) in HO (1.6 mL) was added to a mixture of appropriag& 1,

diphenyl carboxaldehydes (10 mmol) and differenbssituted o-phenylenediamines (10

14



mmol) in ethanol. After completion of the reactidime resulting mixture was stirred at reflux
for 4 h,the mixture diluted with 50 mL of B and then extracted with ethyl acetate (2X40
mL). The combined extracts were washed with briiezd over NaSQ,, and evaporateih
vacuo. The crude product was purified by column chromgedphy using EtOAc/hexane as
the eluent to produce pure 2-(1,3-diphenyiHiyrazol-4-yl)-H-benzofl]imidazole

derivatives in good vyields.
4121 2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole (6)

White solid, yield 77%, Mp: 178-182 °CH NMR (300 MHz, CDCG}+DMSO0-d6)  8.60 (s,
1H), 7.82 — 7.73 (m, 4H), 7.55 (ddl= 6.0, 3.1 Hz, 2H), 7.45 (§,= 7.8 Hz, 2H), 7.39 — 7.27
(m, 4H), 7.20 (dd) = 6.0, 3.2 Hz, 2H)**C NMR (75 MHz, CDCi+DMSO-d6) & 150.2,
145.2, 138.7, 138.3, 131.8, 128.8, 128.7, 127.8,7,226.3, 121.5, 118.2, 114.3, 112.3. MS
(ESI): m/z 337 [M+H]. HRMS (ESI) calcd for ©HieNs [M+H]+ 337.14477; found:

337.14257.
4.1.2.2 2-(1,3-diphenyl-1H-pyrazol-4-yl)-6-fluor o-1H-benzo[d]imidazole (7)

Light brown solid, yield 71%, Mp: 189-192 °CH NMR (300 MHz, CDCJ) & 8.63 (s, 1H),
7.74 (d,J = 7.8 Hz, 2H), 7.71-7.62 (m, 2H), 7.59-7.46 (m,)pA.37 (t,J = 7.36 Hz, 2H),
7.03 — 6.93 (m, 1H)1.3C NMR (75 MHz, CDCJ) 6 161.1, 157.9, 150.7, 146.9, 139.2, 132.3,
129.5, 129.2, 129.1, 128.8, 128.6, 127.4, 119.2.511111.0, 110.7.; MS (ESIji'z 355

[M+H]". HRMS (ESI) calcd for &H1eN4F [M+H]+ 355.13535; found: 355.13342.
4.1.2.3 6-chlor 0-2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazol e (8)

White solid, yield 69%, Mp: 196-198 °Cti NMR (300 MHz, CDCJ) § 8.67 (s, 1H), 7.77
(d,J = 7.8 Hz, 2H), 7.68 (dd] = 6.4, 3.0 Hz, 2H), 7.55 — 7.42 (m, 6H), 7.35J(t 7.4 Hz,

2H), 7.20 (dJ = 7.4 Hz, 1H)}*C NMR (75 MHz, DMSOd6) § 150.1, 147.4, 138.4, 131.4,
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128.8, 128.7, 127.7, 127.6, 126.31, 124.6, 11817,8], 111.5.; MS (ESIz 371 [M+H".

HRMS (ESI) calcd for &H;16N4Cl [M+H]+ 371.10580; found: 371.10401.
4124 6-bromo-2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole (9)

Light brown solid, yield 75%, Mp: 184-187 °CH NMR (500 MHz, CDCJ) & 8.67 (s, 1H),
7.78 (d,J = 7.62 Hz, 2H), 7.74-7.67 (m, 2H), 7.53 — 7.45 @H), 7.34 (tJ = 7.32 Hz, 2H),
6.87 (dd,J = 8.69, 2.28 Hz, 1H)13C NMR (75 MHz, CD(J) 6 150.8, 146.6, 139.1, 132.2,
129.5, 129.2, 129.1, 128.9, 128.6, 127.3, 125.8,111115.6, 112.3MS (ESI): m/z 415

[M+H] *.HRMS (ESI) calcd for @H1gN4Br [M+H]+ 415.05529; found: 415.05284.
4.1.2.5 2-(1,3-diphenyl-1H-pyr azol-4-yl)-6-methyl-1H-benzo[ d]imidazole (10)

Light brown solid, yield 67%, Mp: 175-1177 °¢4 NMR (300 MHz, CDCJ) & 8.64 (s, 1H),
7.77 (d,J = 7.6 Hz, 2H), 7.69 (d] = 3.2 Hz, 2H), 7.55 — 7.39 (m, 6H), 7.34 {d= 7.4 Hz,
2H), 7.06 (d,J = 7.5 Hz, 1H), 2.45 (s, 3H}*C NMR (126 MHz, CDGJ) & 150.7, 145.8,
139.3, 132.2, 129.5, 129.2, 129.0, 128.8, 128.7,4.2127.1, 126.5, 124.1, 119.3, 119.1,
118.8, 113.0, 21.6.; MS (ESIWwz 351 [M+H]". HRMS (ESI) calcd for @HigN4 [M+H]+

351.16042; found: 351.15831.
4.1.2.6 2-(1,3-diphenyl-1H-pyrazol-4-yl)-6-methoxy-1H-benzo[d]imidazole (11)

Light yellow solid, yield 73%, Mp: 191-193 °CH NMR (500 MHz, CDC}) & 8.67 (s, 1H),
7.80 — 7.75 (m, 2H), 7.70 (ddd= 10.8, 5.8, 3.4 Hz, 2H), 7.53 — 7.44 (m, 6H)47(8J =
7.4 Hz, 2H), 6.88 (ddJ = 8.8, 2.4 Hz, 1H), 3.83 (s, 3HY’C NMR (126 MHz, CDGJ) §
156.5, 150.7, 145.3, 139.3, 132.6, 129.5, 129.3,012128.7, 127.9, 127.4, 127.1, 119.3,
119.1, 118.8, 112.9, 112.2, 55.8.; MS (E®Mjz 367 [M+H]". HRMS (ESI) calcd for &

H190ON4 [M+H]+ 367.15534; found: 367.15330.
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4127 2-(1,3-diphenyl-1H-pyrazol-4-yl)-6-(trifluor omethyl)-1H-

benzo[d]imidazole (12)

Brown solid, yield 73%, Mp: 201-203 °CH NMR (500 MHz, CDCJ) § 8.71 (s, 1H), 7.77
(d, J = 7.3 Hz, 2H), 7.70-7.64 (m, 2H), 7.55 — 7.43 {H), 7.35 (tJ = 6.9 Hz, 1H), 7.21 (s,
1H). ¥C NMR (75 MHz, CDCJ) § 150.9, 148.0, 139.1, 132.1, 129.6, 129.3, 1208, 6,
127.4, 126.5, 125.2, 124.8, 119.7, 119.2, 112.1; (@SI):mVz 405 [M+H]". HRMS (ESI)

calcd for GsH1eN4F3 [M+H]+ 405.13216; found: 405.12978.
4128 2-(1,3-diphenyl-1H-pyrazol-4-yl)-5,6-dimethyl-1H-benzo[d]imidazole (13)

Light brown solid, yield 73%, Mp: 184-186 °CH NMR (300 MHz, CDC}) & 8.55 (s, 1H),
7.78 — 7.59 (m, 5H), 7.46-7.35 (m, 3H), 7.34 (s),2ZH17 (t,J = 8.6 Hz, 2H), 2.35 (s, 6H).
MS (ESI): m/z 365 [M+H]", HRMS (ESI) calcd for &H.:N, [M+H]+ 365.17612; found:

365.17662.
4129 5,6-dichloro-2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole (14)

