

Tetrahedron 54 (1998) 8941-8974

TETRAHEDRON

Reactions of a β-Sultam Ring with Lewis Acids via the C-S Bond Cleavage

Tetsuo Iwama,^a Miyoko Ogawa,^a Tadashi Kataoka,^{*a} Osamu Muraoka^b and Genzoh Tanabe^b

^aGifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan

^bKinki University, Faculty of Pharmaceutical Sciences, 3-4-1, Kowakae, Higashi-osaka, Osaka 577-0818, Japan

Received 22 April 1998; accepted 27 May 1998

Abstract: Selective C-S bond cleavage of a β -sultam ring was achieved by the reactions with Lewis acids. Aryl ketones or aldehyde were provided from 3-aryl- β -sultams whereas β -sultams bearing a poorly migratory substituent at C-3 gave trans-1,2,3-oxathiazolidine 2-oxides and/or cis-aziridines. These reactions were influenced by the cation-stabilizing capability of C-4 substituents and by the configuration of the substituents at C-3 and C-4. Some 4-alkenyl-3-aryl- β -sultams underwent tandem intramolecular cyclization to give bicyclo[3.2.1]- and [2.2.1]- γ -sultams via the processes of C-S bond cleavage, 1,2-aryl shift, cation-olefin cyclization and recombination of the sulfonyl anion. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

1,2-Thiazetidine 1,1-dioxides (β -sultams), sulfonyl analogues of β -lactams, can be regarded as various synthetic equivalents as well as building blocks for the construction of other heterocycles since they are made up of a strained four-membered ring with three different kinds of hetero single bonds, namely, C-N, C-S and N-S bonds.¹⁻⁴ There have been reported several papers directed toward synthesis of potent drugs.⁵⁻¹³ There are several papers on the N-S bond cleavage by hydrolysis or by aminolysis,^{6,7,14-17} and on the C-N bond cleavage by β -elimination.^{18,19} We have recently reported that the first selective cleavage of the C-S bond was achieved by treatment of β -sultams with Lewis acids such as EtAlCl₂, AlCl₃ and SnCl₄ to give ketones, aldehydes, *trans*-1,2,3-oxathiazolidine 2-oxides, and *cis*-aziridines depending on C-3 and C-4 substituents of the β -sultam ring and on the Lewis acid.^{20,21} We applied the C-S bond cleavage to tandem intramolecular cyclization of cationic intermediates. In this paper we present the entire outlook of transformation of β -sultams with Lewis acids *via* the C-S bond cleavage.

RESULTS AND DISCUSSION

We first examined reactions of cis-2-cyclohexyl-3,4-diphenyl- β -sultam (1a-cis, R¹ = cC_6H_{11} , R² = Ph, R³ = H, R⁴ = Ph)^{22,23} with some Lewis acids such as AlCl₃, EtAlCl₂, Et₂AlCl, Et₃Al, TiCl₄, Ti(OⁱPr)₄, ZnCl₂, ZnI₂, ZnEt₂ and BF₃·Et₂O (Scheme 1, Table 1). Use of 2 equiv of AlCl₃ gave the best result, and benzophenone (2a) was obtained in 89% yield (entry 1). Reaction of 1a with 1.1 equiv of EtAlCl₂ provided 2a in 56% yield with 12% of 1a (entry 2) and the yield of 2a increased to 81% by use of 2 equiv of EtAlCl₂ (entry 3). We selected EtAlCl₂ rather than AlCl₃ as a mild and efficient reagent for the C-S bond cleavage of the β -sultam ring because a solution of EtAlCl₂ in hexane is easier to handle than a solid AlCl₃ by considering their moisture sensitivities.

Table 1. Reactions of cis-2-Cyclohexyl-3,4-diphenyl-β-sultam 1a-cis with Lewis Acids.

Entry	Lewis acid (equiv)	%Yield of 2a ^a	Entry	Lewis acid (equiv)	%Yield of 2a^a
1	AlCl ₃ (2.0)	89	7	$Ti(O^{i}Pr)_{4}(2.0)$	No reaction
2	$EtAlCl_2(1.1)$	56 ^b	8	$\operatorname{ZnCl}_2(2.0)$	No reaction
3	EtAlCl ₂ (2.0)	81	9	$ZnI_{2}(2.0)$	No reaction
4	Et ₂ AlCl (2.0)	28 ^c	10	$ZnEt_2(2.0)$	No reaction
5	Et ₃ Al (2.0)	No reaction	11	BF ₃ •Et ₂ O (1.5)	trace ^c
6 ^d	TiCl ₄ (1.0)	25			

^aIsolated yield. ^b12% of 1a-cis was recovered. ^cA considerable amount of 1a-cis was recovered. ^dTemperature: -20°C - r.t.; Time: 6 h.

