Mercury(II) Oxide/Tetrafluoroboric Acid; A Convenient Reagent for the Hydroxy(alkoxy)-phenylamination of Alkenes

José Barluenga, Luisa Alonso-Cires, Gregorio Asensio

Departamento Química Orgánica, Facultad de Ciencias, Universidad de Oviedo, Oviedo, Spain

In a recent communication¹, we reported the synthesis of vicinal aromatic diamines by reacting alkenes 1 with amines and mercury(II) oxide/tetrafluoroboric acid. The key step of the process appears to be the nucleophilic cleavage of the Hg—C bond of an intermediate aminoalkylmercury(II) tetrafluoroborate 2. We have found now that aminomercurials 2 are stable species in tetrahydrofuran solution at $-10\,^{\circ}$ C when the aminomercuration process is carried out at this temperature using the stoichiometric amounts of aromatic amine and mercury(II) oxide/tetrafluoroboric acid mixture (Scheme A).

Subsequent reaction of the tetrahydrofuran solution of 2 with water or alcohols leads to the corresponding 1,2-hydroxy(alk-oxy)-phenylaminated products 3 and 4 and mercury(0) in good yields (Scheme A, Table 1). However, the presence of aliphatic amines in the reaction media inhibits the reduction of the mercurial under these conditions.

$$R^{1}$$
 $C = C$ R^{4} + HgO · 2 HBF₄ + C₆H₅-NH₂ $\frac{THF_{1}-10^{\circ}C}{-HBF_{4} \cdot H_{2}O}$

R⁵ = H , alkyl

Scheme A

The ratio of the products 3:4 depends on the substitution pattern at the C—C double bond; in the case of terminal alkenes 1

 $(R^3 = R^4 = H)$ the rearranged isomer 3 is the major product (see Table 1). Reactions with cyclic alkenes show that this oxyamination process is *trans*-stereospecific.

The oxyamination of alkenes 1 cannot be achieved by reversing the order of addition of the nucleophiles, namely first obtaining the corresponding oxymercury(II) tetrafluoroborate 5 and then removing the mercury by reaction with an aromatic amine. In contrast, this sequence of reactions results in the formation of the vicinal diamines 6. Since the oxymercuration is a reversible process, it can be assumed that, in the presence of aniline, the oxymercurials 5 are transformed into the aminomercurials 2 and then the mercury is replaced by the strongest nucleophile present in the reaction medium, i.e. the aromatic amine (Scheme B).

Scheme B

The method described in this paper allows the direct, one-pot hydroxy(alkoxy)-phenylamination of alkenes with good yields and its advantages are that it does not require the tedious prepa-

Table 1. Hydroxy(alkoxy)-phenylamination of Alkenes 1

Alkene 1 R ¹	\mathbb{R}^2	R³	R ⁴	R ⁵ in R ⁵ —OH	Prod- uct	Yield [%]	Ratio ^a of 3:4	m.p. [°C] or b.p. [°C]/torr	Molecular formula or Lit. m.p. or b.p./torr	
Н	Н	Н	Н	Н	3a	60		166°/0.01	286°/760 ⁶	
H	(CH	2)3	H	H	3b	79		57~59°	175°/16 ⁵	
H	(CH	2)4	H	Н	3c	80		59-61°	58°5	
CH ₃	H	Н	Н	Н	3d	67	16:3	78-82°/0.001	C ₉ H ₁₃ NO	$(151.2)^{b}$
					4d	of Millerent		*	80-83°/0.00	` '
C ₆ H ₅	H	Н	Н	Н	3e	65	26:4	oil	$C_{14}H_{15}NO$	(213.3) ^b
					4e		*******		oil ³	(,
H	(CH	2)4	Н	CH_3	3f	71		72-75°/0.01	C ₁₃ H ₁₉ NO	$(205.3)^b$
CH ₃	H	H	Н	CH ₃	3g	54	26:6	68-70°/0.01	$C_{10}H_{15}NO$	(165.2) ^b
					4g			research	$C_{10}H_{15}NO$	(165.2)
n-C ₅ H ₁₁	Н	Н	Н	CH_3	3h	73	16:7	70-73°/0.01	$C_{14}H_{23}NO$	(221.3)
					4h				C ₁₄ H ₂₃ NO	(221.3)b

^a Estimated from the ¹³C-N.M.R. spectra of the crude reaction products.