Light brown solid, yield 66%, Mp: 213-215 °CH NMR (300 MHz, DMSOd6) & 8.90 (s,
1H), 7.85 — 7.72 (m, 5H), 7.68 (s, 2H), 7.46)(t 7.8 Hz, 2H), 7.31-7.38 (m, 3H)’C NMR
(75 MHz, DMSO)s 150.1, 147.4, 138.4, 131.4, 128.8, 128.7, 12727.6] 126.3, 124.6,
118.1, 111.5.; MS (ESIm/z 405 [M+H]. HRMS (ESI) calcd for &HisN4Cl, [M+H]+

405.06683; found: 405.06473.
4.1.2.10 2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-naphtho[ 2,3-d]imidazol e (15)

Light brown solid, yield 76%, Mp: 197-199 °CH NMR (300 MHz, CDCJ) & 8.61 (s, 1H),
7.92-7.83 (m, 4H), 7.81 — 7.70 (m, 4H), 7.481d; 7.7 Hz, 2H), 7.39 (d] = 7.1 Hz, 2H),

7.34 (s, 2H), 7.20 (1) = 8.5 Hz, 2H).2C NMR (75 MHz, CDCJ) § 151.2, 149.7, 139.2,
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132.3, 130.6, 129.6, 129.4, 129.3, 129.1, 128.9,8,227.3, 123.9, 119.2, 112.7.; MS (ESI):

m/z 387 [M+H]". HRMS (ESI) calcd for gH1gN4 [M+H]+ 387.16081; found: 387.16105.

4.1.2.11 2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-benzo[d]imidazole

(16)

White solid, yield 73%, Mp: 179-182 °CK NMR (300 MHz, CDC}) § 8.71 (s, 1H), 7.89-
7.79 (m, 3H), 7.68-7.44 (m, 5H), 7.36 (s, 2H), 77283 (m, 3H).*C NMR (75 MHz,
CDCl,+DMSO-d6) & 163.7, 160.4, 149.2, 145.1, 138.6, 129.6, 12928,8], 128.7, 127.9,
127.9 126.2, 121.3, 118.1, 114.5, 114.2, 112.2.; (ESI): m'z 355 [M+H]". HRMS (ESI)

calcd for GoH16FN4 [M+H]+ 355.13496; found: 355.13483.

41212 5-fluor 0-2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-

benzo[d]imidazole (17)

Light brown solid, yield 79%, Mp: 189-192 °CH NMR (500 MHz, CDCJ) & 8.54 (s, 1H),
7.69 (d,J = 7.4 Hz, 2H), 7.66 — 7.60 (m, 2H), 7.52-7.41 @Hi), 7.33 (t,J = 7.4 Hz, 1H),
7.12 (t,J = 8.6 Hz, 2H), 7.00 (td] = 9.2, 2.4 Hz, 1H)**C NMR (126 MHz, CDGJ) 5 164.4,
162.3, 160.6, 158.7, 149.7, 139.2, 130.5, 129.8,.9.2128.4, 127.4, 119.2, 116.3, 116.1,
112.5, 111.2, 111.0.; MS (EShnz 373 [M+H]. HRMS (ESI) calcd for @H1sFNa

[M+H]+ 373.12647; found: 373.12513.

4.1.2.13 5-chlor 0-2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-

benzo[d]imidazole (18)

White solid, yield 77%, Mp: 198-200 °CH NMR (300 MHz, CDC}) 6 8.62 (s, 1H), 7.75
(d,J = 7.7 Hz, 2H), 7.70 — 7.62 (m, 2H), 7.54 — 7.45 8&H), 7.38 -7.31 (m, 2H), 7.23-7.19
(m, 2H), 6.90 (dtJ = 16.4, 8.5 Hz, 1H)**C NMR (75 MHz, CDCJ) § 163.5, 160.2, 149.1,

145.4, 138.0, 137.2, 135.0, 129.4, 128.6, 127.6,312122.3, 118.0, 114.5, 113.6, 109.7; MS
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(ESI): m'z 389 [M+H]". HRMS (ESI) calcd for &H1sCIFN,; [M+H]+ 389.09655; found:

389.09677.

4.1.2.14 5-bromo-2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (19)

Light brown solid, yield 71%, Mp: 207-209 °CH NMR (500 MHz, CDCJ) & 8.67 (s, 1H),
7.96 — 7.86 (m, 2H), 7.82 (d,= 7.4 Hz, 2H), 7.75 — 7.61 (m, 1H), 7.54-7.46 8H), 7.35 (t,
J = 6.5 Hz, 1H), 7.28 (dd] = 8.3, 1.4 Hz, 1H), 7.13 — 7.00 (m, 2HJC NMR (75 MHz,
CDCl) 6 163.5, 160.3, 149.1, 146.1, 138.4, 129.6, 12®8,7, 127.7, 126.1, 124.1, 117.9,
114.3, 114.1, 113.9, 111.6.; MS (EStyz 433 [M+H]". HRMS (ESI) calcd for §HsBrFN,

[M+H]+ 433.04641; found: 433.04597.

4.1.2.15 2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-5-methoxy-1H-

benzo[d]imidazole (20)

Light yellow solid, yield 77%, Mp: 213-215 °CH NMR (300 MHz, CDC}) § 8.58 (s, 1H),
7.78 — 7.62 (m, 4H), 7.47 3,= 7.8 Hz, 2H), 7.34 () = 7.4 Hz, 1H), 7.28 (s, 1H), 7.16 {t,
= 8.6 Hz, 2H), 7.01 (s, 1H), 6.91 (dii= 8.8, 2.4 Hz, 1H), 3.85 (s, 3HFC NMR (75 MHz,
CDCl) 6 164.8, 161.4, 156.6, 149.6, 139.1, 130.5, 13®@9,5], 128.71, 128.5, 127.1, 119.0,
116.1, 115.8, 112.8, 112.3, 55.7.; MS (EStyz 385 [M+H]. HRMS (ESI) calcd for

Ca3H1sFN4O [M+H]+ 385.14507; found: 385.14507.

4.1.2.16 2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-5-methyl-1H-

benzo[d]imidazole (21)

Light brown solid, yield 65%, Mp: 185-187 °CH NMR (500 MHz, CDC}) & 8.35 (s, 1H),
7.58 — 7.49 (m, 4H), 7.40 (d,= 7.3 Hz, 1H), 7.34 (t} = 7.4 Hz, 2H), 7.28 — 7.22 (m, 2H),

7.06 (dd,J = 8.2, 1.0 Hz, 1H), 6.98 (8 = 8.69 Hz, 2H), 2.44 (s, 3H}°C NMR (126 MHz,
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CDCly) § 164.1, 162.1, 149.8, 145.23, 139.2, 132.7, 13[80,3, 129.5, 128.8, 128.4, 127.1,
124.2, 119.0, 115.9, 115.8, 112.7, 21.6.; MS (E®%:369 [M+H]". HRMS (ESI) calcd for

Co3H1gFN4 [M+H]+ 369.15027; found: 369.15027.

4.1.2.17 2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(trifluor omethyl)-1H-

benzo[d]imidazole (22)

Light brown solid, yield 70%, Mp: 217-219 °CH NMR (500 MHz, CDCJ) & 8.78 (s, 1H),
7.98 — 7.91 (m, 2H), 7.88-7.82 (m, 3H), 7.72-7.67 (H), 7.49 (tJ = 7.47 Hz, 2H), 7.46
(dd,J = 8.4, 1.2 Hz, 1H), 7.35 (§,= 7.47 Hz, 1H), 7.10 (] = 8.71 Hz, 2H)**C NMR (75
MHz, CDCI3)é 163.6, 160.3, 149.3, 147.0, 138.8, 138.2, 13729,40, 128.7, 127.3, 126.3,
125.7, 123.6, 123.2, 122.1, 118.5, 114.2, 111.9,3L1MS (ESI):m/z 423 [M+H]". HRMS

(ESI) calcd for GaH1sFsN4 [M+H]+ 423.12182; found: 423.12187.