Next, we carried out reactions of a number of β -sultams 1a- δ bearing a variety of substituents at C-3 and C-4 with 2 equiv of EtAlCl₂ (Scheme 1, Table 2). The reactions were influenced by the cation-stabilizing capability of C-4 substituents and by steric relation between the substituents at C-3 and C-4. In the cases of 3aryl-4-phenyl- β -sultams 1a-l, benzophenone derivatives 2a-l were obtained in good yields regardless of the configuration of the C-3 and C-4 aryl groups and of the electronic nature of substituents at the C-3 phenyl groups (entries 1-21, Figure 1, A). Treatment of 3-(1-naphthyl)-\beta-sultams 11-cis furnished 1-naphthyl ketone 21 in a slightly lower yield than those of 1a-k probably owing to bulkiness of the 1-naphthyl group (entry 22). On the other hand, a slight substituent effect was observed in the reactions of 4-aryl-3-phenyl-β-sultams 1a,mq (entries 1, 23-27). An electron-donating p-methyl group stabilized a benzylic cation and promoted the C-S bond cleavage (entry 23), while an electron-withdrawing halogeno group retarded it and small amounts of the starting materials 1n-q were recovered (entries 24-27). 4-Non-substituted-B-sultams 1r,s did not undergo the C-S bond cleavage and the starting materials were recovered (entries 28, 29) because the C-4 cations were less stable than those of **1a-q** (Figure 1, B). A considerable substituent effect of the C-3 aryl group was observed in reactions of *trans*-4-alkyl- β -sultams 1t-w-trans (entries 31, 33, 35, 37). The increase of electron density on the C-3 aryl groups accelerated the rate of neighboring group participation to the resulting cation and enabled the 1,2-aryl rearrangement to proceed (Figure 1, C). In contrast, in the cases of cis-4-alkyl-B-sultams 1t-wcis steric repulsion between the aryl and alkyl groups prevented neighboring group participation (Figure 1, D), and no aryl ketones were obtained (entries 30, 32, 34, 36). Aldehydes 3a-c were derived from 4,4-dimethyl- β -sultams 1x-z because the C-4 cations generated from 1x-z were sufficiently more stable than those from trans-4-methyl-\beta-sultams so to bring about C-S bond cleavage (entries 38-40, Figure 1, E). Treatment of 4,4dimethyl- β -sultam 1 α possessing a p-bromophenyl group, a less migratory substituent, gave a complex mixture. No reaction occurred in the cases of 3-non-substituted- β -sultam 1 β and 3-butyl- β -sultams 1 γ -trans and 1 δ (entries 42-44). The migratory aptitude of a C-3 substituent as well as the stability of a C-4 cation would play an important role in these reactions. Reactions of 4-alkyl-substituted β -sultams 1t-z would proceed by a concerted process with neighboring group participation via polar intermediates C'-E' rather than cation intermediates C-E by considering that a reaction of 3-Jbutyl-4-phenyl-\beta-sultam 10f underwent the C-S bond cleavage to give a ring-enlarged product (see Scheme 5, entry 9 in Table 4).

The reaction of **1e**-cis with $EtAlCl_2$ afforded an α -hydroxyaldehyde **4** in 31% yield together with 4methoxybenzophenone (2e) (entry 6). The hydroxyaldehyde **4** was converted into 2e by the treatment with silica gel in EtOAc (Scheme 2). This finding indicates that **4** is an intermediate of the benzophenone formation.

