Enantioselective Strecker Reaction Catalyzed by an Organocatalyst Lacking a Hydrogen-Bond-Donor Function**

Mihaela Negru, Dieter Schollmeyer, and Horst Kunz*

Dedicated to Professor Dieter Seebach on the occasion of his 70th birthday

The Strecker reaction^[1] is of great interest for the synthesis of natural products and drugs. The products, aamino nitriles, can readily be converted to a-amino acids, 1,2-diamines, and 2amino alcohols, all of which are valuable building blocks for the synthesis of biologically active compounds. Therefore, stereoselective Strecker reactions^[2,3] resulting in amino nitriles with high enantiopurity receive particular attention. With this aim, chiral catalysts have been developed in the form of transition-metal complexes^[4] or organocatalysts which, as a rule, are efficient hydrogen-bond donors^[5] or Brønsted acids.^[6] Axially chiral aryldi-N-oxides have also been applied, albeit in equimolar amounts.^[7]

We here describe a new type of organocatalyst for the enantioselective Strecker reaction which consist of glycosyl amines^[8] and planar-chiral [2.2]paracyclophane derivatives. Compounds with [2.2]paracyclophane structure^[9] have already been applied in enantioselective synthesis, for example, titanium complexes of salen-type derivatives of [2.2]paracyclophane^[10] in the enantioselective formation of cyanohydrins of aromatic aldehydes^[11] and in the enantioselective addition of diethylzinc to aromatic aldehydes.^[12]

The attempt to kinetically separate racemic [2.2]paracyclophane-4-carbaldehyde $(2)^{[13]}$ by imine formation with 2,3,4,6-tetra-*O*-pivaloyl- β -D-galactopyranosyl amine $(1)^{[8a,b]}$ was not successful. However, the diastereomeric imines could be separated, and the imine **3** was isolated in pure form as the β -D,*R* stereoisomer (Scheme 1). In analogy, racemic methyl 15-formyl-[2.2]paracyclophane-4-carboxylate $(4)^{[13]}$ gave pure aldimine **5** after separation by HPLC.

A key feacture of the aldimines 3 and 5 is that the C=N bond is sterically shielded on the *Re* face as well as on the *Si* face (back side). Consequently, every nucleophilic attack at the imine proceeds slowly. The domino Mannich–Michael

- [*] Dr. M. Negru, Dr. D. Schollmeyer, Prof. Dr. H. Kunz Institut für Organische Chemie Universität Mainz Duisbergweg 10–14, 55128 Mainz (Germany) Fax: (+49) 6131-392-4786 E-mail: hokunz@mail.uni-mainz.de
- [**] This work was supported by the Fonds der Chemischen Industrie.

Angew. Chem. Int. Ed. 2007, 46, 9339-9341

OPiv PivO 2 rac OPiv ΟΡίν OPiv **3** 40 % (β-D,*R*) toluene Na₂SO₄) OPiv OPiv .OPiv 1 (0.5 equiv) MeÓ (β-D,R[CHN]) 5 34 % 4 rac

Scheme 1. Synthesis of N-galactosyl[2.2]paracyclophane carbaldimines.

reaction with the Danishefsky diene, which proceeded smoothly with more simple *N*-galactosyl aldimines,^[14] was quite sluggish with **3**. The diastereoselectivity was low (55:45) and with a slight preference for the *R* diastereomer of **6** (Scheme 2).

Scheme 2. Domino Mannich–Michael reaction of imine **3** with the Danishefsky diene.

The surprising and even slightly preferred attack of the nucleophile at the *Re* face indicates that the nitrogen of the imine is more shielded on the *Re* face, the imine carbon, however, more on the *Si* face. As a consequence, the nucleophile enters the π^* orbital with a slight preference from the front side.

Unexpectedly, the N-galactosyl[2.2]paracyclophane carbaldimines proved to be efficient enantioselective catalysts of the Strecker reaction between N-alkyl aldimines **7** and

Take advantage of blue reference links

Communications

trimethylsilyl cyanide in methanol/toluene at temperatures between -50 °C and -20 °C (Scheme 3, Table 1).