4.1.2.18 2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-5,6-dimethyl-1H-

benzo[d]imidazole (23)

Light brown solid, yield 73%, Mp: 187-189 °CH NMR (300 MHz, CDCJ) & 8.56 (s, 1H),
7.78 — 7.59 (m, 4H), 7.46 (,= 7.8 Hz, 2H), 7.34 () = 7.4 Hz, 2H), 7.25 (s, 1H), 7.14 {t,
= 8.6 Hz, 2H), 2.38 (s, 6H}*C NMR (75 MHz, CDC}) § 164.7, 161.4, 149.8, 144.7, 139.1,
131.7, 130.3, 130.2, 129.4, 128.6, 128.4, 127.6,91115.8, 115.5, 112.7, 20.3.; MS (ESI):

Mz 383 [M+H]'. HRMS (ESI) calcd for @HagFN, [M+H]+ 383.16617; found: 383.16614.

4.1.2.19 5,6-dichlor 0-2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (24)

Light brown solid, yield 79%, Mp: 203-205 °CH NMR (300 MHz, CDC}) 5 8.74 — 8.60
(m, 1H), 7.93-7.82 (m, 4H), 7.62 (s, 2H), 7.47)(& 7.0 Hz, 2H), 7.39 — 7.27 (m, 1H), 7.06

(t, J = 7.6 Hz, 2H)*C NMR (126 MHz, CDGJ) 5 163.9, 161.9, 150.0, 148.0, 139.1, 130.3,
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130.2, 129.5, 129.3, 128.2, 127.1, 125.9, 118.8,311112.0, 30.8, 29.5.; MS (ESijvz 423

[M+H] *. HRMS (ESI) calcd for §H1CIFN, [M+H]+ 423.05680; found: 423.05699.

4.1.2.20 2-(3-(4-fluor ophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-naphtho[ 2,3-

d]imidazole (25)

Brown solid, yield 70%, Mp: 193-195 °Ck NMR (500 MHz, CDC}) § 8.74 (s, 1H), 7.89-
7.84 (m, 3H), 7.78 — 7.69 (m, 4H), 7.47Jt= 7.8 Hz, 2H), 7.40 (dq] = 6.2, 3.1 Hz, 2H),
7.35 (t,J = 7.1 Hz, 1H), 7.25 (s, 1H), 7.20 Jt= 8.5 Hz, 2H)*°C NMR (126 MHz, CDGJ) §
163.7, 161.8, 150.2, 150.0, 139.1, 130.5, 130.4,113129.7, 129.4, 128.4, 127.6, 127.0,
123.4, 118.7, 115.1, 114.9, 112.6.; MS (EStjz 405 [M+H]. HRMS (ESI) calcd for

Ca6H18FN4 [M+H]+ 405.15063; found: 405.15071.

41.2.21 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole

(26)

Light brown solid, yield 73%, Mp: 177-179 °CH NMR (500 MHz, CDCJ) & 8.55 (s, 1H),
7.66 (d,J = 7.7 Hz, 2H), 7.59 (d] = 8.54 Hz, 2H), 7.56-7.52 (m, 2H), 7.42 Jt= 7.9 Hz,
2H), 7.36 (dJ = 8.4 Hz, 2H), 7.31 (§J = 7.47 Hz, 1H), 7.28 — 7.23 (m, 2HJC NMR (126
MHz, CDCk) 6 149.6, 145.3, 139.1, 135.1, 130.7, 129.8, 1298,11 127.3, 123.0, 119.1,
112.3.; MS (ESI)miz 371 [M+H]"; HRMS (ESI) calcd for §H16CIN4 [M+H]+ 371.10567;

found: 371.10580.

41222 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-fluor o-1H-

benzo[d]imidazole (27)

Light brown solid, yield 69%, Mp: 188-191 °CH NMR (300 MHz, CDC}) & 8.69 (s, 1H),
7.91-7.80 (m, 4H), 7.60 (s, 1H), 7.52-7.46 (m, 3HB6 (d,J = 7.55 Hz, 2H), 7.25 (dl = 9.1

Hz, 1H), 6.97 (tJ = 9.2 Hz, 1H)*C NMR (75 MHz, CDCJ) § 149.7, 147.8, 139.08, 134.2,
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130.7, 129.7, 129.5, 129.4, 128.3, 127.1, 125.8,8,1112.2. MS (ESI)m/z 389 [M+HT";

HRMS (ESI) calcd for &H1sCIFN4 [M+H]+ 389.09671; found: 389.09636.

4.1.2.23 5-chlor 0-2-(3-(4-chlor ophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (28)

Light brown solid, yield 71%, Mp: 208-210 °CH NMR (300 MHz, CDC}) & 8.78 (d,J =
8.7 Hz, 1H), 7.90 (dd] = 16.6, 8.0 Hz, 4H), 7.72 (d,= 11.1 Hz, 1H), 7.65 — 7.48 (m, 4H),
7.41 (d,J=7.9 Hz, 2H), 7.21 (d] = 8.3 Hz, 1H). MS (ESI)1/z 405 [M+H]".; HRMS (ESI)

calcd for G,H15CloNg [M+H]+ 405.06729; found: 405.06685.

41224 5-bromo-2-(3-(4-chlor ophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (29)

Light brown solid, yield 76%, Mp: 202-204 °CH NMR (300 MHz, CDCJ) & 8.87 (s, 1H),
7.96 (d,J = 8.5 Hz, 2H), 7.93 — 7.83 (m, 3H), 7.54Jt= 7.8 Hz, 2H), 7.44-7.34 (m, 4H),
7.29 (d,J = 8.4 Hz, 1H).13C NMR (75 MHz, CDCY) 6 147.9, 145.2, 137.5, 132.1, 129.5,
128.5, 128.0, 126.5, 125.4, 123.2, 117.1, 111.65; (BSI): m/z 449 [M+H]". HRMS (ESI)

calcd for G,H1sBrCIN4 [M+H]+ 449.01686; found: 449.01589.

41225 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyr azol-4-yl)-5-methoxy-1H-

benzo[d]imidazole (30)

Light brown solid, yield 75%, Mp: 191-193 °CH NMR (500 MHz, CDCJ) & 8.55 (s, 1H),
7.70 (d,J = 7.7 Hz, 2H), 7.61 (d) = 8.54 Hz, 2H), 7.48-7.43 (m, 3H), 7.41 (d= 8.39 Hz,
2H), 7.38-7.29 (m, 2H), 6.90 (dd,= 8.8, 2.4 Hz, 1H), 3.84 (s, 3HY°C NMR (75 MHz,
CDCl) 5 155.3, 148.7, 144.4, 138.5, 133.2, 130.3, 1288,4, 127.5, 126.2, 118.0, 112.3,
110.8, 96.5, 54.9.; MS (EShvz 401 [M+H]". HRMS (ESI) calcd for gH1gCIN4O [M+H]+

401.11680; found: 401.11694.
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4.1.2.26 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(trifluoromethyl)-1H-

benzo[d]imidazole (31)

Light brown solid, yield 71%, Mp: 216-218 °CH NMR (500 MHz, CDCJ) & 8.55 (s, 1H),
7.71 (d,J = 8.39 Hz, 2H), 7.60 — 7.55 (m, 3H), 7.51Jd; 7.78 Hz, 2H), 7.45 (f] = 8.39 Hz,
2H), 7.42 — 7.37 (m, 2H), 7.34 (dt,= 7.47, 1.52 Hz, 1H)**C NMR (75 MHz, CDC)) 5
149.8, 148.0, 139.0, 134.1, 130.7, 129.7, 129.8,41228.3, 127.1, 118.8, 112.3.; MS (ESI):
m/z 439 [M+H]". HRMS (ESI) calcd for @HisCIFsN; [M+H]+ 439.09211; found:

439.09206.