	<u> </u>	β-	 Sultam			Products
Entry	Compd No.	R ¹	R ²	R ³	R ⁴	(%yield) ^a
1	la-cis	^c C ₆ H ₁₁	Ph	Н	Ph	2a (81)
2	1a <i>-trans</i>	^с С ₆ Н ₁₁	Ph	Ph	Н	2a (78)
3	1b <i>-cis</i>	Bn	Ph	H	Ph	2b = 2a (83)
4	1b <i>-trans</i>	Bn	Ph	Ph	Н	2b = 2a (85)
5	1c <i>-cis</i>	"Bu	Ph	Н	Ph	2c = 2a (75)
6	1c <i>-trans</i>	"Bu	Ph	Ph	Н	2c = 2a (80)
7	1d-cis	'Bu	Ph	Н	Ph	2d = 2a(81)
8	1d-trans	'Bu	Ph	Ph	Н	2d = 2a (76)
9 ^b	1e-cis	^с С ₆ Н ₁₁	p-MeOC ₆ H ₄	H	Ph	2e (62), 4 (31)
10	1e-trans	^c C ₆ H ₁₁	p-MeOC ₆ H ₄	Ph	Н	2e (75), 4 (16)
11	1f-cis	^с С ₆ Н ₁₁	$p-\text{MeC}_6H_4$	Н	Ph	2f (85)
12	1f-trans	^c C ₆ H ₁₁	$p-MeC_6H_4$	Ph	Н	2f (85)
13	1g-cis	^c C ₆ H ₁₁	o-MeC ₆ H ₄	Н	Ph	2 g (82)
14	1g-trans	^c C ₆ H ₁₁	o-MeC ₆ H₄	Ph	Н	2 g (82)
15	1h-cis	^c C ₆ H ₁₁	$p-FC_6H_4$	H	Ph	2h (83)
16	1h-trans	^c C ₆ H ₁₁	$p-FC_6H_4$	Ph	Н	2h (79)
17	1i <i>-cis</i>	^c C ₆ H ₁₁	$p-ClC_6H_4$	H	Ph	2i (79)
18	1i-trans	^c C ₆ H ₁₁	$p-ClC_6H_4$	Ph	Н	2i (80)
19	1i ^c	^c C ₆ H ₁₁	o-ClC ₆ H ₄	Н	Ph	2j (77)
20	-J 1k <i>-cis</i>	^c C ₆ H ₁₁	$p-BrC_6H_4$	Н	Ph	2k (81)
21	1k <i>-trans</i>	^с С ₆ Н ₁₁	$p-BrC_6H_4$	Ph	Н	2k (79)
22	11-cis	^c C ₆ H ₁₁	1-Naphthyl	Н	Ph	2l (70)
23	1m-cis	^c C ₆ H ₁₁	Ph	Н	p-MeC ₆ H ₄	2m = 2f(85)
24	1n-cis	^c C ₆ H ₁₁	Ph	Н	$p-ClC_6H_4$	2n = 2i(74), 1n-cis(7)
25	10 <i>-cis</i>	^c C ₆ H ₁₁	Ph	Н	o-ClC ₆ H ₄	20 = 2j (72), 10 -cis (5)
26	1p-trans	^c C ₆ H ₁₁	Ph	Н	2,4-Cl ₂ C ₆ H ₃	2p (70), 1p-trans (7)
27	la-cis	^c C ₆ H ₁₁	Ph	Н	p-FC ₆ H ₄	2q = 2h(75), 1q-cis(6)
28	1r	^c C ₆ H ₁₁	Ph	Н	H	No reaction
29	1s	^с С ₆ Н ₁₁	p-MeC ₆ H₄	Н	Н	No reaction
30	1t-cis	^c C ₆ H ₁₁	Ph	Н	Me	No reaction
31	1t <i>-trans</i>	^с С ₆ Н ₁₁	Ph	Me	Н	2t (13), 1t-trans (61)
32	1u <i>-cis</i>	^с С ₆ Н ₁₁	Ph	Н	Et	No reaction
33	1u <i>-trans</i>	^с С ₆ Н ₁₁	Ph	Et	Н	2u (19), 1u-trans (61)
34	1v-cis	^с С ₆ Н ₁₁	p-MeC ₆ H ₄	н	Me	No reaction
35	1v <i>-trans</i>	^с С ₆ Н ₁₁	p-MeC ₆ H ₄	Me	Н	2v (35), 1v-trans (44)
36	1w-cis	^c C ₆ H ₁₁	p-ClC ₆ H ₄	Н	Ме	No reaction
37	1w-trans	^с С ₆ Н ₁₁	p-ClC ₆ H₄	Me	Н	2w (trace), 1w-trans (76)
38	1x	^c C ₆ H ₁₁	Ph	Me	Me	3x (82)
39	1v	^c C ₆ H ₁₁	$p-MeC_6H_4$	Me	Me	3y (78)
40	 1z	^с С ₆ Н ₁₁	<i>p</i> -MeOC ₆ H ₄	Me	Me	3z (89)
41	 1α	^c C ₆ H ₁₁	p-BrC₄H₄	Me	Me	Complex mixture
42	18	Bn	 H	н	Et	No reaction
43	1γ -trans	^c C ₆ H ₁₁	'Bu	Me	Н	No reaction
44	1δ	^c C ₆ H ₁₁	^t Bu	Me	Me	No reaction

