Nucleic acid related compounds. 77. 2',3'-Didehydro-2',3'-dideoxy-2'(and 3')methylnucleosides via [3,3]-sigmatropic rearrangements of 2'(and 3')-methylene-3'(and 2')-O-thiocarbonyl derivatives and radical reduction of a 2'-chloro-3'methylene analogue¹

VINCENTE SAMANO AND MORRIS J. ROBINS²

Department of Chemistry, Brigham Young University, Provo, UT 84602, U.S.A.

Received August 11, 1992

VINCENTE SAMANO and MORRIS J. ROBINS. Can. J. Chem. 71, 186 (1993).

Treatment of 5'-O-(*tert*-butyldiphenylsilyl)-2'(and 3')-deoxy-2'(and 3')-methyleneuridine (and adenosine) derivatives with phenyl chlorothionocarbonate gave the 3'(and 2')-O-phenoxythiocarbonyl intermediates, which underwent spontaneous [3,3]-sigmatropic rearrangement to give the 2',3'-didehydro-2',3'-dideoxy-2'(and 3')-(phenoxycarbonylthio)methyl analogues. These allylic thioesters were subjected to tributylstannane-mediated hydrodesulfurization and deprotection to give 2',3'-didehydro-2',3'-dideoxy-2'(and 3')-methyluridine (and adenosine). Tributylstannane-mediated hydrodehalogenation of a 2'-chloro-2',3'-dideoxy-3'-methyleneuridine derivative afforded the 2',3'-didehydro-2',3'-dideoxy-3'-methyl product of allylic transposition exclusively.

VINCENTE SAMANO et MORRIS J. ROBINS. Can. J. Chem. 71, 186 (1993).

Le traitement des dérivés 5'-O-(tert-butyldiphénylsilyl)-2'(et 3')-désoxy-2'(et 3')-méthylèneuridine (et adénosine) avec du chlorothionocarbonate de phényle conduit à des intermédiaires 3'(et 2')-O-phénoxythiocarbonyles qui subissent une transposition sigmatropique-[3,3] spontanée fournissant les analogues 2',3'-didéhydro-2',3'-didésoxy-2'(et 3')-(phénoxycarbonylthio)méthyles. On a soumis ces thioesthers allyliques à une hydrodésulfurisation catalysée par le tributylstannane et à une déprotection conduisant à la 2',3'-didéhydro-2',3'-didésoxy-2' (et 3')-méthyluridine (et adénosine). L'hydrodéshalogénation, catalysée par le tributylstannane, d'un dérive 2'-chloro-2',3'-didésoxy-3'-méthylèneuridine conduit uniquement au produit 2',3'-didéhydro-2',3'-didésoxy-3'-méthyle provenant de la transposition allylique. [Traduit par la rédaction]

Introduction

A number of 2',3'-dideoxynucleoside (**A**) and 2',3'-unsaturated (2',3'-didehydro) analogue triphosphates cause selective inhibition of the HIV reverse transcriptase in vitro (1). Potent anti-HIV activity has been reported for the 2',3'didehydro-2',3'-dideoxy analogues of cytidine (2) (**B**), thymidine (3, and references therein) (**C**), and carbocyclic

guanosine (4) (D). We have reported 2' (and 3')-deoxy-2' (and 3')-methylene (8 and 1, respectively) pyrimidine (5a) and purine (5b) nucleosides and their mechanism-based inhibition of ribonucleotide reductase (6) and S-adenosyl-L-homocysteine hydrolase (7). We now describe conversions of 1 and 8 into 2',3'-didehydro-2',3'-dideoxy-3'(and 2')-methyl nucleosides (7 and 14) via [3,3]-sigmatropic rearrangements of the 2'(and 3')-O-phenoxythiocarbonyl intermediates 3 and 10, respectively. The endocyclic alkenes 7 and 14 also are produced exclusively by radical dehalogenation of the allylic chloro derivatives 4 and 12, respectively. During our investigation, Ueda and co-workers (8) reported obtaining the 2',3'-didehydro-2',3'-dideoxy-2'(and 3')-methyl-5-methyluridines via a similar rearrangement of 2'(and 3')-deoxy-3'(and 2')-O-(imidazol-1-yl)thiocarbonyl-2'(and 3')-methylene derivatives. Czernecki et al. (9) also prepared 2',3'-didehydro-2',3'-dideoxy-3'-methyl-5-methyluridine starting from 1,2-O-isopropylidene- α -D-xylofuranose via sugar transformations, coupling, and an analogous rearrangement.