4.1.2.27 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyr azol-4-yl)-5-methyl-1H-

benzo[d]imidazole (32)

Light brown solid, yield 67%, Mp: 176-178 °CH NMR (300 MHz, CDCJ) & 8.48 (s, 1H),
7.63 (d,J = 7.8 Hz, 2H), 7.56 (d] = 8.4 Hz, 2H), 7.45-7.28 (m, 7H), 7.08 (t= 8.12 Hz,
1H), 2.46 (s, 3H)*C NMR (75 MHz, CDCJ) & 148.3, 144.1, 138.0, 132.6, 130.4, 130.0,
128.6, 128.3, 127.0, 125.7, 122.3, 117.5, 111.9.201S (ESI):m/z 385 [M+H]". HRMS

(ESI) calcd for GsH17CINg [M+H]+ 385.12185; found: 385.12093.

4.1.2.28 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-5,6-dimethyl-1H-

benzo[d]imidazole (33)

Light brown solid, yield 71%, Mp: 182-184 °CH NMR (500 MHz, CDCJ) & 8.41 (s, 1H),
7.56 (d,J = 8.08 Hz, 2H), 7.48 (1) = 8.39 Hz, 2H), 7.36-7.30 (m, 3H), 7.26-7.21 (h)4
2.34 (s, 6H)*C NMR (75 MHz, CDCY) § 149.7, 143.3, 134.4, 133.1, 130.0, 129.5, 129.2,
128.7, 128.4, 127.9, 127.3, 126.9, 126.5, 119.8,811114.3, 110.7, 109.3, 20.3.; MS (ESI):

m/z 399 [M+HJ".; HRMS (ESI) calcd for &H2oCIN [M+H]+ 399.13745; found: 399.13714.
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4.1.2.29 5,6-dichlor 0-2-(3-(4-chlor ophenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-

benzo[d]imidazole (34)

Brown solid, yield 72%, mp: 195-197 °&4 NMR (300 MHz, CDCJ) & 8.39 (s, 1H), 7.92-
7.80 (m, 4H), 7.65 (s, 1H), 7.52 {t= 7.74 Hz, 2H) 7.4 — 7.32 (m, 4H). MS (ESt)z 439

[M+H]™; HRMS (ESI) calcd for gH14ClaN4 [M+H]+ 439.0284; found: 439.0282.

4.1.2.30 2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-naphtho [2,3

d]imidazole (35)

Light brown solid, yield 75%, Mp: 184-186 °CH NMR (500 MHz, CDC}) & 8.65 (s, 1H),
7.92-7.84 (m, 3H), 7.70 — 7.59 (m, 4H), 7.45 — T®7 6H), 7.32 (t) = 7.4 Hz, 1H), 7.25 (s,
1H). **C NMR (75 MHz, CDGJ) § 150.0, 149.8, 139.1, 134.3, 130.8, 130.3, 1299,4],

128.4,127.7,127.1, 123.5, 118.8, 112.7.; MS (881 421 [M+H]".; HRMS (ESI) calcd for

Co6H1sCIN4 [M+H]+ 421.12184; found: 421.12176.

4.1.2.31 2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole

(36)

Light yellow solid, yield 78%, Mp: 179-182 °C'H NMR (300 MHz, CDC}+DMSO-d6) &
8.69 (s, 1H), 7.81 (dd}, = 8.2, 3.4 Hz, 4H), 7.56 (dd,= 5.9, 3.1 Hz, 2H), 7.48 (§,= 7.9 Hz,
2H), 7.32 (tJ = 7.4 Hz, 1H), 7.23 — 7.14 (m, 2H), 6.89 Jd; 8.8 Hz, 2H), 3.77 (s, 3H}°C
NMR (75 MHz, CDCk+DMSO-d6) 5 158.6, 149.5, 145.0, 138.2, 128.5, 128.3, 1283,6]
123.8, 120.8, 117.5, 112.5, 111.5, 54.0.; MS (E®#x:367 [M+H]. HRMS (ESI) calcd for

Ca3H190N, [M+H]+ 367.15534; found: 367.15330.

41232 6-fluor 0-2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-

benzo[d]imidazole (37)
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Light brown solid, yield 71%, Mp: 176-179 °CH NMR (500 MHz, CDC}) & 8.64 (s, 1H),
7.73 (d,J = 7.9 Hz, 2H), 7.63 (d] = 8.54 Hz, 2H), 7.47-7.43 (m, 4H), 7.32 Jt= 7.4 Hz,
1H), 7.02-6.95 (m, 3H), 3.85 (s, 3H)'C NMR (126 MHz, CDGJ) § 160.2, 159.9, 158.3,
150.7, 147.2, 139.3, 129.6, 129.4, 128.9, 126.4.612118.8, 113.9, 112.3, 110.4, 110.2,
55.1.; MS (ESI):m/z 385 [M+H]"; HRMS (ESI) calcd for @HigONsF [M+H]+ 385.1464;

found: 385.1506.

4.1.2.33 6-chlor 0-2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (38)

Light brown solid, yield 75%, Mp: 188-190 °&4 NMR (300 MHz, CDC}) & 8.47 (s, 1H),
7.62 (d,J = 7.74 Hz, 2H), 7.50-7.39 (m, 4H), 7.36-7.24 (rA))37.18 (d,J = 7.6 Hz, 1H),
6.89 (d,J = 8.5 Hz, 2H), 3.78 (s, 3H}*C NMR (75 MHz, CDCI3)5 160.1, 150.7, 147.0,
139.0, 129.7, 129.4, 128.7, 128.1, 127.1, 124.3,112118.9, 114.2, 112.0, 55.2.; MS (ESI):
m'z 401 [M+H]. HRMS (ESI) calecd for @HigON,Cl [M+H]+ 401.11637; found:

401.11412.

41234 6-bromo-2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (39)

Light brown solid, yield 78%, Mp: 194-196 °CH NMR (300 MHz, CDCJ) & 8.67 (s, 1H),
7.81 (d,J = 8.1 Hz, 2H), 7.68 (d] = 8.3 Hz, 2H), 7.57-7.42 (m, 4H), 7.36Jt= 7.2 Hz, 1H),
7.11-7.02 (m, 3H), 3.87 (s, 3HY*C NMR (75 MHz, CDCJ) § 160.2, 151.1, 146.8, 139.5,
129.8, 129.5, 128.8, 127.1, 125.6, 124.3, 119.8,511114.3, 112.0, 55.2.; MS (ESi)z 445

[M+H]".; HRMS (ESI) calcd for &H1gBrN4O [M+H]+ 445.06593; found: 445.06581.

41235 6-methoxy-2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-

benzo[d]imidazole (40)
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Light yellow solid, yield 74%, Mp: 177-179 °Ct NMR (300 MHz, CDC}) & 8.69 (s, 1H),
7.90 — 7.66 (m, 4H), 7.59-7.48 (m, 3H), 7.45)(t 7.6 Hz, 2H), 7.33 (d] = 7.2 Hz, 1H),
6.89 (d,J = 8.5 Hz, 2H), 3.82 (s, 3H), 3.78 (s, 3HIC NMR (75 MHz, CDCY) § 162.0,
160.0, 158.7, 138.3, 136.1, 130.3, 129.1, 128.6,712123.8, 118.1, 115.9, 112.5, 105.8,
101.6, 55.4, 55.3.; MS (ESlz 397 [M+H]". HRMS (ESI) calcd for &Ho10:N4 [M+H]+

397.16590; found: 397.16368.