N-Galactosyl aldimine **5** bearing a methoxycarbonyl group in the neighboring cyclophane phenyl ring proved to

Scheme 3. Enantioselectively catalyzed Strecker reaction with catalysts 3, 5, and 6.

Table 1: Enantioselective Strecker reaction according to Scheme 3.

Entry	Imine	Cat.	Reaction ^[15]		Yield		ee ^[b]
(Method) ^[a]	7	(mol %)	<i>t</i> [h]	T [°C]	8	[%]	[%]
1 (A)	7 a	5 (2)	20	$-50 { ightarrow} -20$	8 a	55	71
2 (A)	7 a	6 (10)	19	$-50 { ightarrow} -20$	8 a	15	34
3 (A)	7 b	3 (10)	20	$-50 { ightarrow} -20$	8 b	68	67
4 (A)	7 c	5 (5)	30	$-50 { ightarrow} -20$	8 c	20 ^[c]	96
5 (A)	7 d	5 (5)	30	$-50 { ightarrow} -20$	8 d	88	65
6 (B)	7 c	5 (10)	24	-50	8 c	89	96
7 (B)	7 d	5 (10)	24	-50	8 d	87	88
8 (B)	7 e	5 (10)	24	-50	8 e	84	99
9 (B)	7 f	5 (10)	24	-50	8 f	87	82

[a] Method A: A solution of imine in toluene was cooled to -78 °C and Me₃SiCN/MeOH at (2 equiv) -50 °C was added. Method B: Catalyst and Me₃SiCN/MeOH (1.2 equiv) were dissolved in toluene, and imine **7** was added at -50 °C. [b] HPLC on chiral column Chiralpak AS. [c] Incomplete reaction with (CF₃CO)₂O.

be the more efficient enantioselective organocatalyst (entries 6-9, Table 1). In particular, the best results were obtained when the catalyst 5 and HCN (from Me₃SiCN and methanol) were dissolved in toluene, and the imine $7^{[15]}$ was added at -50°C (method B). In contrast, when the catalyst and imine 7 were dissolved in toluene and cooled to -78 °C, Me₃SiCN/methanol (2 equiv) added at -50°C, and the reacting mixture allowed to warm to -20 °C (method A), yield and enantioselectivity were lower. Catalyst 3 (entry 3, Table 1) is slightly less efficient than $5^{[16]}$ Piperidone 6 is an only weakly stereodifferentiating catalyst. In reactions catalyzed by 5, imines of aliphatic aldehydes react with high enantioselectivity to give the (S)-amino nitriles (8c, 8e), in particular, if procedure B is applied. In contrast to other reported enantioselectively catalyzed Strecker reactions, the reactions with aromatic aldimines (8 f) proceed with slightly lower enantioselectivity.

The catalytic effect of the *N*-galactosyl-[2.2]paracyclophane carbaldimines **3** and **5** is surprising because they neither contain a Lewis acidic metal ion^[4] nor display hydrogen-bond-donor ^[5] or Brønsted acid properties.^[6] Their peculiar features are the asymmetric (quasi- C_2 -symmetric) shielding of the double bond and a Lewis basic center cooperatively formed by the imine nitrogen and the carbonyl oxygen of the 2-pivaloyl group (Figure 1a). The

Figure 1. a) X-ray crystal structure of 5 (O red, N blue, C black, H white). b) Proposal for the enantioselectively effective reaction site of catalyst 5.