Results and discussion

Protection of the 3'-deoxy-3'-methylene nucleosides 1a(5a) and 1b (5b) (Scheme 1) with *tert*-butyldiphenylsilyl (TBDPS) chloride/pyridine (10) gave the 5'-O-TBDPS derivatives 2a (94%) and 2b (95%). Treatment of 2(a and b)with phenyl chlorothionocarbonate/DMAP/MeCN (11) at ambient temperature resulted in spontaneous conversion into their 2',3'-didehydro-2',3'-dideoxy-3'-(phenoxycarbonylthio)methyl analogues 5a (80%) and 5b (93%). The ¹H NMR spectrum of 5a (Table 1) had an olefinic proton peak at δ 6.99 for H2' and an AB system at δ 3.59, 3.89 (J = 15.6 Hz) for the CH_2S group. Similar 'H NMR data were observed for 5b. Precedent for the spontaneous [3,3]-sigmatropic rearrangement of the allylic 2'-O-phenoxythiocarbonyl intermediates 3a,b (observed at lower temperatures by ¹H NMR) was noted with allyl S-methyl xanthate in 1909 (12), and the mechanism and synthetic applications have been studied (13, and references therein). Tributyltin hydride-mediated hydrodesulfurization (Bu₃SnH/AIBN/toluene/ Δ) of 5a and 5b gave 6a (85%) and 6b (90%) exclusively, and deprotection with tetrabutylammonium fluoride in tetrahydrofuran (TBAF/ THF) and purification gave crystalline 1-(2,3-dideoxy-3methyl-β-D-glycero-pent-2-enofuranosyl)uracil (2',3'-didehydro-2',3'-dideoxy-3'-methyluridine) (7a, 60%) and 7b (60%), respectively.

Since these exomethylene allylic thioesters, 5, with an endocyclic double bond gave only the exomethyl endocyclic alkenes, the 2'-chloro-2'-deoxy derivative 4a was prepared to evaluate whether initial generation of a radical

^{&#}x27;For the previous paper in this series see ref. 18.

²Author to whom correspondence may be addressed.

(a) TBDPS-Cl/pyridine; (b) SOCl₂/pyridine; (c) PhOC(S)Cl/DMAP;
(d) Bu₃SnH/AIBN/toluene/100°C; (e) Bu₄NF/THF

Scheme 1

at C2' would have any effect on product formation. Treatment of 2a with thionyl chloride/pyridine/dichloromethane afforded 4a (62%) and the cyclonucleoside 15 (14%). O^2 ,2'-Anhydronucleoside intermediates such as 15 have been identified in various preparations (14) of pyrimidine 2'-deoxy-2'-halonucleosides from 2'-hydroxy precursors. Treatment of 4a with Bu₃SnH/AIBN/toluene/ Δ gave 6a (95%) as the only observed product. Thus, this radical species underwent highly preferential allylic hydrogen transfer at the exocyclic methylene carbon to give the *endo* unsaturated compound, in harmony with the greater thermodynamic stability of 1-methylcyclopentene relative to methylenecyclopentane (15).

The rearrangement/desulfurization/dehalogenation sequence worked equally well with 2'-deoxy-2'-methylene nucleosides. Silylation of **8***a* (5*a*) and **8***b* (5*b*) gave **9***a* (90%) and **9***b* (95%), respectively. Treatment of **9***a* and **9***b* with phenyl chlorothionocarbonate afforded the rearranged products **11***a* (85%) and 9-[5-O-(*tert*-butyldiphenylsilyl)-2,3dideoxy-2-(phenoxycarbonylthio)methyl- β -D-glycero-pent-2-enofuranosyl]adenine (**11***b*, 87%). Treatment of **11***a* and **11***b* with Bu₃SnH/AIBN/toluene/ Δ gave **13***a* (85%) and **13***b* (84%), which were deprotected to afford **14***a* (95%) and **14***b* (95%), respectively. Compound **14***a* was previously synthesized in low yield from a 2',3'-didehydro-2',3'-dideoxy-3'-phenylselenone nucleoside (16).

Treatment of **9***a* with SOCl₂/pyridine/CH₂Cl₂ afforded the allylic transposition product **12***a* (89%) in contrast to the results with **2***a* (*vide supra*). Formation of pyrimidine O^2 ,3'-anhydronucleosides is much less facile than cyclization at the 2'-position (17). Thus, the initially formed 3'-chlorosulfite presumably underwent S_N2' substitution by attack of chloride at the exocyclic 2'-methylene carbon to gave **12***a*. Treatment of **12***a* with Bu₃SnH/AIBN/toluene/ Δ again gave the exomethyl endocyclic alkene **13***a* (88%) exclusively.

In summary, we have developed mild conversions of 2'(and 3')-deoxy-2'(and 3')-methylenenucleosides into their corresponding 2',3'-didehydro-2',3'-dideoxy-2'(and 3')-methyl analogues via formation of phenyl thionocarbonate esters, spontaneous rearrangement of the latter to allylic thioesters at ambient temperature, and tributylstannane-mediated allylic hydrodesulfurization. We also have demonstrated that the radical-mediated hydrodehalogenations of 5'-O-TBDPS-2'-chloromethyl-2',3'-didehydro-2',3'-dideoxy-3'-methyleneuridine give the more thermodynamically stable 2'(and 3')-methyl-2',3'-didehydro-2',3'-dideoxyuridine derivatives (exomethyl endocyclic alkenes).