4.1.2.36 2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyr azol-4-yl)-5-(trifluor omethyl)-1H-

benzo[d]imidazole (41)

Brown solid, yield 71%, Mp: 190-192 °CH NMR (300 MHz, CDCY) § 8.63 (s, 1H), 7.72
(d,J = 7.7 Hz, 2H), 7.57 (d] = 8.6 Hz, 2H), 7.55-7.46 (m, 4H), 7.33Jt= 7.3 Hz, 1H), 7.11
(d, J = 7.2 Hz, 1H), 6.98 (dJ = 8.6 Hz, 2H), 3.84 (s, 3H}*C NMR (75 MHz, CDC)) §
160.0, 150.8, 147.9, 138.8, 129.4, 127.2, 123.8,9,1118.9, 114.1, 110.6, 54.9. MS (ESI):
m/z 435 [M+H]. HRMS (ESI) calcd for @Hi1gONsFs [M+H]+ 435.14272; found:

435.13945.

4.1.2.37 2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyr azol-4-yl)-6-methyl-1H-

benzo[d]imidazole (42)

Light brown solid, yield 68%, Mp: 175-177 °CH NMR (500 MHz, CDCJ) & 8.53 (s, 1H),
7.66 (d,J = 7.8 Hz, 2H), 7.55 (d] = 8.7 Hz, 2H), 7.40 (] = 7.9 Hz, 2H), 7.30 (dd} = 12.4,
5.0 Hz, 4H), 6.94 — 6.90 (m, 2H), 3.80 (s, 3H),2(8, 3H).2*C NMR (75 MHz, CDC}) 5
160.2, 150.6, 145.5, 139.3, 132.5, 130.0, 129.9,22128.8, 128.6, 127.0, 126.4, 124.7,
124.1, 119.0, 118.7, 114.4, 114.0, 112.8, 110.13,551.6.; MS (ESI)m/z 381 [M+HTJ".

HRMS (ESI) calcd for gH»:0N4[M+H]+ 381.17099; found: 381.16916.
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4.1.2.38 2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyr azol-4-yl)-5,6-dimethyl-1H-

benzo[d]imidazole (43)

Light brown solid, yield 67%, Mp: 187-189 °CH NMR (300 MHz, CDCJ) & 8.93 (s, 1H),
7.65 (d,J = 7.5 Hz, 2H), 7.45 — 7.30 (m, 4H), 7.26 — 7.11 BH), 6.78 (d,J = 8.6 Hz, 2H),
6.68-6.73 (m, 1H), 3.71 (s, 3H), 2.33 (s, 6FC NMR (75 MHz, CDCJ) § 160.2, 150.5,
145.0, 139.4, 131.5, 130.0, 129.5, 129.2, 128.8.512126.9, 126.4, 124.7, 119.8, 119.1,
118.7, 114.3, 112.9, 110.8, 55.3, 20.3.; MS (ESIk 395 [M+H]". HRMS (ESI) calcd for

CosH230N, [M+H]+ 395.18664; found: 395.18477.

4.1.2.39 5,6-dichlor 0-2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-

benzo[d]imidazole (44)

Light brown solid, yield 79%, Mp: 208-210 °CH NMR (500 MHz, CDC}) & 8.73 (s, 1H),
7.82 (d,J = 7.7 Hz, 2H), 7.78 (dJ = 8.6 Hz, 2H), 7.66 (s, 2H), 7.49 (dii= 10.7, 5.1 Hz,
2H), 7.33 (tJ = 7.4 Hz, 1H), 6.95 — 6.86 (m, 2H), 3.81 (s, 38X NMR (75 MHz, CDCY) &
159.3, 150.3, 148.0, 138.8, 129.2, 129.1, 126.8,712124.2, 118.2, 113.2, 111.5, 54.7.; MS
(ESI): m/z 435 [M+H]". HRMS (ESI) calcd for &H17ON4Cl, [M+H]+ 435.07739; found:

435.07502.

4.1.2.40 2-(3-(4-methoxyphenyl)-1-phenyl-1H-pyr azol-4-yl)-1H-naphtho[ 2,3-

d]imidazole (45)

Light brown solid, yield 76%, Mp: 211-213 °CH NMR (500 MHz, CDC}) & 8.75 (s, 1H),
7.89-7.81 (s, 4H), 7.74 (d,= 7.8 Hz, 2H), 7.64 (d] = 8.6 Hz, 2H), 7.45 (f) = 7.9 Hz, 2H),
7.39 (dgJ = 6.5, 3.3 Hz, 2H), 7.32 (§,= 7.4 Hz, 1H), 7.01 (d] = 8.6 Hz, 2H), 3.83 (s, 3H).

13C NMR (75 MHz, CDCJ) & 149.2, 147.2, 142.9, 139.0, 138.4, 130.9, 12723,5, 121.2,
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114.1, 110.3, 108.5, 105.7, 101.8, 101.6, 55.4.; (@SI): Wz 417 [M+H]".; HRMS (ESI)

calcd for G;H21N4O [M+H]+ 417.17142; found: 417.17126.
4.2 Cell Culture

MCF-7 (breast), HeLa (cervical) and A549 {Jurcancer cells were purchased from
ATCC (Manassas, VA). The A549 cells were grown iRMR 1640 medium (GIBCO-
Invitrogen, NY) with 10% fetal bovine serum (FBS)dasupplemented with glutamine (2
mmol/L), penicillin G (100 pug/mL), and streptomydib00 pg/mL) at 37 °C under 5% €O
MCF-7 and Hela cells were maintained in Dulbeccuodified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS), 1% pelmd¢dtreptomycin at 37C under 5%
CO,. The culture medium was replaced with fresh mediueryetwo days. After reaching 80-
90%confluence, cells were treated with 0.25% trypsihifR& for further passage€ells were

used at passages 4-8 for all the experiments.
421MTT assay

Thein vitro cytotoxicity of test compounds on MCF-7, HelLa afAB849 cells was
performed using the MTT assay. Cells under studyevwseeded into 96 well plates at a
density of 3000-5000 cells per well depending agirtdoubling times and allowed to adhere
for 24 h at 37 °C and 5% GO After 24 h incubation, the medium was replacéith wulture
medium containing test compounds dissolved in diylesulphoxide (DMSO) and culture
medium (DMSO) only was included as a control. Af&8 h incubation, the medium
containing test compounds was aspirated and 106fculture media containing 5 mg/mL
MTT (Thiazoyl blue tetrazolium bromide) was addedeiach well and cells were further
incubated for 4 hours in dark at 37 °C. After 4 isomcubation, the media containing MTT
was removed and 100 uL DMSO was added to each tawedlolubilize the crystallized

formazan product. The plates were read on a miatepeader at 570 nm and a reference
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wavelength of 630 nm. The percent growth inhibitwas calculated as 100-[(Mean OD of
treated cell x 100)/Mean OD of vehicle treated <dIDMSO)]. The IGy values were
calculated using Probit Software. All tests werpeaded in at least three independent

experiments.