conformation shown (Figure 1) is favored for glycosyl imines owing to the exo-anomeric effect. In the case of 5 the basic center could be supported by the carbonyl oxygen of the pseudo-geminal ester group (Figure 1b). This basic center could trap the proton from the weak acid HCN. The formation of this protonated catalyst 5 should be favored when method B is applied. The imine should then be dragged electrophilically into the reaction site in such a way that the large groups R and R^1 are positioned pointing toward the back and left and toward the front and right, respectively (as shown in Figure 1 b or horizontally flipped in the plane of the σ framework). This interpretation of the enantioselective catalysis of the Strecker reaction by 5 via an S-shaped reaction site explains the selective formation of the (S)-amino nitriles. To some extent it resembles the hypothesis of Corey^[6a] who postulated a U-shaped binding pocket for the Brønsted acid catalyst he developed from a chinchona alkaloid structure. It is a particular feature of the planar-chiral N-galactosyl-[2.2] paracyclophane carbaldimines 3 and 5 as enantioselective catalysts that they contain neither an electrophilic metal ion nor a hydrogen-bond-donor structure nor a Brønstedt acid group. They effect an efficient enantioselective formation of

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

the corresponding α -amino nitriles also in reactions of aliphatic aldimines.

Received: July 16, 2007 Revised: August 23, 2007 Published online: October 29, 2007

Keywords: glycosyl imines · organocatalysis · paracyclophanes · planar chirality · Strecker reaction

[1] A. Strecker, Am. Chem. Pharm. 1850, 75, 27.

- [2] Reviews on diastereoselective Strecker reactions: a) R. M. Williams, J. A. Hendrix, *Chem. Rev.* **1992**, *92*, 889; b) R. O. Duthaler, *Tetrahedron* **1994**, *50*, 1539; c) for a recent example, see: J.-C. Rossi, M. Marull, L. Boiteau, J. Taillades, *Eur. J. Org. Chem.* **2007**, 662.
- [3] Reviews on enantioselective Strecker reactions a) L. Yet, Angew. Chem. 2001, 113, 900; Angew. Chem. Int. Ed. 2001, 40, 875; b) H. Gröger, Chem. Rev. 2003, 103, 2795; c) P. R. Schreiner, Chem. Soc. Rev. 2003, 32, 289; d) C. Spino, Angew. Chem. 2004, 116, 1796; Angew. Chem. Int. Ed. 2004, 43, 1764; e) M. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550; Angew. Chem. Int. Ed. 2006, 45, 1520.
- [4] a) H. Ishitani, S. Koniyama, S. Kobayashi, Angew. Chem. 1998, 110, 3369; Angew. Chem. Int. Ed. 1998, 37, 3186; b) M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 5315; c) N. S. Josephsohn, K. W. Kuntz, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2001, 123, 11594; d) M. Chavarot, J. J. Byme, P. Y. Chavaut, Y. Vallee, Tetrahedron: Asymmetry 2001, 12, 1147; B. Therrieu, M. Kawano, K. Yamaguchi, H. Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 6768, and references therein.
- [5] a) M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901; b) E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157; c) A. G. Wenzel, M. P. Lalonde, E. N. Jacobsen, Synlett 2003, 1919; d) Z. Jiao, X. Feng, B. Liu, F. Chen, G. Zhang, Y. Jiang, Eur. J. Org. Chem. 2003, 3818; e) A. Berkessel, S. Mukherjee, J. Lex, Synlett 2006, 41; f) T. Ooi, Y. Uematsu, J. Fujimoto, K. Fujimoto, K. Maruoka, Tetrahedron Lett. 2007, 48, 1337; g) C. Becker, C. Hoben, H. Kunz, Adv. Synth. Catal. 2007, 349, 417; h) S. C. Pan, J. Zhou, B. List, Angew. Chem. 2007, 119, 618; Angew. Chem. Int. Ed. 2007, 46, 612.
- [6] a) J. Huang, E. J. Corey, Org. Lett. 2004, 6, 5027; M. Rueping, E Sugiono, C. Azap, Angew. Chem. 2006, 118, 2679; Angew. Chem. Int. Ed. 2006, 45, 2617; M. Rueping, E. Sugiono, S. A. Moreth, Adv. Synth. Catal. 2007, 349, 759.
- [7] B. Liu, X. Feng, F. Chen, G. Zhan, X. Cui, Y. Jiang, Synlett 2001, 1551.
- [8] a) H. Kunz, W. Sager, Angew. Chem. 1987, 99, 595; Angew. Chem. Int. Ed. Engl. 1987, 26, 557; b) H. Kunz, W. Sager, D. Schanzenbach, M. Decker, Liebigs Ann. Chem. 1991, 649; c) H. Kunz, W. Pfrengle, Tetrahedron 1988, 44, 5487; d) Übersicht: S. Knauer, B. Kranke, L. Krause, H. Kunz, Curr. Org. Chem. 2004, 8, 1739.
- [9] T. I. Danilova, V. I. Rozenberg, E. V. Vorontsov, Z. A. Starikova, H. Hopf, *Tetrahedron: Asymmetry* 2003, 14, 1375.
- [10] a) S. El-Tamany, F. W. Raulfs, H. Hopf, Angew. Chem. 1983, 95, 631; Angew. Chem. Int. Ed. Engl. 1983, 22, 633; b) S. El-Tamany, Dissertation, Univ. Braunschweig, 1983.
- [11] Y. Belokon, M. Moskalenko, N. Ikonikov, L. Yashikina, D. Antonov, E. Vorontsov, V. Rozenberg, *Tetrahedron: Asymmetry* 1997, 8, 3245.