Table 2. Spectra Data for Compounds 3 and 4

Prod-	I.R. (nujol) [cm ⁻¹]			¹ H-N.M.R. (CDCl ₃ /TMS, 80 MHz)	¹³ C-N.M.R. (CDCl ₃ /TMS, 20 MHz) [ppm] ^a		
uct	ν _{NH} ,OH	$\nu_{\mathrm{C-O}}$	$ u_{\mathrm{arom}}$	δ [ppm]	δ _{C-N-C6H5}	$\delta_{\mathbb{Q}-OR^5}$	$\delta_{\rm OCH_3}$
3a	3400		3600, 1600, 1500, 760, 700	2.95 (t, 2H, $J = 6$ Hz); 3.50 (t, 2H, $J = 6$ Hz); 4.00 (br. s, 2H); 6.3–7.2 (m, 5 H _{arem})	45.3	60.1	
3b	3360	******	3020, 1600, 1500, 760, 700	2.0-2.4 (m, 6H); 3.10 (br. s, 2H): 3.4 (m, 1H); 3.9 (m, 1H); 6.4-7.3 (m, 5 H _{arom})	62.1	78.0	
3c	3360		3020, 1610, 1500, 760, 700	0.7-2.3 (m, 8 H); 3.10 (br. s, 2 H); 3.2 (m, 2 H); 6.5-7.4 (m, 5 H _{arom})	59.2	73.4	
3d	3360		3010, 1600, 1500, 750, 700	1.15 (d, 3 H, $J=6$ Hz); 2.9 (m, 8 H); 3.35 (br. s, 2 H); 3.0 (m, 2 H); 6.4–7.3 (m, 5 H _{aton})	50.2	64.8	
4d	3360		3010, 1600, 1500, 760, 700	1.00 (d, 3 H, $J = 6$ Hz); 3.2-3.6 (m, 3 H); 3.80 (br. s, 2 H); 6.3-7.2 (m, 5 H _{arom})	49.1	64.4	***
3e	3360		3010, 1600, 1500, 760, 700	3.3 (m, 2H); 4.60 (br. s, 2H); 5.0 (m, 1H); 6.5–7.8 (m, 10H _{arom})	46.8	76.8	ALCOHOL:
4e	3400		3070, 1600, 1500, 760, 700	3.6-4.0 (m, 4H); 4.5 (m, 1H); 6.4-7.5 (m, 10 H _{arom})	50.6	73.2	
3f	3360	1100	3010, 1600, 1500, 750, 700	0.9-2.3 (m, 8 H); 3.2 (m, 2 H); 3.35 (s, 3 H); 3.75 (br. s, 1 H); 6.5-7.4 (m, 5 H _{arom})	56.2	81.8	55.7
3g	3380	1100	3010, 1600, 1500, 750, 700	1.15 (d, 3 H, $J = 6$ Hz); 3.1-3.7 (m, 4 H); 3.30 (s, 3 H); 6.3-7.4 (m, 5 H _{arom})	48.9	75.2	55.7
4g	3380	1100	3010, 1600, 1500, 750, 700	1.00 (d, 3 H, $J = 6$ Hz); 3.1–3.7 (m, 4H); 3.25 (s, 3 H); 6.3–7.4 (m, 5 H _{arom})	48.3	76.1	60.2
3h	3360	1100	3010, 1600, 1500, 750, 700	0.6–2.9 (m, 11 H); 3.1 (m, 2 H); 3.2 (m, 1 H); 3.30 (s, 3 H); 3.55 (br. s, 1 H); 6.4–7.3 (m, 5 H _{arom})	46.5	79.4	56.2
4h	3360	1100	3010, 1600, 1500, 750, 700	0.6–2.9 (m, 11 H); 3.2 (m, 2 H); 3.20 (s, 3 H); 3.3 (m, 1 H); 3.55 (br. s, 1 H); 6.4–7.3 (m, 5 H _{arom})	53.0	74.3	58.5

^a Assignments made using off-resonance experiments.