4.2.2 In vitro cell migration assay

MCF-7 cells (5x10cells/well) were cultured in a 6 well plate as doafit monolayer for
24 h. The monolayers were then scratched with 20pipette tip. The wounded monolayers
were washed twice with 150 mM PBS (pH 7.4) to reemawon-adherent cells. Media
containing G, concentrations of the compoun@sl7 and28 was then added to each well.
Cells which migrated across the inflicted wound waretographed under the phase contrast
microscope microscopy at 0, 24 , 48 and 72 h timervals after treatment in three or more

randomly selected fields.
4.2.3 Colony formation inhibition assay

MCF-7 cells at the exponential phase werteglato 6-well culture plates at a single cell
density (500 cells/well) and allowed to adhereZérh before treatment. Cells were incubated
with culture medium containing ¥gconcentrations of the compour@sl7 and28. After 24
h the medium was replaced with fresh medium ani$ egre incubated for 14 days. Cells
were then washed with 150 mM PBS (pH 7.4), fixethwl % paraformaldehyde and stained
with 0.5% methylene blue in 10% ethanol for 30 mamd rinsed with distilled water to
remove excess dye. Plates were photographed wiitital camera.

4.2.4 Céll cycleanalysis
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MCF-7 Cells (1x1Dcells/well) were seeded in 6 well plates and imted overnight.
Cells were treated with Kg concentrations of compoun@s 17 and 28 for 24 h. Vehicle
(DMSO) treated cells were used as controls. Afteh2reatment, both floating and adherent,
trypsinzed cells were collected and washed with @8@ PBS (pH 7.4). The pellet was
resuspended in 1 mL of PBS at room temperaturd arsuspended cells added to 9 ml of
70% ethanol by pipetting the cell suspension slawlio ethanol, whileand then vortexing at
high speed. Cells were kept at 4 °C. After 30 rathanol was removed by centrifuging the
cells. After tapping the tube to loosen the pelletnL PBS was added at room temp. Cells
were allowed to rehydrate for 15 min and then ¢eerged. The cell pellet was resuspended in
propidium iodide staining buffer (P1 (200 ug), @ Xv/v) Triton X-100, 2 mg DNAse-free
RNAse A (Sigma) in 10 mL PBS), and incubated formi at room temp in dark. The
samples were analysed for PI fluorescence from AG&&nts in a FACScanto -1l flow
cytometer (BD), using a linear scale for the cgltle and a logarithmic scale to determine

the sub- G1 fraction. Results were analyzed witwBb software (v 7.6.5, Tree Star, Inc.).
4.2.5 Hoechst staining

MCF-7 cells were seeded at a density of 3XHlis/well in 12 well tissue culture plates
and incubated for 24 h. The culture medium was tleptaced with media containing 4
concentrations of the compoun@sl7 and28 and incubated for 24 h. After 24 h treatment,
cells were fixed with 4% para formaldehyde andn&diwith Hoechst 33242 (5 pug/mL) for
30 min at room temp. Excess dye was removed byingshe cells twice with 150 mM PBS
(pH 7.4). Images of stained nuclei from each wetlrevcaptured from randomly selected
fields under fluorescence microscopy (filters, &tton 350 nm and emissions 460 nm) to

detect apoptotic cells.

4.2.6 DNA fragmentation assay
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MCF-7 Cells were seeded (1XH@lls/well) in six-well plates. After incubationrf@4 h,
cells were treated with Kg concentrations of compoun@s17 and28 for 24 h. Cells were
harvested by trypsinisation and centrifuged at 280 for 5 min at 4 °C. The pellet was
collected and washed with phosphate buffered slib mM PBS; pH 7.4)). 250 pL of
lysis buffer (1200 mM NaCl, 5 mM EDTA, 10 mM Tris HBH 8.0, 0.25% SDS) containing
400 pg/mL DNase free RNase A was added and inotilzt87°C for 90 min, followed by
incubation with proteinase K (200 pg/mL) at%Dfor 1 h. Samples were centrifuged at 3000
rpm for 5 min at 4C and supernatant collected. 65 pL of 10 M ammoragetate and 500
uL of ice cold ethanol was added and mixed welleSEhsamples were incubated at 80
for 1 h. After incubation, samples were centrifuged 2000 rpm for 20 min at°€ and the
pellet washed with 80% ethanol and air- dried foindin at room temperature. The pellet was
dissolved in 50 puL of TBE buffer and DNA ladderiwgs visualised by using 1.5% agarose
gel electrophoresis in TBE Buffer followed by etiish bromide staining and photography.
4.2.7 Measurement of mitochondrial membrane potential

MCF-7 cells (5X10 cells/mL) were seeded in 6 well plates and allowedadhere
overnight. Cells were treated withgoncentrations of compoun@sl7 and28. After 24 h
treatment, cells were harvested by trypsinisatwashed with 150 mM PBS (pH 7.4) and
resuspended in a solution of rhodamine 123 (5 puy/mhe cells were washed twice with
PBS followed by 30 min incubation at room tempemtilnen resuspended in PBS. Samples
were then subjected to flow cytometric analysisadPACScan (Becton Dickinson) to detect
loss of mitochondrial membrane potential. For datilie analysis, cells were observed under

a fluorescence microscope (Nikon, 10X Magnificafion

4.2.8 M easur ement of reactive oxygen species (ROS) levels
MCF-7 cells were plated in 6 well plates alemsity of 1x10 cells/mL and allowed to

adhere overnight. Cells were then treated wit}y EOncentrations of compoun€ésl7 and28
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for 24 h. After 24 h treatment, the medium was aeptl with culture medium containing
carboxy-DCFDA (10 uM) and further incubated for 8n at room temperature in dark.
Cells were collected, washed twice with 150 mM RBB 7.4) and resuspended at a density
of 5x10' cellsimL. The fluorescence intensity from each mlamwas analysed by
spectrofluorometry at excitation and emission wangths of 488 and 525 nm, respectively.
Qualitative cellular fluorescence images were aagatioy using a Nikon ECLIPSETE2000-S

fluorescence microscope.
4.2.9 RNA extraction

MCF-7 cells (1X1Bcells/ well) were plated in 6-well plates and ekl to adhere for
24h. After 24 h, cells were treated withs¢@oncentrations of compoun@sl7 and28. After
24h incubation time, total RNA was extracted usiriRlZOL reagent (Life Technologies,
Carlsbad, CA, 12183-555) according to the manufactiinstructions. Briefly, cells were
washed twice with 2 mL cold 1 x PBS followed by #ideh of 1 mL of Trizol. Cell lysis was
performed by incubating the cells with Trizol for rBin at room temperature, samples
transferred to 1.5 mL eppendorf centrifuge tubes @ri2 mL of chloroform added. Tubes
were then inverted vigorously for 15 seconds amdibated on ice for 10 min followed by
centrifugation at 12000 rpm for 15 min at°@. The aqueous phase was withdrawn and
transferred to new 1.5 mL eppendrof tubes. 0.3 misapropanol was added to the aqueous
phase and RNA precipitated. Samples were centfage3000 rpm for 30 min at%C. The
supernatant was removed and the resulting pellshed with 0.6 mL of 75% ethanol.
Samples were then centrifuged at 8000 rpm for 20ahi°C, the supernatant was discarded
and the pellet was air-dried then resuspended inl26f DEPC water. RNA was stored at
—80 °C. RNA concentration was determined with a &Ndnop (Thermo Scientific, USA).

This method yielded an average of 40 pg total Rhnf1¢ cells.
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4.2.10 cDNA Synthesis

cDNA synthesis from RNA was carried out inv@lume of 20 pL reaction mixture
containing 1 pg of RNA in 10 pL nuclease free wa2anL of 10X RT buffer, 0.8 puL of 25X
dNTP mix (100 mM), 2 uL of 10X random primers an@ BL of nuclease free water. The
thermal PCR cycles used in thermal cycler for resdranscription were: 2& for 10 min
followed by 37 °C for 2 h, 85 °C for 5 min and figahold at 4 °C. The resulting cDNA was

stored at —20 °C until use.