Table 2. Reactions of β -Sultams 1 with EtAlCl₂: Formation of Ketones and Aldehydes.

^aIsolated yield. ^b2.2 equiv of EtAlCl₂ was used. ^cA mixture of *cis*- and *trans*-isomers was used.

Scheme 2

We then carried out a reaction of N-(2-phenylpropylidene)-*n*butylamine (5) with 2 equiv of EtAlCl₂ in order to confirm that an imine reacts with EtAlCl₂ and provides an aryl ketone. Acetophenone (2t) was obtained in 63% yield from 5 (Scheme 2).

A plausible mechanism is proposed as shown in Scheme 3. The C-S bond of a β -sultam is cleaved by coordination of EtAlCl₂ to the sulfonyl group to generate a cationic intermediate II (we describe the stepwise process *via* the cationic intermediate II for convenience). The neighboring group participation of an aryl group followed by the 1,2-aryl migration provides another carbocation IV. An imine V is produced by elimination of sulfur dioxide from IV. In the case of R⁴ = H, V isomerizes to an enamine VI and coordination of EtAlCl₂ enables a chloride ion to attack at the β -carbon of VI. The resulting chloroimine VII is hydrolyzed to an α -hydroxyaldehyde VIII, which decomposes to an aryl ketone 2 under acidic conditions.²⁴ The detail mechanism is not clear at present. In the case of R³ = R⁴ = Me, an aldehyde 3 is obtained by the hydrolysis of V.

Scheme 3

We applied this reaction to synthesis of trisubstituted aldehydes (Scheme 4, Table 3). 4,4-Disubstituted β -sultams 6 and 7 were prepared by treatment of 1 with LDA followed an alkyl iodide. Alkylation of 4-phenyl- β -sultams (R² = Ph) proceeded stereoselectively to give 6-cis (cis: relation between two aryl groups, Ar and R²) as major products (entries 1, 4-6).²⁵ Trisubstituted aldehydes 8 and 9 were obtained in good yields (entries 1-8) regardless of the configuration of the C-3 and C-4 aryl groups (entries 2, 3).

Entry	Ar	R ¹	R ²	R ³	6 or 7^{a} (%yield) ^b	8 or 9 ^a (%yield) ^b
1	Ph	^c C ₆ H ₁₁	Ph	CH ₃ CH ₂ CH ₂ CH ₂	6aa-cis (66), 6aa-trans (14) ^c	8aa (71) ^e
2					6aa-cis	8aa (81)
3					6aa-trans	8aa (79)
4	Ph	"Bu	Ph	CH ₃	6cb-cis (55), 6cb-trans (27) ^c	8cb (93) ^e
5	p-ClC ₆ H ₄	^c C ₆ H ₁₁	Ph	CH ₃	6ib-cis (74), 6ib-trans (21) ^c	8ib (88) ^e
6	Ph	ⁿ Bu	Ph	CH ₃ CH ₂	6cc $(cis : trans = 5.7 : 1, 95)^{c,c}$	ⁱ 8cc (83) ^e
7	Ph	^c C ₆ H ₁₁	-	$-CH_2CH_2CH_2CH_2-(R^3, R^3)$	7rd (73)	9rd (84)
8	Ph	^c C ₆ H ₁₁	-	CH ₃ CH ₂ CH ₂	7re (65)	9re (88)

Table 3. Preparation of 4,4-Disubstituted β -Sultams 6 and 7 and Their Reactions with EtAlCl₂.

^aCompound No.: The first alphabets correspond to those of β -sultams 1 and the second alphabets show alkyl iodides (R³). ^bIsolated yield. ^ccis, trans: Relation between C-3 and C-4 aryl groups, Ar and R² (Ph). ^dAn inseparable mixture of diastereomers. The ratio was estimated by the ¹H NMR spectrum. ^eA mixture of stereoisomers, **6**-cis and **6**-trans, was used for a reaction with EtAlCl₂.