^h Satisfactory microanalyses obtained: C ± 0.05 , H ± 0.07 , N ± 0.06 .

ration of intermediate compounds^{2,3} or the use of sophisticated reagents⁴.

Mercury(II) oxide/tetrafluoroboric acid was prepared as reported¹. Authentic samples of 2-(phenylamino)-propanol³, trans-2-(phenylamino)-cyclohexanol⁵, 2-phenyl-2-(phenylamino)-ethanol³, and 1,2-bis[phenylamino]cyclohexane¹ were prepared for comparison according to the literature procedures.

2-(Phenylamino)-cyclohexanol; Typical Procedure:

Mercury(II) oxide/tetrafluoroboric acid (7.5 g, 20 mmol) is added to a solution of cyclohexene (1.6 g, 20 mmol) and aniline (1.8 g, 20 mmol) in tetrahydrofuran (40 ml) and the resultant mixture stirred at $-10\,^{\circ}\text{C}$ for 5 min. Water (1 g, 55 mmol) is then added and the solution is heated under reflux for 6 h and then cooled. The mercury(0) precipitated is filtered off [yield: 3.8 g (95%)], the solution is treated with 3 normal potassium hydroxide solution (25 ml), and extracted with ether (3 × 20 ml). Solvents are removed under vacuum (10^{-2} torr) and the oily residue is purified by column chromatography (silica: toluene/hexane/diethylamine, 75:15:10) to give the product as an oil which is recrystallized from hot hexane; yield: 3.0 g (79%); m.p. 59-61 °C (Lit. 5, m.p. 58 °C).

$C_{12}H_{17}NO$	calc.	C 75.35	H 8.96	N 7.32
(191.3)	found	75.37	8.96	7.30

1,2-Bis[phenylamino]cyclohexane:

Mercury(II) oxide/tetrafluoroboric acid (7.5 g, 20 mmol) is added to a solution of cyclohexene (1.6 g, 20 mmol) and methanol (0.6 g. 20 mmol) in tetrahydrofuran (40 ml) and the resultant mixture stirred at $-10\,^{\circ}$ C for 5 min. Aniline (3.6 g, 40 mmol) is then added and the solution is heated under reflux for 3 h and then cooled. The mercury(0) precipitated is filtered off [yield: 3.8 g (95%)], the solution is treated with 3 normal potassium hydroxide solution (25 ml), and extracted with ether (3 × 20 ml). Solvents and excess amine are removed under vacuum (10 2 torr) and the oily residue is purified by column chromatography (silica; toluene/hexane/diethylamine; 75:15:10) to give the product as an oil; yield: 3.6 g (68%).

C₁₈H₂₂N₂ calc. C 81.15 H 8.33 N 10.52 (266.4) found 81.19 8.31 10.49

Received: October 20, 1980

¹ J. Barluenga, L. Alonso-Cires, G. Asensio, Synthesis 1979, 962.

For general references on β-hydroxyamines see J. March, in Advanced Organic Chemistry, 2nd Edn., McGraw-Hill Book Company, 1977, p. 1182.

³ J. Barluenga, F. J. Fañanás, M. A. Yus, J. Org. Chem. 44, 4798 (1979).

⁴ D. W. Patrick, L. K. Truesdale, S. C. Biller, K. B. Sharpless, J. Org. Chem. 43, 2628 (1978).

E. Herranz, K. B. Sharpless, J. Org. Chem. 45, 2710 (1980).

J. E. Bäckvall, E. E. Bjorkmann, J. Org. Chem. 45, 2893 (1980), and references cited therein.

⁵ Beilsteins Handbuch der Organischen Chemie 13, III, 712.

⁶ Handbook of Chemistry and Physics, 57th Edn., CRC Press, Inc., Cleveland, Ohio, 1976, p. C-297.