TABLE 1.	¹ H NMR	spectral	data ^a
----------	--------------------	----------	-------------------

Compound	H1' ^b (J)	H2' ^c (J)	H3' (J _{3'-4'})	H4'	H5' ^d (J _{5'-5"})	$H5''^d$ $(J_{5''-4'})$	$CH_{A}H_{B}^{c}$ (J)	$CH_AH_B^{\ e}$ (J)	H5 ^b (2) ^f	H6 ^b (8) ^f	NH(NH ₂) ^g	OH2 ^{'b} /3 ^{'b} /5 ^{'h} (J _{OH-2'/3'/5'5"})	Others
2 a	5.84 (5.8)	4.64 (1.6) ^{<i>i</i>,<i>j</i>}		4.76°	4.01 (11.4)	3.77 (3.0)	5.17 (2.0)	5.47 (2.2)	5.48 (8.0)	7.76	9.20	3.75 ^{<i>g</i>}	1.01 (SiCMe ₃) 7.3-7.6 (SiPh ₂)
2 b	5.69 (6.4)	5.03 $(2.1)^{i,j}$		4.86°	3.88 (11.0)	3.75 (3.5)	5.22 (2.8)	5.48 (2.4)	8.01	8.28	5.75	3.77*	0.92 (SiCMe ₃) 7.2–7.6 (SiPh ₂)
4 a	6.14 (6.2)	4.66 (1.8) ^j		4.74 ^{<i>k</i>} (2.2)	4.09 (11.6)	3.81 (2.6)	5.27 (1.8)	5.54 (2.0)	5.39 (8.4)	7.67	8.22		1.04 (SiCMe ₃) 7.3–7.6 (SiPh ₂)
5 a	5.868	6.99		4.87°	4.09 (12.0)	3.95 (2.4)	3.59 ⁷ (15.6)	3.89'	4.99 (8.2)	7.68	8.40		1.1 (SiCMe ₃) 7.1–7.6 (SiPh ₂ , OPh)
5 b	6.06%	7.02		4.95°	3.91 (11.5)	3.82 (3.5)	3.68′ (16.0)	3.94 ⁷	7.94	8.37	5.55		1.01 (SiCMe ₃) 7.1–7.7 (SiPh ₂ , OPh)
6 a	5.48*	6.92° (1.6)		4.63°	4.04 (12.0)	3.86 (2.2)			4.90 (8.2)	7.75	8.09		1.1 (SiCMe ₃) 7.3–7.6 (SiPh ₂) 1.91 ^s (Me3')
6 b	5.70° (1.5)	6.99 (1.5)		4.74 ^s	3.88 (11.6)	3.75 (3.5)			7.99	8.38	5.66		1.06 (SiCMe ₃) 7.2–7.7 (SiPh ₂) 1.92 ^s (Me3')
7 a	5.53*	6.71 <i>*</i>		4.55*	3.62 ^m (2.7)				5.55 (8.3)	7.86	11.25	4.98 (4.9)	1.81 ^s (Me3')
7 <i>b</i>	5.75*	6.84 <i>*</i>		4.68 ^{<i>s</i>}	3.62‴				8.12	8.22	7.25	5.10 (4.8)	1.86 [*] (Me3')
9 a	6.65°		4.83" (7.0)	3.78″	4.03 (12.0)	3.91 (2.6)	5.42 (1.6)	5.53 (2.0)	5.39 (8.2)	7.50	9.12	2.27 (7.0)	1.05 (SiCMe ₃) 7.3–7.7 (SiPh ₂)
9 b	6.75 [*] (1.6)		5.02 (1.5) ^{<i>i</i>,<i>j</i>}	3.92°	3.44 ^m		5.39 (1.9)	5.59 (1.6)	7.90	8.34	5.75	3.35*	1.05 (SiCMe ₃) 7.3–7.8 (SiPh ₂)
11 a	6.23*		7.04 ^{<i>d</i>} (3.4)	4.88°	3.99 (12.0)	3.84 (2.8)	3.57′ (15.4)	3.64′	5.20 (8.2)	7.75	9.90		1.09 (SiCMe ₃) 7.1–7.7 (SiPh ₂ , OPh)
11 b	6.32 <i>^s</i>		7.02 ^s	5.00 ^{<i>s</i>}	3.83 ^m (4.5)		3.40' (15.5)	3.66'	7.99	8.32	6.17		1.05 (SiCMe ₃) 7.1–7.7 (SiPh ₂ , OPh)
12 <i>a</i>	6.21° (1.4)		7.00 ^{<i>d</i>} (3.6)	4.87°	4.10 (12.0)	3.86 (2.8)	4.04 ^{<i>p</i>}		5.20 (8.0)	7.75	8.78		1.03 (SiCMe ₃) 7.3–7.7 (SiPh ₂)
13 a	5.83 [*] (1.6)		6.82 <i>*</i>	4.81°	3.93 (11.8)	3.80 (3.0)			5.16 (8.0)	7.60	8.25		1.04 (SiCMe ₃) 7.3–7.7 (SiPh ₂) 1.7 ^s (Me2')
13 b	5.96 [*] (1.6)		6.85 <i>*</i>	4.93°	3.77‴ (4.8)				7.85	8.33	5.81		1.05 (SiCMe ₃) 7.2–7.7 (SiPh ₂) 1.66 ^s (Me2')
14 <i>a</i>	6.02 ^{<i>k</i>} (1.6)		6.66 <i>*</i>	4.73°	3.56‴				5.64 (8.0)	7.75	11.4	4.97 (4.7)	1.60 ^s (Me2')
14 b	6.05 ⁸		6.74 <i>^s</i>	4.82 <i>^s</i>	3.57 ^{<i>m,d</i>} (4.5)				8.12	8.21	7.30	5.06 (5.0)	1.60 ^s (Me2')
15	6.17 (2.5)	4.96 ^{<i>s</i>}		4.728	4.29 (12.1)	3.96 (2.5)	5.258	5.54 <i>^s</i>	5.77 (6.9)	8.28			1.05 (SiCMe ₃) 7.3–7.7 (SiPh ₂)