A variety of β -sultams 10 with a poorly migratory substituent at C-3 (0.2 mmol) were treated with EtAlCl₂ or AlCl₃ in dry CH₂Cl₂ (2 ml) under a nitrogen atmosphere (Scheme 5, Table 4). The reaction of 10a-cis with 2 equiv of EtAlCl₂ for 12 h afforded *trans*-1,2,3-oxathiazolidine 2-oxide 11a (A : B = 70 : 30, separable by preparative TLC on silica gel) in 65% yield (entry 1). cis-Aziridine 12a was obtained as a major product in 62% yield along with 5% of 11a when the reaction was carried out in CH₂Cl₂ under reflux for 60 h (entry 2). The reaction of 10a-trans with 1.4 equiv of EtAlCl₂ at room temperature gave no 1,2,3-

E-A-	β-Su	ltam	— ••• • • • •	D 1			
Entry	Compd No.	R	Conditions (equiv)	Products (%yield)"			
1	10a-cis	3-Pyridyl	EtAlCl ₂ (2.0), r.t., 12 h	11a (65, $\mathbf{A} : \mathbf{B} = 70 : 30$)			
2	10a <i>-cis</i>	3-Pyridyl	EtAlCl ₂ (4.5), reflux, 60 h	11a (5, A : B = 80 : 20), 12a (62)			
3	10a-trans	3-Pyridyl	EtAlCl ₂ (1.4), r.t., 12 h	No Reaction			
4	10b <i>-cis</i>	4-Pyridyl	EtAlCl ₂ (4.5), 0°C, 22 h	11b (49, $\mathbf{A} : \mathbf{B} = 90 : 10$), ^c 12b (11)			
5	10b-cis	4-Pyridyl	AlCl ₃ (4.0), reflux, 28 h	11b (8, A : B = 91 : 9), ^c 12b (54)			
6	10c <i>-cis</i>	2-Pyridyl	EtAlCl ₂ (2.2), r.t., 14 h	11c (40, $\mathbf{A} : \mathbf{B} = 90 : 10$), ^c 12c (18)			
7	10c <i>-cis</i>	2-Pyridyl	AlCl ₃ (4.0), r.t., 27 h	11c (9, $\mathbf{A} : \mathbf{B} = 94 : 6$), ^c 12c (48)			
8	10d-cis	$p-NO_2C_6H_4$	EtAlCl ₂ (1.0), 0°C, 12 h	11d $(18, \mathbf{A} : \mathbf{B} = 95 : 5)^{c}$			
9	10e-cis	p-CNC ₆ H ₄	AlCl ₃ (1.5), r.t., 14 h	12e (23)			
10	10f ^b	'Butyl	EtAlCl ₂ (1.1), r.t., 12 h	11fA (93)			

Table 4. Ring Transformation of β -Sultams 10 Bearing a Poor Migratory Substituent with EtAlCl₂ or AlCl₃.

^aIsolated yield. ^bAn isomeric mixture (*cis* : *trans* = 1 : 1.8) was used. ^cAn inseparable mixture of stereoisomers. The ratio was determined by ¹H NMR.

oxathiazolidine 2-oxide, and 72% of the starting material was recovered (entry 3). The steric repulsion between the C-3 and C-4 substituents of **10a**-cis would increase the aptitude of ring distortion and greatly influence the C-S bond cleavage. Therefore, we examined reactions of **10b**-e by the use of cis-isomers. In the cases of **10b**-d-cis, trans-1,2,3-oxathiazolidine 2-oxides **11b**-d were provided as inseparable mixtures of stereoisomers, whose ratios were calculated from the intensities of 4-H and 5-H signals in the ¹H NMR spectrum (entries 4-8). Since the reaction of **10d**-cis was complicated, we could not characterize any other products except for **11d**. The reaction of **10e**-cis with 1.5 equiv of AlCl₃ gave cis-**12e** in 23% yield, and no other product could be characterized (entry 9). Treatment of **10f** with 1.1 equiv of EtAlCl₂ for 12 h gave trans-1,2,3-oxathiazolidine 2-oxide **11fA** as a single isomer in high yield (entry 10).