4.2.11 Real Time PCR

Fold change in mRNA expression levels weterd@ned by the comparative CT method.
Each 10 pL PCR reaction in PCR fast reaction tApplied Biosystems) contained 2.5 pL
of De lonised water, 5 pL of TagMan Universal Masix (Applied Biosystems), 0.5 pL
(300 nM) of assay primers (Eurofins, Germany) and_2f cDNA. Samples were subjected
to real-time quantitative PCR (Applied Biosysteni®J Fast, USA). Specific gene primers
(Bax, BCI-2, CASP-3, CASP-7, E-cadherin and thenmal control gen@-actin) were used
to amplify the target genes. The sequences of tiheah genome based primers used for RT-

PCR were

E-cadherin (CGCGTCCTGGGCAGAGTGAATTTTG)
B-catenin (CGCCAGGATGATCCTAGCTATCGTT),
cyclin-D1 (CTCTGTGCCACAGATGTGAAGTTCA),
Bax (CTGGTGCTCAAGGCCCTGTGCACCA),

Bcl-2 (CGGAGGCTGGGATGCCTTTGTGGAA),

caspase-3 (CATAAAAGCACTGGAATGACATCTC),
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caspase-7 (TATTCCACGGTTCCAGGCTATTACT),
B-actin (CCTTTGCCGATCCGCCGCCCGTCCA),

Each reaction was performed in triplicate #m@éshold cycle numbers (CT) determined
using the Applied Biosystems-7500 Fast software @#w@dmean CT of triplicate reactions
determined. Expression levels of specific genesewermalized t@-actin levels. The levels
of the target gene expression can be expresse®*asfald , wh e r eAAC; = (Crtarget—
Cr.acinTime 24 h— (Griarget — Gractigtime 0 h The ACT value is inversely proportional to the
levels of MRNA expression of the samples in thisnida. The PCR cycles used were: 1
cycle of 95°C for 3 min, followed by 40 cycles of 9& for 1 second (denaturation) and 60
°C for 20 seconds (annealing and extension). The PORucts were separated on a 1.5 %
agarose gel containing ethidium bromide and vieweder UV light. Signal intensities for

the PCR products were analysed using Quantiscanasef (Biosoft, Cambridge, MA, USA).
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Figure/Scheme Captions

Table. 1invitro anticancer activity (16y) of the pyrazolo-benzimidazole derivativés4b)

Figure. 1 Morphology of MCF-7 cells treated with 4§¢concentrations of compoun€ésl?

and28 for 48 h.

Figure. 2 Colony formation inhibition assay: MCF-7 cells weexposed to DMSO
(control)/compounds9, 17 and28 for 24 h. Medium was removed, and cells then iateth
in fresh medium for 14 days. The viable cells fodneelonies that were stained with crystal

violet.

Figure. 3 Effect of compound®, 17 and28 on migration of MCF-7 cells. The images were
captured using phase contrast microscopy immedgiélet), 24, 48 and 72 h after treatment.
Figure. 4 Effect of compounds on E-cadherin gitdatenin mRNA expression levels. MCF-
7 cells were treated with g concentrations of compoun@s17 and28 for 24 h and total
RNA was extracted. mRNA levels were measured byPRER. Target gene expression is
normalized top-actin. Each histogram represents the mean * strdieviation of three

independent experiments.

Figure. 5 a) Cell cycle analysis of MCF-7 cells treated wittngpounds9, 17 and28 for 24

h. Cells were fixed with ethanol, stained with pdwpm iodide, and then cell cycle
distribution was analyzed by flow-cytometry (BD B&cCanto-1l). Data from 10,000 cells
were collected for each data file) The percentage of cells in GO/G1, S and G2/M ebas

were quantified using Flowjo software.
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Figure. 6 Effect of compounds on mRNA expression levels ofl cgcle regulatory
molecules. MCF-7 cells were treated withydConcentrations of compoun@sl7 and28 for

24 h and total RNA was extracted. mRNA levelsyflia B1, cyclin D1, CDK1 and CDK2
were measured by RT-PCR. Target gene expressiworisalized td3-actin. Each histogram
represents the mean + standard deviation of ithospendent experiments.

Figure. 7 @) Compounds9, 17 and 28 induced nuclear morphological changes of MCF-7
cells after treatment for 24 h) Quantitative analysis of apoptosis induced by thamounds

9, 17 and28. Data are mean * Standard deviation from threepaddent experiments.

Figure. 8 DNA ladder assay. MCF-7 cells were treated withypl€oncentrations of
compounds9, 17 and 28 for 24 h. Genomic DNA was extracted, and resoloadl.5 %
agarose gels. Lanes 1-3 are DNA from compoundetdeeglls, lane 4 from control cells and
M the molecular weight marker.

Figure. 9 a) Compound®, 17 and28 induced loss of mitochondrial membrane potential i
MCF-7 cells as demonstrated with rhodamine 123istgib) The quantitative determination
of loss in fluorescence intensity was measuredoegtsofluorometry.

Figure. 10 Effect of compounds on reactive oxygen speciesléeva) MCF-7 cells were
treated with compoundd, 17, and28, incubated with carboxy-DCFH-DA. The cells were
observed for DCF-DA fluorescence in the cells obsérunder fluorescence microscop®.
Quantitative estimation of ROS was done fluorinoatity with DCF-DA, using an excitation
wavelength of 485 nm and an emission waveleng&86fnm.

Figure. 11 Effect of compound9, 17 and28 on the mRNA expression levels of apoptotic
signaling molecules in MCF-7 cells. Agarose devs bax, bcl-2, caspase-3 and caspase-7
amplification with respect t@-actin (house keeping gene). The relative mRNA esgon
levels were analyzed by real-time PCRach histogram represents the mean values *

standard deviation of three dependent experiments.
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Table. 1invitro anticancer activity(Cso) of the pyrazolo-benzimidazole derivativés46)

Compound R R R» A549° MCF-7° HelLa® HaCaT®

4a H - - 13.71#1.3 18.24+2.121.32#1.6 >50

4b F - - 8.66+0.9 24.76+1.716.64%3.1  >50

4c Cl - - 295425 9.65+0.7 15.53%1.2 >50

ad OMe - - 2.71+0.6  3.19+0.9 1.550.4 >50

6 H H H 2.71+0.6  3.19+0.9 1.55+0.4 >50

7 H F H 1.72#0.5 2.43+1.1 3.61+1.3 >50

8 H Cl H 2.37#0.2 1.96+0.6 3.48%0.3 >50

9 H Br H 1.81+0.4 0.83#0.3 1.76x0.7 >50

10 H Me H 3.61+0.1 5.94#1.3 6.561.6 >50

11 H OMe H 1.23%0.3 1.59+0.4 2.87%0.2 >50

12 H CR H 5.93+0.7 2.66x0.9 1.92#0.3 37.23x2.1
13 H Me Me  14.5+3.3 >50 41.56.9 >50

14 H Cl Cl  11.1#1.9 7.56+#1.0 13.4#1.5 29.65+3.7
15 H cbZ 19.3#2.7 12.6#1.4 21.3#3.2 >50

16 F H H 1.51+0.3 3.20+0.6 2.33%0.8 >50

17 F F H 1.13+0.2 0.95+0.3 1.570.3 >50

18 F Cl H 1.32+0.5 2.23+0.7 2.77+0.3 >50

19 F Br H 5.83+0.8 3.21+0.3 4.94%0.9 21.79+1.8
20 F OMe H 1.96+0.3 0.97+#0.2 7.51%1.9 >50
21 F Me H 1.44+0.4 1.12+0.3 3.630.6 >50

22 F CFs H 2.34¥1.4 2.13+0.6 3.52+0.7 >50

23 F Me Me >50 27.244.2 10.2+2.6 >50
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4.42+0.9

5.36+1.7
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12.1+1.9

8.13+1.7

3.67+0.5

1.74+0.6

1.29+0.2

1.06+0.4

1.14+0.2

2.76x0.7

6.61+2.0 3.29+0.4

12.8+2.7

13.2+1.1

7.46%1.3

1.6+0.2

2.36+0.2

8.93+2.5

6.6+1.2
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#1Csp values are the concentrations that cause 50 %ifiiwnitof cancer cell growth (UM).
Data represent the mean values * standard deviatiothree independent experiments
performed in triplicate® lung cancer cell line® breast cancer cell liné;cervical cancer cell

line; ® human keratinocyte cellscondensed benzene ring.

control

P

Figure. 1 Morphology of MCF-7 cells treated with §¢concentrations of the compoun@ls

17 and28 for 48 h.
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Figure. 2 Colony formation inhibition assay: MCF-7 cells weexposed to DMSO
(control)/compounds9, 17 and28 for 24 h. Medium was removed, and cells then iated

in fresh medium for 14 days. The viable cells fodneelonies that were stained with crystal

violet.

Oh

24h
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Figure. 3 Effect of compound®, 17 and28 on migration of MCF-7 cells. The images were

captured using phase contrast microscopy immedgiélet), 24, 48 and 72 h after treatment.
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Figure. 4 Effect of compounds on E-cadherin ghdatenin mRNA expression levels. MCF-
7 cells were treated with ¥gconcentrations of compoun@s 17 and28 for 24 h and total
RNA was extracted. mRNA levels were measured byPRER. Target gene expression is
normalized toB-actin. Each histogram represents the mean + stamdieviation of three

independent experiments.
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Figure. 5 a) Cell cycle analysis of MCF-7 cells treated wittngpounds9, 17 and28 for 24
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h. Cells were fixed with ethanol, stained with pdwpm iodide, and then cell cycle

distribution was analyzed by flow-cytometry (BD Be&Canto-1l). Data from 10,000 cells
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were collected for each data file) The percentage of cells in GO/G1, S and G2/M gbas

were quantified using Flowjo software.
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Figure. 6 Effect of compounds on mRNA expression levels ofl cgcle regulatory
molecules. MCF-7 cells were treated withhdConcentrations of compoun€@sl7 and28 for

24 h and total RNA was extracted. mRNA levelsydflio B1, cyclin D1, CDK1 and CDK2
were measured by RT-PCR. Target gene expressiwrisalized td3-actin. Each histogram

represents the mean + standard deviation of ihdegpendent experiments.
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Figure. 7 @) Compounds9, 17 and 28 induced nuclear morphological changes of MCF-7
cells after treatment for 24 h) Quantitative analysis of apoptosis induced by thramounds

9, 17 and28. Data are mean * Standard deviation from threepeddent experiments.
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Figure. 8 DNA ladder assay. MCF-7 cells were treated withyol€oncentrations of
compounds9, 17 and 28 for 24 h. Genomic DNA was extracted, and resoleadl.5 %
agarose gels. Lanes 1-3 are DNA from compoundedeells, lane 4 from control cells and

M the molecular weight marker.
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Figure. 9 a) Compound®, 17 and28 induced loss of mitochondrial membrane potential i
MCF-7 cells as demonstrated with rhodamine 1231st@ib) The quantitative determination

of loss in fluorescence intensity was measuredplegtsofluorometry.
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Figure. 10 Effect of compounds on reactive oxygen speciesléeva) MCF-7 cells were
treated with compoundS, 17, and 28, incubated with carboxy-DCFDA. The cells were

observed for Carboxy-DCF fluorescence under flumeese microscope.b) Quantitative
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estimation of ROS was done fluorimetrically, usangexcitation wavelength of 485 nm and

an emission wavelength of 535 nm.
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Figure. 11 Effect of compound$, 17 and28 on the mRNA expression levels of apoptotic
signaling molecules in MCF-7 cells. Agarose des bax, Bcl-2, caspase-3 and caspase-7
amplification with respect t@-actin (house keeping gene). The relative mRNA esgon
levels were analyzed by real-time PCRach histogram represents the mean values *

standard deviation of three dependent experiments
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Scheme. 1 General synthesis of 2-(1,3-diphenyd-pyrazol-4-yl)-H-benzoflimidazole
derivatives §-45). Reagents and conditions: (a) ethanol, 50-6@9¢,(b) DMF, POG], 50—

60 °C, 5 h; (c) ethanol, N&0s, 50-60 °C, 5 h.
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A series of forty pyrazole-benzimidazole hybrids were synthesi zed.
All compounds were screened for their anticancer activity
Three compounds 9, 17 and 28 displayed promising activity

These compounds induce cell cycle arrest and apoptosisin MCF-7 cells.
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Table. S1 Calculated ADME and drug-like properties of compds6-45°

Lipinski’'s Parameters

0,

Compound AB/g EATED i oo P violl\zla(t)i.o%fs #metab
6 100 2 1 336.395 5.624 1 0
7 100 2 1 354.386 5.862 1 0
8 100 2 1 370.84 6.246 1 0
9 100 2 1 415.291 6.324 1 0
10 100 2 1 350.422 5.941 1 1
11 100 3 1 366.421 5.843 1 1
12 100 2 1 404.394 6.606 1 0
13 100 2 1 364.449 6.218 1 2
14 100 2 1 405.285 6.558 1 0
15 100 2 1 386.455 6.589 1 1
16 100 2 1 354.386 5.863 1 0
17 100 2 1 372.376 6.1 1 0
18 100 2 1 388.831 6.362 1 0
19 100 2 1 433.282 6.419 1 0

20 100 3 1 384.412 5.961 1 1
21 100 2 1 368.412 6.159 1 1
22 100 2 1 422.384 6.845 1 0
23 100 2 1 382.439 6.457 1 2
24 100 2 1 423.276 6.797 1 0
25 100 2 1 404.445 6.817 1 1
26 100 2 1 370.84 6.104 1 0
27 100 2 1 388.831 6.362 1 0
28 100 2 1 405.285 6.624 1 0
29 100 2 1 449.736 6.702 1 0
30 100 3 1 400.866 6.201 1 1
31 100 2 1 438.839 7.107 1 0



32 100 2 1 384.867 6.421 1 1
33 100 2 1 398.894 6.698 1 2
34 100 2 1 439.73 7.038 1 0
35 100 2 1 420.9 7.059 1 1
36 100 3 1 366.421 5.722 1 1
37 100 3 1 384.412 5.938 1 1
38 100 3 1 400.866 6.198 1 1
39 100 3 1 445.317 6.276 1 1
40 100 4 1 396.448 5.795 1 2
41 100 3 1 434.42 6.701 1 1
42 100 3 1 380.448 6.159 1 2
43 100 3 1 394.475 6.436 1 3
44 100 3 1 435.312 6.653 1 1
45 100 3 1 416.481 6.652 1 2

& Number of hydrogen bond acceptor (NO) = nHBA; Numbé hydrogen bond donors
(OHNH) = nHBD; molecular weight = MW; Partition dfieient = log P; Number of
violations of Lipinski’s rule of five = No. of vialtions; Predicted percentage of human oral
absorption = % ABS and #metab = Number of likelytabelic reactions (optimum value <
8). The rules are: MW < 500, Id®g< 5, nHBD< 5, nHBA< 10. Compunds that satisfy these

rules are considered drug-like.



'H NMR , °C NMR and HRM S spectra of new compounds (6-45)
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