^aChemical shifts (δ, Me₄Si internal); coupling constants (Hz, in parentheses); solvents: CDCl₃ for 2a-6b and 9a-13b, Me₂SO-d₅ for 7a, b and 14a, b. ^bDoublet (unless noted otherwise).

'Multiplet.

^dDoublet of doublets. (J., apparent.) from incompletely resolved peaks. /Singlet. *Broad singlet.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV OF BIRMINGHAM on 11/12/14 For personal use only.

^hTriplet (unless noted otherwise).

'After D₂O exchange.

"Doublet of "apparent" quartets $(J_{\cdot,q})$. "Broad doublet.

"H5',5" collapsed $(J_{5'-4'})$.

"Broad triplet.

Doublet of triplets.

^{*p*}H_{A,B} collapsed.

TABLE 2. ¹³C NMR spectral data^a

Compound	C2	C4	C5	C6	C8	CH ₂ /CH ₃	C1'	C2′	C3'	C4'	C5′
- 2a	152.18	164.27	103.14	140.74		110.64	89.80	77.25	146.04	82.04	66.51
2 b	153.10	149.50	120.05	156.07	139.17	109.59	91.55	77.50	146.39	83.29	67.01
4 a	150.68	163.07	103.68	139.72		112.99	89.16	60.63	144.00	81.73	65.99
5 a	151.19	163.74	102.96	141.30		27.56	88.80	124.73	144.18	87.09	64.02
5 b	153.87	151.64	120.00	155.90	139.25	27.83	87.66	123.34	144.90	87.37	65.14
6 a	151.19	163.53	102.67	141.71		13.13	89.09	121.33	144.66	88.94	64.19
6 b	153.74	150.52	120.00	155.94	139.50	13.04	89.35	120.21	145.20	87.75	65.01
7 a	151.24	163.70	101.46	141.78		12.28	88.71	120.31	144.49	88.26	60.85
7 b	152.74	149.31	120.03	156.27	139.00	12.63	89.40	120.26	143.55	87.31	61.62
9 a	151.38	163.97	103.38	141.23		114.31	85.01	149.05	70.76	84.52	62.81
9 b	153.77	150.32	120.00	156.00	139.00	114.08	84.85	148.73	71.98	83.33	63.48
11 a	151.12	163.14	103.47	141.00		26.99	90.00	135.77	132.07	86.81	65.34
11 b	153.87	150.64	120.25	156.28	139.54	27.07	89.06	134.95	132.05	87.26	66.01
12 <i>a</i>	151.04	163.17	103.41	141.02		37.34	89.70	136.45	133.18	86.70	65.30
13 a	151.67	164.02	103.47	140.97		12.05	91.57	135.87	128.34	86.76	65.72
13 b	153.84	150.79	120.18	156.03	139.44	12.00	90.50	134.99	128.59	87.19	66.48
14 a	151.37	163.41	102.44	140.94		11.51	90.73	133.94	129.08	86.93	62.66
14 <i>b</i>	153.04	149.73	119.07	156.43	139.50	11.41	89.97	133.92	128.13	87.53	63.06
15	112.80	167.57	105.72	144.17		114.45	91.93	62.35	142.26	82.19	67.77

" δ (Me₄Si internal) in CDCl₃ except 7*a*,*b* and 14*a*,*b* in Me₂SO-*d*₆.