The stereochemistry of *trans*-1,2,3-oxathiazolidine 2-oxides **11aA** and **11aB** was determined by comparing the chemical shifts and the coupling constants between 4-H and 5-H in the ¹H NMR spectrum with those of 4,5-diphenyl-3-methyl-1,2,3-oxathiazolidine 2-oxides²⁶ and finally by X-ray crystallographic analysis of **11fA** (Figure 2). The *cis*-configuration of aziridines **12** was determined from the coupling constants between 2- and 3-hydrogens in the ¹H NMR spectra, for example, that of **12a** was J = 6.3 Hz.

Fig. 2. ORTEP drawing of the compound 11fA

Treatment of 11aA with 2 equiv of EtAlCl₂ gave 12a, 11aA and 11aB in 50, 15 and 10% yields, respectively (Scheme 5). From the result, 1,2,3-oxathiazolidine 2-oxides and aziridine would be formed as shown in Scheme 6. The C-S bond of a β -sultam ring is cleaved by the coordination of a Lewis acid to the sulfonyl group to generate a cationic intermediate IX. The C-S bond cleavage would be influenced by the steric repulsion of the C-3 and C-4 substituents. Recyclization of IX between carbocation and oxygen provides stereoselectively *trans*-1,2,3-oxathiazolidine 2-oxides 11 because of the steric repulsion between the C-4 and C-5 substituents. In the prolonged reaction, IX is regenerated from 11 by the C-0 bond cleavage with a Lewis acid and eliminates sulfur dioxide to form another intermediate X. The β -amino carbocation X cyclizes to give a *cis*-aziridine 12, which is thermodynamically more stable than the corresponding *trans*-isomer.^{27,28}

Next, we carried out reactions of β -sultams 1 with 2 equiv of SnCl₄ in CH₂Cl₂ under nitrogen at room temperature for 12 h (Scheme 7, Table 5). Treatment of 1a with 2 equiv of EtAlCl₂ under the same conditions provided benzophenone 2a in good yield regardless of the configuration of the 3- and 4-substituents (see Scheme 1, entries 1 and 2 in Table 2). In contrast, the reaction of 1a-cis with SnCl₄, a weaker Lewis acid than EtAlCl₂, gave cis-aziridine 13a as a major product in 46% yield together with 19% of 2a (Table 5, entry 1). The yield of 13a increased to 53% and that of 2a decreased to 10% by the addition of 2 equiv of KI as a nucleophile (entry 2). On the other hand, the reaction of 1a-trans afforded 2a in 61% yield accompanied with a trace amount of 13a (entry 3). Similar results were obtained from reactions of 1k-cis and 1k-trans although considerable amounts of the starting materials were recovered (entries 4 and 5). In the case of 1e-cis, 2e was exclusively given in 83% yield in spite of cis-configuration (entry 6).

Enter 8	β-Su	ltam				
Entry	Compd No.	Ar	Products (%yield)			
1	1a-cis	Ph	13a (46), 2a (19)			
2 ^c	1a <i>-cis</i>	Ph	13a (53), 2a (10)			
3	1a-trans	Ph	13a (trace), 2a (61)			
4	1k-cis	p-BrC ₆ H ₄	13k (14), 2k (4), 1k-cis (76)			
5	1k-trans	<i>p</i> -BrC ₆ H ₄	13k (trace), 2k (46), 1k-trans (32)			
6	1e-cis	p-MeOC ₆ H ₄	2e (83)			

Table 5. Reactions of Some β -Sultams 1 with SnCl₄.

^aReactions were carried out at room temperature for 12 h unless otherwise noted. ^bIsolated yield. ^c2 equiv of KI was added as a nucleophile.

A plausible mechanism is shown in Scheme 8. The C-S bond of 1a-cis is cleaved by the coordination of SnCl₄ to the sulfonyl group and subsequent attack of the chloride ion. cis-Aziridine 13a is formed by extrusion of sulfur dioxide followed by recyclization via intermediates XI and XII. An imine intermediate XIV is generated from XII by 1,2-phenyl shift to give benzophenone 2a. In the case of 1a-trans, the C-S bond is cleaved with the aid of neighboring group participation of the 3-phenyl group to produce 2a via an intermediate XIII. The C-S bond cleavage of 1a-cis would be achieved by the electromeric assistance of the *p*-methoxyphenyl substituent overwhelming the steric interaction between cis-substituents.

