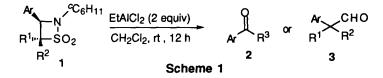


0040-4039(94)02183-X

Selective C-S Bond Cleavage of 3-Aryl-B-sultams with EtAlCl2

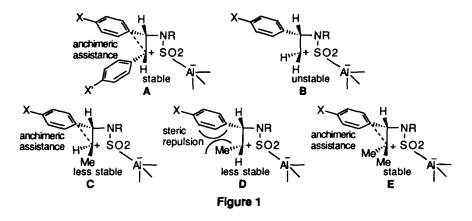

Tadashi Kataoka* and Tetsuo Iwama

Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan

Abstract: Selective C-S bond cleavage of a ß-sultam ring was achieved by the reactions of 3-aryl-ßsultams 1 with EtAlCl_{2.} Aryl ketones 2 or aldehyde 3 were provided via processes of the C-S bond cleavage, 1,2-aryl shift and imine formation. These reactions were influenced by the cation stabilizing capability of C-4 substituents and by the configuration of the substituents at C-3 and C-4.

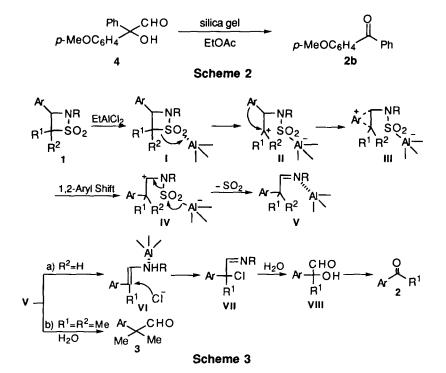
1,2-Thiazetidine 1,1-dioxides (B-sultams), sulfonyl analogues of B-lactams, have a fixed and highly strained four membered ring with three different kinds of hetero single bonds, namely, C-N, C-S and N-S bonds. There have been reported several papers directed toward synthesis of potent drugs¹ and many papers on syntheses and reactions of B-sultams with or without destruction of B-sultam rings.² However, the reaction with the C-S bond cleavage has not been known. Recently we found that reactions of 3-aryl-B-sultams with EtAlCl₂ caused regioselective C-S bond cleavage followed by 1,2-aryl shift to give aryl ketones or aldehyde. This paper describes the unprecedented transformation of 3-aryl-B-sultams to aryl ketones or hindered aldehydes.

To optimize reaction conditions, we examined reactions of *cis*-2-cyclohexyl-3,4-diphenyl- β -sultam $(1a)^3$ with some Lewis acids such as EtAlCl₂, BF₃·Et₂O, TiCl₄, Ti(O^{*i*}Pr)₄, ZnCl₂, ZnI₂ and ZnEt₂ and found that EtAlCl₂ is the mildest and most efficient reagent for the C-S bond cleavage. Reaction of 1a with 1.1 equiv of EtAlCl₂ was carried out in CH₂Cl₂ under nitrogen at room temperature for 12 hours to give benzophenone (2a) in 56 % yield with 12 % of 1a (Table 1, entry 1). Yield of 2a increased to 81 % by use of 2 equiv of

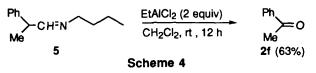

EtAlCl₂ (entry 2). A general procedure is as follows: To a stirred solution of a β -sultam 1 (1 mmol) in dry CH₂Cl₂ (10 ml) was added 2 equiv of EtAlCl₂ under nitrogen at room temperature. The mixture was stirred at room temperature for 12 hours and quenched with sat. NaHCO₃. The whole was vigorously stirred for 30 minutes and then Al(OH)₃ was filtered off through celite. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂. The organic layer and the extracts were combined, dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel eluting with *n*-hexane:ethyl acetate (10:1 - 5:1) to give an aryl ketone 2 or an aldehyde 3.