- [12] T. Danilova, V. Rozenberg, Z. A. Starikova, S. Bräse, *Tetrahe*dron: Asymmetry 2004, 15, 223.
- [13] H. Hopf, H. Zitt, Eur. J. Org. Chem. 2002, 2298.
- [14] a) H. Kunz, W. Pfrengle, Angew. Chem. 1989, 101, 1041; Angew. Chem. Int. Ed. Engl. 1989, 28, 1067; b) M. Weymann, W. Pfrengle, D. Schollmeyer, H. Kunz, Synthesis 1997, 1151.
- [15] The ¹H NMR signals of the aldimine groups are found at $\delta =$ 7.82–7.45 ppm for the aliphatic aldimines **7c–e**, and at $\delta =$ 8.32–8.22 ppm for the aromatic aldimines **7a,b,f**.
- [16] Like **3**, a compound analogous to **5** but having a bromo substituent instead of the ester group in the second cyclophane phenyl ring also leads to lower enantioselectivity.
- [17] M.p. 125–127 °C, $[\alpha] = -139.2$ (c = 1, CH₃CN); FD-MS (positive): m/z 794 [M+H⁺]. Elemental analysis (C₄₅H₆₁O₁₁N, 791.97): found (calcd): C 66.53 (66.58), H 7.68 (7.69), N 1.67 (1.76). ¹H NMR (400 MHz, CDCl₃, COSY): $\delta = 8.38$ (s, 1 H, -N= CH-), 7.14 (d, ${}^{4}J_{5-H,7-H,or\ 16-H,12-H} = 1.86$ Hz, 1H, Phan-5 or Phan-16), 6.71 (dd, ${}^{4}J_{7-H,5-H} = 1.83$ Hz, ${}^{3}J_{7-H,8-H} = 5.88$ Hz, 1H, Phan-7), 6.60 (d, ${}^{3}J_{12-H,13-H} = 7.71$ Hz, 1H, Phan-12), 6.54 (dd, ${}^{3}J_{8-H,7-H} = 6.24 \text{ Hz}, {}^{4}J_{12-H,16-H} = 1.83 \text{ Hz}, 2 \text{ H}, \text{ Phan-8, Phan-16}),$ 6.47 (d, ${}^{3}J_{13-H,12-H=}$ 7.71 Hz, 1 H, Phan-13), 5.51 (d, ${}^{3}J = 1.47$ Hz, 1 H, Gal-4), 5.21 (m, 2H, Gal-2, Gal-3), 4.75 (dd, ⁴J = 1.83 Hz, ${}^{3}J_{1/2} = 7.35$ Hz, 1H, Gal-1), 4.26–4.13 (m, 3H, Gal-5, Gal-6a,b), 3.76 (s, 3H, OCH₃), 3.72-3.69 (m, 1H, Phan-2s), 3.11-2.91 (m, 7H, Phan-2a, Phan-1a,s, Phan-9a,s, Phan-10a,s), 1.25, 1.18, 1.07, 0.89 ppm (4 s, 36 H, PivCH₃) ¹³C NMR (100.6 MHz CDCl₃, HMQC): δ = 177.9, 177.7, 177.3, 175.9 (PivC=O), 166.7 (Phan-17), 160.5 (-C=N-), 142.4 (qC^{Ar}), 141.7(qC^{Ar}), 139.9 (qC^{Ar}), 136.3 (qC^{Ar}), 138.1, 136.0 (Phan-7, Phan-12), 134.9, 134.7, 134.4, 133.7 (Phan-8, Phan-13, Phan-5, Phan-16), 130.4 (qC^{Ar}), 129.5 (qC^{Ar}), 85.4 (Gal-1), 72.6, 71.2, 69.8, 67.1 (Gal-2, Gal-3, Gal-4, Gal-5), 