We carried out hydrolysis of **11aA** into $(1R^*, 2R^*)$ -2-aminoethanol derivative **14** (Scheme 9).²⁹ Treatment of **11aA** with 1 *N*-HCl in THF at room temperature for 14 h provided $(1R^*, 2R^*)$ -14 in 84% yield accompanied with a small amount of $(1S^*, 2R^*)$ -14. $(1R^*, 2R^*)$ -14 was slowly epimerized to $(1S^*, 2R^*)$ -14 in strongly acidic conditions or in prolonged reaction time. The stereochemistry of the products was confirmed by the comparison with the coupling constants in ¹H NMR spectra of *threo*- and *erythro*-2-(dimethylamino)-1,2-diphenylethanols.³⁰

We attempted to trap a cationic intermediate generated by the C-S bond cleavage with an intramolecular alkenyl group. Starting materials, 4-alkenyl- β -sultams 15 and 15', were prepared in good yields by stereoselective alkylation of 4-monosubstituted β -sultams with alkenyl halides (Scheme 10, Table 6).²⁵ In the cases of some alkenyl halides ($\mathbb{R}^3 = \mathbb{H}$) the compounds 15 were obtained as major products together with their stereoisomers 15' (entries 1, 4, 6, 9). No isomer could be isolated except for 15ae' in the cases of alkenyl halides ($\mathbb{R}^3 = \mathbb{M}$) probably due to the bulkiness of the reagents (entries 11, 17-20). Reaction of 15ca with EtAlCl₂ in toluene gave aldehyde 17ca, 1,2,3-oxathiazolidine 2-oxide 18ca, aziridine 19ca in 25, 50 and 5% yields, respectively (entry 2) whereas the use of CH₂Cl₂ instead of toluene provided 17ca in good yield accompanied with 3% of 18ca (entry 3). The difference in these results would be attributed to formation of an insoluble complex in toluene. Treatment of other alkenyl- β -sultams 15ab,ac,ac',ad ($\mathbb{R}^3 = \mathbb{H}$) in toluene afforded aldehydes in good yields, and no tandem cyclization products 16 were obtained (entries 5, 7, 8, 10).

Table 6. Attempt Tandem Cyclization of 4-Alkenyl-B-sultams 15 and 15'.

г.	f	β-Sultam 1		Halide		e	β-Sultam 15,15' ^a	EtAlCl ₂ Time		
Entry	Ar	\mathbf{R}^1	R ²	R ³	n	Х	(%yield) ^b	(equiv)	(h)	Products ⁻ (%yield) ⁵
1	Ph	"Bu	Ph	н	1	Br	15ca : 15ca' (10 : 1, 90) ^c			
2							15ca,15ca'	2.0	12	17ca (25), 18ca (50), 19ca (5)
3							15ca,15ca'	2.0 ^d	12	17ca (77), 18ca (3)
4	Ph	^c C ₆ H ₁₁	Ph	Н	2	Br	15ab (71), 15ab' (15)			
5							15ab	2.0	15	17ab (72)
6	Ph	^c C ₆ H ₁₁	Ph	Н	3	Br	15ac (54), 15ac' (16)			
7							15ac	2.0	15	17ac (89)
8							15ac'	2.0	15	17ac (83)
9	Ph	^c C ₆ H ₁₁	Ph	Н	4	Br	15ad (82), 15ad' (14)			
10							15ad	2.0	15	17ad (84)
11	Ph	^c C ₆ H ₁₁	Ph	Me	2	Ι	15ae (72), 15ae' (14)			
12							15ae	1.0	12	16ae (29), 15ae (41)
13							15ae	1.0	48	16ae (8), 15ae (13)
14							15ae	1.0 ^d	12	16ae (29), 15ae (44)
15							15ae	2.2	12	16ae (53)
16							15ae'	2.2	12	16ae (59)
17	<i>p-</i> Tol	^c C ₆ H ₁₁	Me	Me	2	Ι	15ve (87)	2.2	12	16veA (42), 16veB (6) ^e
18	p-Tol	^c C ₆ H ₁₁	Et	Me	2	Ι	15ee (83)	2.2	12	16eeA (39), 16eeB (5) ^e
19	- p-Tol	^c C ₆ H ₁₁	Ph	Me	2	Ι	15fe (76)	2.2	12	16fe $(56, \mathbf{A} : \mathbf{B} = 1 : 1)^{f}$
20	Ph	^c C ₆ H ₁₁	Ph	Me	1	Cl	15af (69)	2.2	12	16af (11), 17af (66)

^aCompound No.: The first alphabets correspond to those of β -sultams 1 and the second alphabets show alkenyl halide (R³, n, X). ^bIsolated yield. ^cAn inseparable mixture of diastereomers. The ratio was estimated by the ¹H NMR spectrum. ^dCH₂Cl₂ was used as a solvent. ^eStereochemistry of the products was determined by NOE measurement. ^fA mixture of diastereomers. The ratio was estimated by ¹H NMR spectrum.