Experimental section

General procedures

Uncorrected melting points were obtained with a capillary melting tube apparatus. Ultraviolet (UV) spectra of MeOH solutions were determined with a Hewlett-Packard 8451A spectrophotometer. ¹H (200 MHz) (Table 1) and ¹³C (50 MHz) (Table 2) NMR spectra were obtained with a Varian Gemini-200 spectrometer. Low-resolution electron-impact mass spectra (MS) were determined with a Finnigan MAT 8430 spectrometer at 20 eV. Flash evaporations (<35°C bath temperatures) were effected with a rotary evaporator with water aspirator or mechanical oil pump vacuum. Flash chromatography was performed with E. Merck Kieselgel 60, 230-400 mesh. Unless specified otherwise, the solvent for chromatography was hexanes/EtOAc (7:3, v/v). Reagent grade solvents and reagents were distilled prior to use. Pyridine was dried by refluxing with and distillation from CaH2. MeCN and toluene were distilled from P₄O₁₀. Elemental analyses were determined by M-H-W Laboratories, Phoenix, Ariz.

l-(5-O-TBDPS-3-deoxy-3-methylene-β-D-erythropentofuranosyl)uracil 2a

Procedure A (10)

TBDPS-Cl (0.40 mL, 0.42 g, 1.56 mmol) was added to a solution of 1*a* (5*a*) (0.25 g, 1.04 mmol) in pyridine (5 mL) and the mixture was stirred at ambient temperature for 18 h. Solvent was evaporated and the residue partitioned between EtOAc (50 mL) and ice-cold 0.01 N HCl/H₂O (30 mL). The aqueous phase was extracted (EtOAc) and the combined organic phase was washed (saturated NaHCO₃/H₂O and brine), dried (Na₂SO₄), and evaporated. The colorless foam (0.55 g) was used without further purification. For characterization, this material was chromatographed (hexane/EtOAc, 1:2) to give 2*a* (0.47 g, 94%) as a colorless solid foam: UV_{max}: 260 nm; MS *m/z*: 420 (10, M – CMe₃ – H), 309 (90, M – CMe₃ – BH), 281 (14, M – CMe₃ – BCHO), 199 (100, Ph₂SiOH).

9-(5-O-TBDPS-3-deoxy-3-methylene-β-D-erythro-pentofuranosyl)adenine 2b

Procedure A was applied to 1*b* (5*b*) (0.56 g, 2.13 mmol) to give 2*b* (1.0 g, 95%) as a colorless solid foam: UV_{max}: 260 nm; MS m/z: 502 (4, MH⁺), 444 (100, M – CMe₃), 309 (18, M – CMe₃ – BH), 199 (75, Ph₂SiOH).

l-(5-O-TBDPS-2-chloro-2,3-dideoxy-3-methylene-β-D-erythropentofuranosyl)uracil **4**a

Procedure B

SOCl₂ (37 µL, 60 mg, 0.5 mmol) in CH₂Cl₂ (0.5 mL) was added to **2***a* (50 mg, 0.10 mmol) and pyridine (41 µL, 40 mg, 0.5 mmol) in CH₂Cl₂ (1.5 mL) at 0°C. The mixture was stirred at ambient temperature for 48 h, diluted (CH₂Cl₂, 10 mL), and poured into saturated NaHCO₃/H₂O (5 mL, 0°C). The aqueous phase was extracted (CH₂Cl₂) and the combined organic phase was dried (Na₂SO₄) and evaporated. The residue was chromatographed (hexane/EtOAc, 3:1) to give cyclonucleoside **15** (6.5 mg, 14%) and 4*a* (32 mg, 62%) as a colorless solid foam. **15**: UV_{max}: 306 nm; MS *m/z*: 403 (80, M – CMe₃), 327 (6, M – CMe₃ – Ph), 293 (40, M – CMe₃ – B), 199 (100, Ph₂SiOH). 4*a*: UV_{max}: 259 nm (ε 9000); MS *m/z*: 439 (3, M[³⁵Cl] – CMe₃), 441 (1, M[³⁷Cl] – CMe₃), 403 (40, M – CMe₃ – HCl), 293 (10, M – CMe₃ – Cl – B), 87 (100, M – BCHO – Ph₂Si(CMe₃)OCH₂). Anal. calcd. for C₂₆H₂₉ClN₂O₄Si: C 62.83, H 5.88, N 5.64; found: C 63.00, H 5.98, N 5.62.

1-[5-O-TBDPS-2,3-dideoxy-3-(phenoxycarbonylthio)methyl-β-Dglycero-pent-2-enofuranosyl]uracil 5a

Procedure C (11)

DMAP (0.32 g, 2.7 mmol) was added to a solution of crude 2a (0.55 g) in MeCN (25 mL). Phenyl chlorothionocarbonate (0.18 mL, 0.22 g, 1.35 mmol) was added and the mixture was stirred at ambient temperature under N₂ for 18 h. Volatiles were evaporated and the residue was partitioned between EtOAc (50 mL) and brine/H₂O (1:1, 30 mL). The aqueous phase was extracted (EtOAc) and the combined organic phase was washed (saturated NaHCO₃/H₂O and brine), dried (Na₂SO4), and evaporated. Chromatography (hexane/EtOAc, 1:1) gave 5a (0.51 g, 80% from 1a) as a colorless solid foam: UV_{max}: 260 nm (ε 9700); MS *m/z*: 557 (1, M - CMe₃), 445 (100, M - CMe₃ - BH), 291 (98, M - CMe₃ - BH₂ - PhOCOS). Anal. calcd. for C₃₃H₃₄N₂O₆SSi: C 64.47, H 5.57, N 4.56, S 5.22; found: C 64.45, H 5.64, N 4.54, S 5.30.