Entry	Sultam			-	Products	
	Compd No.	Ar	<u>R</u> 1	R ²	R ³	(%yields)
1 ^{a)}	1 a	Ph	н	Ph	Ph	2a(56), 1a(12)
2	1a	Ph	Н	Ph	Ph	2a (81)
3	16	Ph	Ph	н	Ph	2a (78)
4 ^{b)}	1c	<i>p</i> -MeOC ₆ H₄	н	Ph	Ph	2b(62), 4(31)
5	1d	p-MeC ₆ H₄	н	Ph	Ph	2c (85)
6	1 e	<i>p</i> -MeC ₆ H₄	Ph	н	Ph	2c (85)
7	1f	p-CIC ₆ H₄	н	Ph	Ph	2d(79)
8	1g	p-CIC ₆ H₄	Ph	н	Ph	2d(80)
9	1h	<i>p</i> -NO ₂ C ₆ H ₄	н	Ph	-	complex mixture
10	11	Ph	н	<i>p</i> -MeC ₆ H₄	<i>p</i> -MeC ₆ H₄	2c(85)
11	1j	Ph	н	p-CIC ₆ H ₄	p-CIC ₆ H ₄	2d(74), 1J(7)
12	1k	Ph	Н	2,4-Cl ₂ C ₆ H ₃	2,4-Cl ₂ C ₆ H ₃	2e(70), 1k(7)
13	11	Ph	н	н	-	N.R.
14	1m	<i>p</i> -MeC ₆ H₄	н	н	-	N.R.
15	1n	Ph	н	Me	-	N.R.
16	10	Ph	Me	н	Me	2f(13), 10(61)
17	1p	Ph	Et	н	Et	2g (19), 1p (61)
18	1q	<i>p</i> -MeC ₆ H ₄	н	Me	-	N.R.
19	1r	<i>p</i> -MeC ₆ H₄	Me	н	Me	2h(35), 1r(44)
20	1s	p-ClC ₆ H₄	Me	н	Me	2i(trace), 1s(76)
21	1t	Ph	Me	Me	-	3a (73)
22	1u	<i>p</i> -MeC ₆ H₄	Me	Me	-	3b (78)
23	1v	p-MeOC ₆ H ₄	Me	Me	-	3c (89)
24	1w	p-BrC ₆ H ₄	Me	Me	_	complex mixture

Table 1 Reactions of 3-Aryl-B-Sultams with EtAIClo


a) 1.1 Equiv of EtAICI₂ was used. b) 2.2 Equiv of EtAICI₂ was used.

Reactions of 3-aryl- β -sultams $1a \cdot w^3$ bearing a variety of substituents at C-4 with EtAlCl₂ provided aryl ketones 2a-i or aldehydes $3a \cdot c^4$ in the yields shown in Table 1 (Scheme 1). The reactions were influenced by cation stabilizing capability of C-4 substituents and by steric relation between substituents at C-3 and C-4. In the cases of 3-aryl-4-phenyl- β -sultams 1a-g, benzophenone derivatives 2a, c, d were obtained in good yields regardless of the configuration of C-3 and C-4 aryl groups (entries 2,3 and 5, 6 and 7, 8) and of electronic nature of substituents at C-3 phenyl groups (entries 2, 4, 5, 7 and 3, 6, 8, Figure 1, A). Reaction of 1h with a strong electron-attracting *p*-nitro group gave a complex mixture (entry 9). On the other hand, a slight substituent effect was observed in the reactions of 4-aryl-3-phenyl- β -sultams 1a, i-k (entries 2, 10-12). An electron-donating *p*-methyl group stabilized a benzylic cation and promoted the C-S bond cleavage, while an electron-withdrawing chloro group retarded it and small amounts of the starting materials 1j and 1k were recovered. 4-Non-substituent effect of C-3 phenyl group was observed in reactions of *trans*-4-alkyl- β -sultams 10, p, r, s (entries 16, 17, 19, 20). The increase of electron density on C-3 aryl groups accelerated the rate of anchimeric assistance to the resulting cation and made it possible to proceed 1,2-aryl rearrangement


(Figure 1, C). In the cases of *cis*-4-methyl-B-sultams 1n, q, steric repulsion between aryl and methyl groups prevented anchimeric assistance (Figure 1, D), and no aryl ketones were obtained (entries 15, 18). Aldehydes **3a-c** were derived from 4,4-dimethyl-B-sultams 1t-v because the C-4 cations generated from 1t-v were more stable than those from *trans*-4-methyl-B-sultams enough to bring about C-S bond cleavage (entries 21-24, Figure 1, E).

