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A novel class of 5,6-dihydro-4H-benzo[d]isoxazol-7-
ones and 5,6-dihydro-4H-isoxazolo[5,4-c]pyridin-7-ones
was designed, synthesized, and assayed to investigate
the affinity toward Hsp90 protein. The synthetic route
was based on a 1,3-dipolar cycloaddition of nitriloxides,
generated in situ from suitable benzaldoximes, with
2-bromocyclohex-2-enones or 3-bromo-5,6-dihydro-
1H-pyridin-2-ones. Whereas all the compounds bearing
a benzamide group on the bicyclic scaffold were devoid
of activity, the derivatives carrying a resorcinol-like frag-
ment showed a remarkable inhibitory effect on Hsp90.
Docking calculations were performed to investigate the
orientation of the new compounds within the binding
site of the enzyme.
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Heat-shock protein 90 (Hsp90) is a molecular chaperone,
which is essential for a wide range of protein assembly,
trafficking, folding, and degradation processes (1). Multiple
signal transduction pathways implicated in the regulation
of cell proliferation and survival are dependent on Hsp90
(2). Several Hsp90 client proteins are involved in critical
processes, including cell-cycle regulation and apoptosis.
The heat-shock proteins are often overexpressed in tumor
cells, and this supports their ability to survive under unfa-
vorable stress conditions (e.g., hypoxia and acidosis), as
well as to facilitate rapid somatic evolution (3).

The discovery and characterization of natural compounds
inhibiting Hsp90, such as geldanamycin (GDA) and radici-
col (Figure 1), has validated this molecular chaperone as
a therapeutic target. GDA (4) inhibitory activity is mainly
due to a competition with the ATP binding within the N-
terminus of the protein. Radicicol (5), a natural macrocy-
clic antifungal antibiotic, inhibits Hsp90 by interacting
within the same site of action of GDA. Due to its chemi-
cal instability, this compound could not be developed,
but served as a template for the discovery of new Hsp90
inhibitors. In particular, the presence of a resorcinol-like
fragment was found to be extremely important to drive its
binding mode and to get a strong interaction with the
enzyme. This mode of binding has also been verified with
other synthetic series of compounds (6–8).

The investigation and clinical development of Hsp90 inhibi-
tors continue to progress. Currently, a number of highly
specific compounds are undergoing clinical trials (i.e.
SNX5422, NVP-AUY922, and STA9090; Figure 1), and an
impressive growth in scientific literature confirms the great
interest toward this target (9). However, to date, there are
still no FDA approved Hsp90-targeting agents. For all
these reasons, the finding of novel chemotypes that fully
satisfy requisites of safety and stability, moving forward the
knowledge in this field, still remains an interesting and
promising goal.

Previous reports supported the hypothesis that the pres-
ence of the isoxazole nucleus could exert a key role in
the docking of compounds to the ATP binding site of the
enzyme. In fact, synthetic compounds containing this het-
erocyclic moiety have shown potent and selective inhibi-
tion of Hsp90, see NVP-AUY922 and SST0116CL1
(6,10–12).

Recently, a structural investigation on the isoxazole scaf-
fold led us to discover a new class of 4,5,6,7-tetrahyd-
roisoxazolo-[4,5-c]pyridines containing an isoxazole
nucleus fused with a tetrahydropyridine ring (13). Other
structures described in recent papers, containing con-
densed bicyclic groups, have been very successful in tar-
geting Hsp90 (7,8,14). Thus, we envisaged that the
isoxazole scaffold could be fused to other rings to build
novel series of potential Hsp90 inhibitors with a bicyclic
core structure.
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Based on preliminary computational studies on isoxazole-
based molecules using Hsp90 X-ray structure, we selected
compounds with a 5,6-dihydro-4H-benzo[d]isoxazol-7-one
(1, X = CH2, Scheme 1) or a 5,6-dihydro-4H-isoxazolo
[5,4-c]pyridin-7-one (1, X = NH, Scheme 1) scaffold as
starting points for further investigation. Our exploration
was focused on the expansion of the core structure within
the ATP binding site, by adding groups aimed at improving
the fitting to the pocket. In particular, we planned to link
the bicyclic system either to a resorcinol-like group or to a
primary benzamide moiety, being both these fragments
able to confer tight binding into the ATP binding pocket
(15).

The synthetic route used for the preparation of
compounds 1 was based on a 1,3-dipolar cycloaddition of

nitriloxides, generated in situ from suitable benzaldoximes
to 2-bromocyclohex-2-enones or 3-bromo-5,6-dihydro-
1H-pyridin-2-ones. (Scheme 1).