9-[5-O-TBDPS-2,3-dideoxy-3-(phenoxycarbonylthio)methyl-β-Dglycero-pent-2-enofuranosyl]adenine **5**b

Procedure C was applied to 2b (0.60 g, 1.2 mmol) to give 5b (0.70 g, 93%) as slightly colored needles (EtOAc/hexanes): mp 111–112°C; UV_{max}: 260 nm (ε 16 700); MS m/z: 580 (10, M –

 $CMe_3),\,445$ (100, M - CMe_3 - BH). Anal. calcd. for $C_{34}H_{35}\text{-}N_5O_4SSi;$ C 64.03, H 5.53, N 10.98; found: C 63.66, H 5.60, N 10.99.

1-(5-O-TBDPS-2,3-dideoxy-3-methyl-β-D-glycero-pent-2enofuranosyl)uracil 6a

Procedure D

AIBN (0.042 g, 0.25 mmol) and Bu₃SnH (0.56 mL, 0.61 g, 2.1 mmol) were added to a solution of 5a (0.43 g, 0.70 mmol) in toluene (20 mL). The solution was deoxygenated (N₂) for 20 min and then heated at 100°C under N₂ for 10 h. Volatiles were evaporated and the residue was chromatographed (hexane/EtOAc, gradient 4:1 \rightarrow 1:1) to give 6a (0.27 g, 85%) as a colorless foam: UV_{max}: 260 nm; MS *m/z*: 293 (100, M - CMe₃ - BH), 199 (90, Ph₂SiOH), 187 (60, M - CMe₃ - BCH₂O - Ph). Analogous treatment of 4a (17 mg, 0.034 mmol) gave 6a (15 mg, 95%) with identical spectral data.

9-(5-O-TBDPS-2,3-dideoxy-3-methyl-β-D-glycero-pent-2enofuranosyl)adenine **6**b

Procedure D was applied to 5b (0.44 g, 0.69 mmol) to give 6b (0.29 g, 90%) as colorless needles (EtOAc/hexane): mp 121–122°C; UV_{max}: 260 nm; MS m/z: 428 (95, M – CMe₃), 293 (100, M – CMe₃ – BH), 187 (90, M – CMe₃ – BCH₂O – Ph).

l-(2,3-Dideoxy-3-methyl-β-D-glycero-pent-2-enofuranosyl)uracil (2',3'-didehydro-2',3-dideoxy-3'-methyluridine) 7a

Procedure E

Bu₄NF/THF (1 M; 0.54 mL, 0.54 mmol) was added to a solution of **6***a* (0.25 g, 0.54 mmol) in THF (15 mL) at 0°C. After 1 h at 0°C, the solution was evaporated ($<25^{\circ}$ C) and the residue was chromatographed (Dowex 50 (Na⁺) resin/H₂O; elution with H₂O) to give a colorless residue containing uracil (TLC). Chromatography (CHCl₃/EtOH, 47:3) and crystallization (acetone/Et₂O) afforded 7*a* (0.072 g, 60%) as a colorless powder: mp 123–124°C; UV_{max}: 260 nm (ϵ 9600); MS *m/z*: 112 (100, M – BH). Anal. calcd. for C₁₀H₁₂N₂O₄: C 53.57, H 5.39, N 12.49; found: C 53.47, H 5.29, N 12.57.

9-(2,3-Dideoxy-3-methyl-β-D-glycero-pent-2-enofuranosyl)adenine (2',3'-didehydro-2',3'-dideoxy-3'-methyladenosine) 7b

Procedure E was applied to **6***b* (0.25 g, 0.51 mmol) with evaporation (<25°C) and direct chromatography (CHCl₃/EtOH, 93:7) to give 7*b* (0.075 g, 60%) as a colorless solid: mp 110–112°C; UV_{max}: 260 nm (ϵ 14 000); MS *m/z*: 248 (30, MH⁺), 231 (100, MH – OH). Anal. calcd. for C₁₁H₁₃N₅O₂·0.25 EtOH: C 53.38, H 5.65, N 27.06; found: C 53.35, H 5.36, N 26.82.

1-(5-O-TBDPS-2-deoxy-2-methylene-β-D-erythro-pentofuranosyl)uracil 9a

Procedure A was applied to **8***a* (5*a*) (0.70 g, 2.91 mmol) to give **9***a* (1.25 g, 90%) as colorless prisms (EtOAc/hexane): mp 146–147°C; UV_{max}: 260 nm; MS m/z: 421 (96, M – CMe₃), 309 (20, M – CMe₃ – BH), 293 (100, M – CMe₃ – B – OH).