61.2 (Gal-6), 51.5 (Phan-18), 39.0, 38.7, 38.6, 38.5 (PivCMe₃), 35.0, 34.9 (Phan-2, Phan-10), 34.4, 30.8 (Phan-9, Phan-1), 27.14, 27.11, 27.02 ppm (PivCH₃). Crystal structure analysis: $M_r =$ 791.95 g mol⁻¹; absorption: $\mu = 0.64$ mm⁻¹; Crystal size: $0.128 \times$ $0.192 \times 0.8 \text{ mm}^3$, colorless needles; space group: $P2_1$ (monoclinic); lattice constants: a = 15.472(2), b = 10.061(1), c =30.791(4) Å, $\beta = 95.649(6)^\circ$, V = 4770(1) Å³, Z = 4; temperature: -80 °C; density: d = 1.103 g cm⁻³; irradiation: Cu_{Ka} graphite monochromator, $\lambda = 1.54178$ Å; $2\theta_{max} = 140^{\circ}$; number of reflections: measured 19513, independent 9894 ($R_{int} = 0.0902$); discrepancy factor: wR2 = 0.1262 (R1 = 0.0480 for observed reflections, 0.0606 for all reflections); diff. Fourier synthesis: 0.21, -0.23 e Å-3; CCDC 619295 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [18] **8a**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 95:5): t_r (major comp.) 7.8 min, (minor) 5.5 min; [a] = 53.1 (c = 1, CH₂Cl₂) [Ref. [4b]: [a] = 57.7 (c = 1, CH₂Cl₂)]; **8b**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 95:5): t_r (major) 7.7 min, (minor) 5.65 min; [a] = 45.1 (c = 1, CH₂Cl₂) [Ref. [4b]: [a] = 42.4 (c = 1, CH₂Cl₂)]; **8c**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 98:2): t_r (major) 9.5 min, (minor) 12.5 min; [a] = 5.5 (c = 1, CH₂Cl₂); **8d**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 98:2): t_r (major) 3.6 min, (minor) 5.3 min; [a] = -10.5 (c = 1, CH₂Cl₂); **8d**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 70:30): t_r (major) 3.6 min, (minor) 5.3 min; [a] = -10.5 (c = 1, CH₂Cl₂); [Ref. [4b]: [a] = -10.4 (c = 1, CH₂Cl₂)]; **8e**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 70:30): t_r (major) 7.7 min (from racemic mixture); [a] = -19.7 (c = 1, CHCl₃); **8f**: HPLC (Chiralpak AS, *n*-hexane/2-propanol 60:40): t_r (major) 3.2 min, (minor) 5.4 min; [a] = -2.12 (c = 0.67, CHCl₃).

Angew. Chem. Int. Ed. 2007, 46, 9339-9341

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim