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ABSTRACT: The bioinspired synthesis of heterodimer neolignan analogs is reported by single-electron oxidation of both alkenyl
phenols and phenols individually, followed by a combination of the resultant radicals. This oxidative radical cross-coupling strategy
can afford heterodimer 8—5" or 8—0—4' neolignan analogs selectively with the use of air as the terminal oxidant and copper acetate

as the catalyst at room temperature.

henols are important motifs abundant in many natural
products, pharmaceuticals, and agrochemicals. The high
reactivity of phenol derivatives makes them versatile building
blocks in both natural and synthetic contexts." For example, by
the actions of copper or iron containing laccases or
peroxidases, the propenylphenol can form a radical inter-
mediate stabilized by resonance according to the mesomeric
forms shown in Scheme la, and radical couplings of these
mesomeric forms can produce a variety of natural products
such as lignins, lignans, neolignans, etc.” Lignans are naturally
occurring phenols which are widespread within the plant
kingdom.” Traditionally, they are classified into two types, viz.
classical lignans and neolignans. Classical lignan refers to a
dimer generated by 8-—8’ oxidative coupling of two
propenylphenols, whereas the neolignan refers to one formed
by a coupling other than 8—8".* Among the neolignans, those
heterodimers with a dihydrobenzofuran (8—5’-coupling) or
alkyl aryl ether (8—0—4'-coupling) core are worthy of
particular attention for the wide range of their biological
activities including antioxidant, anti-inflammatory, antiplasmo-
dial, neuroprotective activities, anticancer, etc. (Scheme 1b).’
The biogenesis of these natural products has inspired a
number of methodologies for the synthesis of dihydrobenzo-
furan and alkyl aryl ether neolignan derivatives in wvitro
(Scheme 1c).° For example, Chen reported Rhus vernicifera
laccases catalyzed oxidation of isoeugenol and obtained the
mixture of 8—5'-coupling dihydrobenzofuran dehydro-
diisoeugenol and 8—0—4'-coupling alkyl aryl ether.” Tringali
developed biomimetic synthesis of potent antiproliferative
activity neolignanamides through laccase-mediated oxidative
8—5’-radical-coupling of hydroxycinnamoyl amides.” Lu
studied copper(I)-tetramethylethylenediamine catalyzed bio-
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Scheme 1. Synthesis of 8—5’ or 8—0—4' Neolignan Analogs
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HOQ

4 5
; laccase or
R
3 peroxldase
2 1

ococymosin (-)-rasidasin Il (+)-acortatarinowin A from Sinocalamus affinis

(c) Biomimetic synthesis of (neo)lignans in vitro. (mainly based on homo-coupling)

HO HO

// Y laccase, copper or
R'"\=( “vanadium complex...
(d) Bioinspired selective synthesis of 8-5' or 8-0-4' neolignan analogs (via cross-coupling)

R?

HO
OH this work
{ N\ . cat. Cu(OAC), 1 /O
R\= | air, n R
— X ¢} /
R? R

* Selectivity; » Mild condition; = Air as terminal oxidant; Cross-couplmg

Received: March 4, 2021
Published: March 15, 2021

Organic

Letters

https://dx.doi.org/10.1021/acs.orglett.1c00762
Org. Lett. 2021, 23, 2816—2820


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kui+Dong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chuang-Yuan+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiao-Ju+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Li-Zhu+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiang+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.1c00762&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/orlef7/23/7?ref=pdf
https://pubs.acs.org/toc/orlef7/23/7?ref=pdf
https://pubs.acs.org/toc/orlef7/23/7?ref=pdf
https://pubs.acs.org/toc/orlef7/23/7?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00762?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.1c00762?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf

Organic Letters

pubs.acs.org/OrgLett

mimetic radical-coupling of ethyl ferulate, and the products are
mixtures containing 8—0—4', 8—5’, 8—8’, and 5—5’ coupled
diferulates.” Recently, Kozlowski found that a vanadium
complex can catalyze the oxidative homocoupling of 2,6-
disubstituted terminal alkenyl phenols to synthesize f—f (8—
8’) and f-O (8—0—4') (neo)lignan analogs selectively.'” In
these studies, neolignan derivatives were prepared via
homocoupling of propenylphenols, and the selective cross-
coupling of alkenyl phenols with other partners is still
unexplored.

Although heterodimer neolignans are widespread in nature
and could be considered biogenetically originating from
different phenols, the selective phenol—phenol cross-coupling
under oxidative conditions is difficult because of the multiple
selectivity issues with two radical intermediates.'” In most
cases, the desired cross-couplings are generally accompanled
by the homocouplings and nonselective couplings,” thereby
retarding efficient formation of the heterodimer neolignans. In
continuation of our previous work on phenols couplings,13 we
sought to accomplish selective cross-coupling of alkenyl
phenols and other phenol partners to afford heterodimer
neolignan analogs. Considering that laccases are multicopper-
containing oxidases that enable natural phenols to form various
neolignans via aerobic oxidation, we turned our attention to
the combination of copper catalyst and aerobic oxidation
(Scheme 1d)."*

Our initial investigation focused on the Cu(OAc), (8 mol
%) catalyzed cross-coupling of easily available isoeugenol la
(0.22 mmol) with 4-(dimethylamino)phenol 2a (0.2 mmol)
under air at room temperature. After extensive screening of
various solvents (Table 1, entries 1—7), we were pleased to
find that a S:1 solvent mixture of trifluorotoluene (PhCF,) and
hexafluoroisopropanol (HFIP) afforded the desired 8—5’
neolignan analog 3a in excellent yield (Table 1, entry 6, 93%
yield). Moreover, replacing Cu(OAc), with CuSO, only

Table 1. Optimization of the Reactions Conditions”

OMe
OMe HO\@
HO\©\A N HO\@\ cat. air ‘.,
P NMe, solvent, rt o NMe,

1a 2a 3a
entry cat. solvent” yield (%) dr”
1 Cu(OAc), EA 44 (20 h) >20:1
2 Cu(OAc), THF or CH;CN trace (12 h) -
3 Cu(OAc), DCM 54 (12 h) >20:1
4 Cu(OAc), HFIP 71 (12 h) 10:1
s Cu(OAc), PhCE, 44 (12 h) >20:1
6 Cu(0Ac), HFIP/PhCF, 93 (3 h) 12:1
7 Cu(OAc), MeOH 44 (12 h) >20:1
8 CuSO, HFIP/PhCF, trace (12 h) -
9 CuCl HFIP/PhCF, 66 (20 h) 12:1
10 FeCl, HFIP/PhCF, 84 (12 h) 12:1
1 Cu(OAc), HFIP/PhCF, trace (20 h) -
12 1o HFIP/PhCF, N.D. (12 h) -

“Reaction conditions: 1a (0.22 mmol), 2a (0.2 mmol), and Cat. (8
mol %) were added in 2 mL of solvent under air at rt, 3—20 h.
YHFIP/PhCF; (0.3/1.5 mL). EA (ethyl acetate); DCM (dichloro-
methane); THF (tetrahydrofuran). “The dlastereomerlc ratios were
determined by 'H NMR spectroscopic analysis. “Under Ar. N.D.
not detected.

provided trace product. It was found that a comparable yield
was obtained when FeCl; was used as the catalyst (entry 10),
while the employment of CuCl led to a decreased yield (entry
9). The control experiments showed that air is necessary for
the desired reaction (Table 1, entry 11). Moreover, the
reaction run without Cu(OAc), in the presence of air showed
no product formation, indicating that the catalyst is key in
oxidizing the substrates (Table 1, entry 12).

Following our initial optimization studies, we began to
evaluate the scope of the cross-coupling reactions for a range of
alkenyl phenols and electron-rich phenols. As shown in
Scheme 2, a variety of para-alkenyl phenols bearing different
aromatic substituent groups such as methoxyl (3a, 3b), chloro
(3¢, 3¢’), and bromo (3d, 3e) afforded the corresponding 8—

Scheme 2. Scope for Synthesis of 8—5’ Neolignan Analogs®
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“Reaction conditions: 1 (0.22 mmol), 2 (0.2 mmol), Cu(OAc), (8
mol %) were added in 1.8 mL of HFIP/PhCF; (0.3/1.5 mL) under
air at rt, 3—12 h. ®Without 2.
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5’ neolignan analogs in good to excellent yields. The
unsubstituted precursor was also oxidized in good yield to its
corresponding cyclized product (3f). para-Coumaryl alcohol,
one of the phenylpropenoid monolignol units of lignin, was
suitable for producing 3g in 81% yield. The alkenyl phenol
bearing an ethyl group in the f position exhibited high
reactivity (3h). Pterostilbene, a dimethyl ether derivative of
resveratrol, could afford adduct 3i in 36% yield. A terminal
alkene worked well to generate the expected 3j in good yield.
Interestingly, N,N-dimethyl-4-(prop-1-en-1-yl)aniline was also
a useful substrate to give product 3k in moderate yield due to
its formation of a resonance-stabilized free radical intermedi-
ate. ortho-Alkenyl phenols substrate was also found to be
suitable for the reaction to afford the expected product 31 albeit
with less efficiency. The nonreactivity of 1n may attribute to its
high oxidant potential (E,,*™ = 1.23 V vs Ag/AgCl; see the
Supporting Information).

Encouraged by the above results, we next switched our
attention to investigate the scope of electron-rich phenols.
Various N-substituted 4-aminophenols (3m—3o0, 3q—3t) were
well accommodated. Unfortunately, 4-methoxyphenol 2k
(E, ;™ = 1.06 V vs Ag/AgCl) failed to participate in this
reaction most likely due to the inferior efficiency for the single-
electron oxidation to generate the phenol radical intermediate.
Remarkably, the presence of an additional tert-butyl group at 4-
methoxyphenol afforded product 3p in 47% yield. 3-
(Dimethylamino)phenol 21 (E,,™ = 0.58 V vs Ag/AgCl) has
a low oxidant potential but failed to give the product, probably
due to its non-formation of a resonance-stabilized phenol
radical compared with 2a (E,,™ = 0.38 V vs Ag/AgCl).
Interestingly, without 2a present, dimerization product Licarin
A was isolated in 60% yield. This suggests that the cross-
coupling between la and 2a proceeds much faster than the
homocoupling of 1a under the standard reaction conditions.

It was found that 8—0—4" neolignan analog Sa could be
produced dominantly instead of 8—5' coupling 3a when
nucleophile aniline'® was introduced into our copper(II)/air
catalyst system (Table S1). An increased yield was observed
(92%, dr = 16:1) when ethyl acetate (EA) was used as the
solvent. With the optimized conditions in hand, we directed
our studies toward exploring the scope of this three-
component radical cross-coupling reaction. This effective
method exhibits good tolerance of a broad range of functional
groups. When using various anilines as nucleophiles, diverse
functionalized products could be achieved via the copper-
catalyzed aerobic coupling (Sa—5g) (Scheme 3). The late-
stage modification of DL-a-Tocopherol was also feasible to give
the 8—0—4' neolignan analog Sh in 90% yield. Moreover, we
found that phenoxazine as well as phenothiazine could also
take part in the three-component cross-coupling (Se—Sg and
Si). Other nucleophiles such as MeOH were also efficient in
this process, which afforded the corresponding adduct Si in
50% vyield.

To gain some insight into the reaction process, we carried
out a series of mechanistic studies. Methyl isoeugenol 1m
(E, 2™ = 0.97 V vs Ag/AgCl) failed to give product, although
the oxidant potential of 1m is comparable to isoeugenol la
(E, 2™ = 0.95 V vs Ag/AgCl), indicating that the phenolic OH
group is crucial to substrate activation (Scheme 4a). The
product 6 from 4g and 2a was achieved in our Cu/air catalyst
system (Scheme 4b), probably via a radical cross-coupling
process based on previous studies.'® Thus, the radical cross-
coupling pathway was likely involved, which was further
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Scheme 3. Scope for Synthesis of 8—0—4" Neolignan
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zine (0.2 mmol), anilines (0.2 mmol), Cu(OAc), (8 mol %) were
added in 2 mL EA under air at rt, 12—24 h. YMeOH as solvent.

Scheme 4. Control Experiments
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supported by the radical trapping experiment with TEMPO to
give adduct 5j (Scheme 4c). Moreover, the desired products
were still obtained in satisfactory yields with 2 equiv of
Cu(OAc), under Ar, suggesting that the oxygen might mainly
function as the oxidant of the Cu(I) species (Scheme 4d).
Based on these results, a plausible mechanism is proposed in
Scheme 5. The proposed pathway of these reactions features
formation of Cu(II)-phenolates and subsequent single-electron
transfer to afford phenoxyl radicals and cuprous species which
could be oxidized to copper(II) by molecular oxygen. The key
step of the reaction is the selective radical cross-coupling of 1a-
IT with 2a-I or 2a-II. The formation of 3a can be rationalized
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Scheme 5. Proposed Mechanisms
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by the intramolecular nucleophilic addition of OH to quinone
methide intermediate 3a-I produced from the radical cross-
coupling of 1a-II with 2a-II. Furthermore, the formation of Sa
can be rationalized by the intermolecular nucleophilic addition
of aniline to quinone methide intermediate Sa-I produced
from the radical cross-coupling of 1a-II with 2a-L

To demonstrate the practical application of these trans-
formations in organic synthesis, we carried out gram-scale
reactions as well as further functionalizations of the product 3a
(see the Supporting Information). First, a large-scale reaction
of 1a and 2a was performed to deliver the desired product 3a
in 86% yield with 12:1 dr. Moreover, the desired product Sa
was obtained without a significant decrease in efficiency (88%
versus 92%, Scheme 6a). As shown in Scheme 6b, 3a-A was
afforded in 79% yield by a two-step synthetic sequence

Scheme 6. Gram-Scale Reactions and Applications of 3a to
Diverse Scaffolds
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m /@/NMez

5a 88 % 15:1dr
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3a-C 64%
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0
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4(i) DMAP, EtN, TE;NPh, DCM; (ii) K,CO,, Pd(PPh),, PhB-
(OH),, DMF, 90 °C. “CsCO,, tert-butyl 3-iodoazetidine-1-carbox-
ylate, MeCN, 80 °C. “(i) AcCl, DIPEA, DCM, 0-25 °C; (ii) MeOTf,
CH,Cl,; (iii) PhMgBr, PdCL,(PPh;),, THF; (iv) NaOH, MeOH.
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involving Suzuki coupling. An alkylation sequence on 3a
delivered 3a-B in 87% yield. 3a-C can be afforded in 64% yield
by a four-step synthetic sequence involving palladium-
catalyzed cross-coupling of aryltrimethylammonium triflate
with a Grignard reagent (Scheme 6b)."”

In summary, we have developed a commercially available
and earth-abundant Cu catalyst for the intermolecular
oxidative cross-coupling reaction of alkenyl phenols and
other coupling partners. The method proceeds under benign
conditions, using O, in air as the oxidant at room temperature.
More specifically, we demonstrate a regioselective oxidative
cross-coupling for the direct construction of heterodimer 8—5’
or 8—0—4' neolignan analogs.
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