Literature reports (16) show that cycloaddition of arylnitril-
oxides to cyclohexenones affords 4-acylisoxazolines. Simi-
larly, cycloaddition to a,b-unsaturated lactams affords
mainly 4-carboxamidoisoxazolines with high regioselectivity
(17). Thus, to reverse the regiochemistry of the reaction,
we planned to use lactams and ketones with a bromine
atom in alpha position with respect to the carbonyl group.
Following this strategy, the isoxazole could be obtained in
one step, due to the spontaneous isoxazoline dehydrobro-
mination.

The key fragment 5 was obtained in three steps, starting
from commercially available 2,4-dihydroxybenzaldehyde 4

(Scheme 2). Chlorination of 4 with NCS, protection of the
phenol groups with 2-methoxyethoxymethyl chloride, fol-
lowed by reaction with hydroxylamine hydrochloride in eth-
anol, in the presence of pyridine, gave the oxime 5.

Compound 7a was obtained starting from N-methylpiperi-
done, which was brominated to obtain 1-methyl-3,3-dibro-
mo-2-piperidone (18). Dehydrobromination with CaCO3 in
DMF at 80 °C gave 7a in good yield (19). Similarly, 7b

was obtained from d-valerolactone (20). Cycloaddition of 5
to 7a and 7b was performed in dichloromethane at room
temperature by generating the nitriloxide in situ with NCS

Figure 1: Hsp90 inhibitors.

Scheme 1: Retrosynthetic approach to compound 1.
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Scheme 2: Synthesis of compounds 9a,b. Reagents and conditions: (a) NCS, CHCl3, 6h, reflux, 89%; (b) 2-methoxyethoxymethyl
chloride, iPr2EtN, THF, 24 h, r.t.; (c) NH2OH�HCl, py, EtOH, 4h, reflux, 71%; (d) PCl5, ZnCl2, Br2, CHCl3, 0 °C, r.t., 54% from 6a and 60%
from 6b; (e) CaCO3, DMF, 80 °C, 88% for 7a and 69% for 7b; (f) NCS, Al2O3, CH2Cl2, r.t., 67% for 8a and 57% for 8b; (g) HCl (10%),
CH3OH, reflux, 43% for 9a and 76% for 9b.

Scheme 3: Synthesis of compounds 13-16. Reagents and conditions: (a) Br2, TEA, CH2Cl2, 0 °C then rt, 86%; (b) NCS, Al2O3, CH2Cl2,
r.t., 49%; (c) HCl (10%), CH3OH, reflux, 61%; (d) CeCl3�7H2O, NaBH4, CH3OH, HCl (10%), 55%; (e) NH2OH�HCl, py, EtOH, reflux; (f) TFA,
CH2Cl2, 75%; (g) NH2OCH2CH2NH2 HCl, py, EtOH, reflux, 44%.

1032 Chem Biol Drug Des 2015; 86: 1030–1035

Musso et al.



and Al2O3, to obtain 8a and 8b, respectively (21). Finally,
deprotection of the phenol groups gave compounds 9a-b.

Cycloaddition of 5 with 11, on its turn obtained from
cyclohexen-2-one (22), afforded 12, which was deprotect-
ed by 10% HCl to give 13 (Scheme 3). To investigate the
role of the carbonyl group of 13, a series of analogs were
prepared starting from the intermediate 12. Treatment with
NaBH4 and CeCl3, followed by HCl, gave the reduced
compound 14. Reaction of 12 with hydroxylamine hydro-
chloride or O-(2-aminoethylhydroxylamine) gave the oximes
15 and 16, respectively.

A series of analogs with the benzamide moiety were pre-
pared following the same synthetic strategy (Scheme 4).
The 4-(hydroxyiminomethyl)benzonitrile 18 was prepared
from 4-cyanobenzaldehyde 17 by reaction with hydroxyl-
amine hydrochloride in ethanol, in the presence of pyridine
(23). The cycloaddition reaction, performed following the
conditions previously described, afforded 19 in 30% yield.
The yield was increased to 38% when the 4-cyanobenzal-
dehye chlorooxime obtained reacting 19 with N-chlorosuc-
cinimide in DMF was reacted with the dipolarophile 11 in
the presence of (Bu3Sn)2O at room temperature (24).
Amide 20 was obtained by reaction of 19 with H2O2 and
NaOH. Similarly to compound 12, compound 20 was con-
verted to oximes 21a-c by reaction with suitable hydroxyl-
amines, whereas compound 22 was obtained by
reduction with NaBH4, followed by treatment with H2O2

and NaOH.