The reaction of 1c with EtAlCl₂ afforded an α -hydroxyaldehyde 4⁵ in 31 % yield together with 4methoxybenzophenone (2b). The hydroxyaldehyde 4 was converted into 2b by the treatment with silica gel in EtOAc (Scheme 2). This finding indicates that 4 is an intermediate of the benzophenone formation.

A plausible mechanism is proposed as shown in Scheme 3. The C-S bond of a β -sultam is cleaved by coordination of EtAlCl₂ to the sulfonyl group to generate a cationic intermediate II. The anchimeric assistance of an aryl group followed by the 1,2-aryl migration provides another carbocation IV. An imine V is produced by elimination of sulfur dioxide from IV. In the case of $R^2 = H$, V isomerizes to an enamine VI and coordination of EtAlCl₂ enables a chloride ion to attack at the β -carbon of VI. The resulting chloroimine VII is hydrolyzed to an aryl ketone 2 via an α -hydroxyaldehyde VIII. In the case of $R^1 = R^2 = Me$, an aldehyde is obtained by the hydrolysis of V.

In order to confirm that an imine reacts with EtAlCl₂ and provides an aryl ketone, we conducted the reaction of N-(2-phenylpropylidene)-*n*-butylamine (5) with 2 equiv of EtAlCl₂ and obtained acetophenone (2f) in 63 % yield (Scheme 4).

In summary, aryl ketones and aldehydes were obtained from 3-aryl-B-sultams with EtAlCl₂. The reactions were influenced by cation stabilizing capability of C-4 substituents, by the electron density of C-3 aryl group and by the steric relation between C-3 and C-4 substituents, and anchimeric assistance played an important role for the selective C-S bond cleavage.

REFERENCES AND NOTES

- Kunstmann, R.; Paulus, E. F. Angew. Chem. Int. Ed. Engl., 21, 548 (1982); Koller, W.; Linkies, A.; Rehling, H.; Reuschling, D. Tetrahedron Lett., 24, 2131 (1983); Grunder, E.; Leclerc, G. Synthesis, 1989, 135; Müller, M.; Otto, H.-H. Liebigs Ann. Chem., 1991, 171 and 1992, 687; Plagge, H.; Otto, H.-H. Heterocycles, 35, 193 (1993).
- 2. For review: Chanet-Ray, J.; Vessiere, R. Org. Prep. Proced. Int., 18, 157 (1986).
- β-Sultams 1a-s were prepared by the 2+2 cycloaddition reactions of imines with sulfonyl chloride. cis- and trans-Isomers were separated by column chromatography on silica gel.; Tsuge, O.; Iwanami, S. Bull. Chem. Soc. Jpn., 43, 3543 (1970). Methylation of β-sultams 11 and m with excess LDA and MeI provided 4,4-dimethyl-β-sultams 1t and u, respectively. In the same manner βsultams 1v and w were obtained from the corresponding β-sultams prepared by the reactions of imines with mesyl chloride.
- 4. Aryl ketones 2a-i and aldehydes 3a-c exhibit physical and spectroscopic properties consistent with their proposed structures.
- 4: light yellow oil; ¹H NMR (CDCl₃) δ: 3.81 (3H, s, OMe), 4.33 (1H, brs, OH), 6.92 (2H, d, J = 8 Hz, ArH), 7.26 (2H, d, J = 8 Hz, ArH), 7.35-7.40 (5H, m, ArH), 9.93 (1H, s, CHO); ¹³C NMR (CDCl₃) δ: 55.3 (q), 83.1 (s), 114.3 (d), 127.4 (d), 128.4 (d), 128.8 (dx2), 131.4 (s), 139.4 (s), 159.7 (s), 198.0 (d); IR (NaCl) cm⁻¹: 3460 (OH), 1720 (C=O); MS (m/z): 213 (base, M⁺-CHO).