9-(5-O-TBDPS-2-deoxy-2-methylene-β-D-erythro-pentofuranosyl)adenine 9b

Procedure A was applied to **8***b* (5*b*) (0.37 g, 1.4 mmol) to give **9***b* (0.66 g, 95%) as a colorless solid foam: UV_{max} : 260 nm; MS m/z: 444 (100, M - CMe₃), 309 (8, M - CMe₃ - BH).

l-[5-O-TBDPS-2,3-dideoxy-2-(phenoxycarbonylthio)methyl-β-Dglycero-pent-2-enofuranosyl]uracil **11**a

Procedure C was applied to 9a (0.40 g, 0.84 mmol) to give 11a (0.43 g, 85%) as a solid foam: UV_{max}: 260 nm (ε 9000); MS m/z: 556 (40, M - CMe₃ - H), 445 (100, M - CMe₃ - BH), 351 (30, M - CMe₃ - BH₂ - PhO), 293 (22, M - CMe₃ - B - PhOCOS). Anal. calcd. for C₃₃H₃₄N₂O₆SSi: C 64.47, H 5.57, N 4.56, S 5.22; found: C 64.59, H 5.41, N 4.56, S 5.15.

9-[5-O-TBDPS-2,3-dideoxy-2-(phenoxycarbonylthio)methyl-β-Dglycero-pent-2-enofuranosyl]adenine 11b

Procedure C was applied to **9***b* (0.40 g, 0.80 mmol) to give **11***b* (0.34 g, 87%) as a colorless solid foam: UV_{max}: 260 nm (ϵ 18 000); MS *m/z*: 325 (20, M - CMe₃ - B - PhOCO), 293 (22, M - CMe₃ - B - PhOCOS), 199 (100, Ph₂SiOH). Anal. calcd. for C₃₄H₃₅N₅O₄SSi: C 64.03, H 5.53, N 10.98; found: C 64.20, H 5.31, N 10.80.

l-(5-O-TBDPS-2-chloromethyl-2,3-dideoxy-β-D-glycero-pent-2enofuranosyl)uracil **12**a

Procedure B was applied to 9a (50 mg, 0.10 mmol) to give 12a (46 mg, 89%) as a colorless solid foam: UV_{max}: 260 nm (ϵ 9400); MS m/z: 403 (12, M - CMe₃ - HCl), 327 (6, M - CMe₃ - BH), 293 (18, M - CMe₃ - BH - Cl), 199 (100, Ph₂SiOH). Anal. calcd. for C₂₆H₂₉ClN₂O₄Si: C 62.83, H 5.88, N 5.64; found: C 62.81, H 5.82, N 5.56.

l-(5-O-TBDPS-2,3-dideoxy-2-methyl-β-D-glycero-pent-2enofuranosyl)uracil **13**a

Procedure D was applied to 11*a* (0.30 g, 0.48 mmol) to give 13*a* (0.19 g, 85%) as colorless needles (Et₂O/hexane): mp 146–147°C; UV_{max}: 260 nm; MS m/z: 405 (5, M – CMe₃), 293 (100, M – CMe₃ – BH), 187 (60, M – CMe₃ – BCH₂O – Ph). Analogous treatment of 12*a* (36 mg, 0.076 mmol) by procedure D gave 13*a* (29 mg, 88%) with identical spectral data.

9-(5-O-TBDPS-2,3-dideoxy-2-methyl-β-D-glycero-pent-2-

enofuranosyl)adenine 13b

Procedure D was applied to **11***b* (0.35 g, 0.54 mmol) to give **13***b* (0.22 g, 84%) as a colorless solid (EtOAc/hexane): mp 166–167°C; UV_{max}: 260 nm; MS m/z: 428 (8, M – CMe₃), 293 (20, M – CMe₃ – BH), 95 (100, M – BH – Ph₂Si(CMe₃)O).

1-(2,3-Dideoxy-2-methyl-β-D-glycero-pent-2-enofuranosyl)uracil (2',3'-didehydro-2',3'-dideoxy-2'-methyluridine) **14**a (16)

Procedure E was applied to 13a (0.20 g, 0.43 mmol) to afford 14a (0.092 g, 95%) as a solid foam: UV_{max}: 259 nm (ε 9200); MS m/z: 224 (2, M⁺), 193 (30, M – CH₂O), 113 (100, M – B). Anal. calcd. for C₁₀H₁₂N₂O₄: C 53.57, H 5.39, N 12.49; found: C 53.73, H 5.49, N 12.29.