The binding affinity of these compounds to Hsp90 was
determined by a fluorescence polarization (FP) assay,

according to a protocol described previously (25). The
results are summarized in Table 1.

The most disappointing result was the lack of activity
showed by compounds carrying the benzamide moiety
(20, 21a-c, 22). The compounds with a resorcinol-like moi-
ety appeared more promising. In fact, almost all the tested
molecules showed inhibitory activity with IC50 < 10 lM.
Compound 15, with an oxime group, showed a notable
binding ability (IC50 = 0.8 lM). The reduction of the car-
bonyl group (as in 14) caused a decrease of activity
(IC50 = 26 lM), similarly to the introduction of a methyl
group on the dihydropyridone moiety (9b versus 9a).

According to the previous data, the compounds with the
resorcinol fragment (9a-b, 13-16) showed the most inter-
esting profile, and two of them (namely, 9b and 15) had
ability to bind Hsp90 comparable to or slightly better than
that of the reference compound 17-AAG (1.6 and 0.8 lM
versus 1.1 lM, respectively).

To gain a more precise picture of the interaction mode of
these compounds with Hsp90, a computational protocol
consisting in molecular docking calculations and energy
minimization of the resulting complexes was set up. For this
purpose, the structure of Hsp90 was taken from the crystal-
lographic co-ordinates of its complex with NVP-AUY933
(PDB entry 2VCI) (6) and used as a template. Docking simu-
lations and energy minimization were performed as previ-
ously described for other Hsp90 triazole inhibitors (26).

Analysis of the complexes resulting from docking calcula-
tions showed that the orientation of the new compounds

Scheme 4: Synthesis of compounds 21a-c and 22. Reagents and conditions: (a) NH2OH�HCl, py, EtOH, reflux, 71%; (b) NCS, CH2Cl2,
r.t.; (c) 11, (Bu3Sn)2O, CH2Cl2, rt, 38%; (d) H2O2, 6N NaOH, EtOH, 57%; (e) NH2OR�HCI, py, EtOH, reflux, 58%; 21a: 58%, 21b: 41%,
21c: 50%; (f) CeCl3�7H2O, NaBH4, CH3OH, HCl (10%), 55%; (g) H2O2, 6N NaOH, EtOH, 94%.
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9a-b, 13-16 within the binding site is very similar to that
previously found for different Hsp90 inhibitors (26), with
the resorcinol moiety deeply located within the cavity,
while the remaining part of the molecule pointed toward
the solvent (Figure 2). In further detail, the o-hydroxy group
is involved in a direct and in a water-bridged (HOH2233,
one of the four structural water molecules accommodated
within the Hsp90 binding site) hydrogen bond with the
terminal carboxyl group of Asp93. On the other hand, the

p-hydroxy group makes a water-mediated (HOH2232,
another structural water molecule present in the binding
site) hydrogen bond with the carbonyl group of Leu48.
The chlorine atom is accommodated in a large hydropho-
bic cavity delimited by Phe138 and Leu107 side chains.
Moreover, also the isoxazole nitrogen atom interacts with
the carboxyl terminus of Asp93 through a water-mediated
(HOH2233) hydrogen bond. The oxime nitrogen of the
most active compound (15) interacts with the ammonium
group of the Lys58 side chain, whereas the endocyclic
oxygen is involved in an intramolecular hydrogen bond
with the terminal OH group of the oxime moiety. The satu-
rated portion of the six-membered condensed ring does
not show any significant hydrophobic interaction with the
protein.

In summary, we have designed and synthesized a novel
class of 5,6-dihydro-4H-benzo[d]isoxazol-7-ones and 5,6-
dihydro-4H-isoxazolo[5,4-c]pyridin-7-ones to investigate
their affinity toward Hsp90 protein. Whereas all the com-
pounds having a benzamide group on the bicyclic scaffold
were devoid of activity, all the derivatives carrying a resor-
cinol-like fragment showed inhibitory effect on the enzyme.
In particular, 15 possessed a remarkable binding ability
(IC50 = 0.8 lM), slightly better than that of the reference
compound (17-AAG). On this basis, it could be considered
as a useful starting point for medicinal chemists involved in
designing new scaffolds in the field of Hsp90 inhibitors.

Work is in progress to investigate structural changes of
the resorcinol portion, as well as of the bicyclic moiety, to
enhance the fitting into the Hsp90 ATP binding pocket,
and to improve the activity of the compounds.
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