9-(2,3-Dideoxy-2-methyl-β-D-glycero-pent-2-enofuranosyl)adenine (2',3'-didehydro-2',3'-dideoxy-2'-methyladenosine) **14**b

Procedure E was applied to **13***b* (0.185 g, 0.38 mmol) with evaporation (<25°C) followed directly by chromatography (CHCl₃/ EtOH, 47:3) to give **14***b* (0.085 g, 91%) as a colorless powder: mp 177–178°C; UV_{max}: 259 nm, (ϵ 14 000); MS *m*/*z*: 247 (6, M⁺), 217 (10, M – CH₂O), 135 (100, BH), 112 (20, M – BH). Anal. calcd. for C₁₁H₁₃N₅O₂: C 53.43, H 5.30, N 28.32; found: C 53.27, H 5.47, N 28.10.

Acknowledgments

We thank the American Cancer Society (Grant No. DHP-34) and Brigham Young University Development Funds for generous support and Mrs. Kathryn M. Rollins for assistance with the manuscript.

- (a) H. Mitsuya and S. Broder. Proc. Natl. Acad. Sci. U.S.A. 83, 1911 (1986); (b) E. De Clercq. *In* Antiviral drug development: a multidisciplinary approach. NATO Advanced Study Institutes Series. Vol. A143. *Edited by* E. De Clercq and R. T. Walker. Plenum Press, New York. 1988. pp. 113–118.
- (a) J. Balzarini, R. Pauwels, P. Herdewijn, E. De Clercq, D. A. Cooney, G.-J. Kang, M. Dalal, D. G. Johns, and S. Broder. Biochem. Biophys. Res. Commun. 140, 735 (1986);
 (b) T.-S. Lin, R. F. Schinazi, M. S. Chen, E. Kinney-Thomas, and W. H. Prusoff. Biochem. Pharmacol. 36, 311 (1987).
- C. K. Chu, R. F. Schinazi, M. K. Ahn, G. V. Ullas, and Z. P. Gu. J. Med. Chem. 32, 612, (1989).

- R. Vince, M. Hua, J. Brownell, S. Daluge, F. Lee, W. M. Shannon, G. C. Lavelle, J. Qualls, O. S. Weislow, R. Kiser, P. G. Canonico, R. H. Schultz, V. L. Narayanan, J. G. Mayo, R. H. Shoemaker, and M. R. Boyd. Biochem. Biophys. Res. Commun. 156, 1046 (1988).
- (a) V. Samano and M. J. Robins. Synthesis, 283 (1991); (b)
 J. Org. Chem. 56, 7108 (1991).
- C. H. Baker, J. Banzon, J. M. Bollinger, J. Stubbe, V. Samano, M. J. Robins, B. Lippert, E. Jarvi, and R. Resvick. J. Med. Chem. 34, 1879 (1991).
- 7. M. J. Robins, V. Samano, W. Zhang, J. Balzarini, E. De Clercq, R. T. Borchardt, Y. Lee, and C.-S. Yuan. J. Med. Chem. **35**, 2283 (1992).
- (a) A. Matsuda, H. Okajima, and T. Ueda. Heterocycles, 29, 25 (1989); (b) A. Matsuda, H. Okajima, A. Masuda, A. Kakefuda, Y. Yoshimura, and T. Ueda. Nucleosides Nucleotides, 11, 197 (1992).
- 9. S. Czernecki, A. Ezzitouni, and P. Krausz. Synthesis, 651 (1990).
- 10. S. Hanessian and P. Lavallee. Can. J. Chem. 53, 2975 (1975).
- M. J. Robins, J. S. Wilson, and F. Hansske. J. Am. Chem. Soc. 105, 4059 (1983).

- 12. B. Oddo and G. del Rosso. Gazz. Chim. Ital. **39**, 11 (1909); Chem. Abstr. **3**, 1004 (1909).
- (a) D. L. Garmaise, A. Uchiyama, and A. F. McKay. J. Org. Chem. 27, 4509 (1962); (b) F. E. Ziegler and Z. Zheng. Tetrahedron Lett. 48, 5973 (1987).
- (a) D. M. Brown, D. B. Parihar, and Sir A. Todd. J. Chem. Soc. 4242 (1958); (b) J. G. Moffatt. In Nucleoside analogues: chemistry, biology, and medical applications. NATO Advanced Study Institutes Series. Vol. A26. Edited by R. T. Walker, E. De Clercq, and F. Eckstein. Plenum Press, New York. 1979. pp. 101–108.
- K. B. Wiberg, D. J. Wasserman, E. J. Martin, and M. A. Murcko. J. Am. Chem. Soc. 107, 6019 (1985).
- J.-C. Wu and J. Chattopadhyaya. Tetrahedron, 46, 2587 (1990).
- J. G. Moffatt. *In* Nucleoside analogues: chemistry, biology, and medical applications. NATO Advanced Study Institutes Series. Vol. A26. *Edited by* R. T. Walker, E. De Clercq, and F. Eckstein. Plenum Press, New York. 1979. pp. 122–126.
- S. F. Wnuk, N. K. Dalley, and M. J. Robins. J. Org. Chem. 58, 111 (1993).

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV OF BIRMINGHAM on 11/12/14 For personal use only.