Treatment of **15ae** which possesses two *cis*-oriented phenyl groups with 1.0 equiv of EtAlCl₂ in toluene gave a bicyclo[3.2.1]- γ -sultam **16ae** in 29% yield together with 41% of the starting material **15ae** (entry 12). The reaction was complicated in prolonged reaction time (48 h), and only small amounts of **16ae** (8%) and

15ae (13%) were isolated (entry 13). The use of CH_2Cl_2 as a solvent instead of toluene gave a similar result (29% of 16ae and 44% of 15ae, entry 14). The yield was improved up to 53% by use of 2.2 equiv of EtAlCl₂ in toluene at room temperature and no starting material was recovered (entry 15). The γ -sultam 16ae was also obtained in better yield (59%) from 15ae', which possesses two *trans*-oriented phenyl groups, than that from *cis-2a* because *trans*-orientation of the phenyl substituents would probably work efficiently in a 1,2-phenyl shift process. Other products were uncharacterized because they were inseparably complicated and could not be obtained in sufficient amounts for analysis.

Tandem cyclization of some 4-alkenyl- β -sultams 15ve, ϵe , fe, $af(R^3 = Me)$ was also effected by use of 2.2 equiv of EtAlCl₂ in toluene under an argon atmosphere at room temperature for 12 h. From reactions of 4alkyl-substituted β -sultams (15ve: $R^2 = Me$; 15 ϵe : $R^2 = Et$) bicyclo[3.2.1]- γ -sultams 16veA and 16 ϵe A bearing an *equatorial*-phenyl group and an *axial*-alkyl group were obtained as a major product (16veA: 42%; 16 ϵe A: 39%, respectively) accompanied with small amounts of stereoisomers 16veB and 16 ϵe B (6% and 5% yields, respectively) (entries 17, 18). The reaction of 15fe gave γ -sultam 16fe as an inseparable mixture of stereoisomers (1 : 1, estimated by ¹H NMR spectrum) in 56% yield (entry 19). Bicyclo[2.2.1]- γ -sultam 16af was obtained in only 11% yield together with 66% of aldehyde 17af from 15af (entry 20).

The structure of bicyclo[3.2.1]- γ -sultam 16ae was confirmed by X-ray crystallographic analysis, and the stereochemistry of 16veA and 16eeA was estimated by NOE experiments (Figure 3). The ORTEP drawing reveals that 16ae consists of a [3.2.1]-bicyclic ring system and that the cyclohexane skeleton is nearly chair conformation with the sulfonamide unit in *axial*-orientation.

Fig. 3. Structure determination of bicyclo- γ -sultams

The proposed mechanism of the tandem cyclization is shown in Scheme 11. Coordination of EtAlCl₂ at a sulfonyl group of 15 causes C-S bond cleavage to generate a cationic intermediate XV which forms an alternative cation XVI by 1,2-aryl shift. The cation XVI undergoes olefinic cyclization followed by tandem recyclization of a cation XVII to provide a bicyclic γ -sultam 16 in the cases of \mathbb{R}^3 = Me due to stabilization of the cation XVII by the methyl group. In the case of 15af (n = 1) an olefinic cyclization step would be prevented by steric strain of the five-membered ring system with two geminal-phenyl groups, and an imine 20 is predominantly formed by release of sulfur dioxide from XVI. In the cases of \mathbb{R}^3 = H, XVII is not stable enough to generate, and 20 would be exclusively given. An aldehyde 17 is obtained by hydrolysis of 20 during work-up.

We attempted tandem Friedel-Crafts cyclization of a cationic intermediate XVIII generated by the C-S bond cleavage followed by 1,2-phenyl shift (Scheme 12). The compounds 21 were obtained stereoselectively by treatment of 1a with LDA followed by an alkyl bromide. Reactions of 21 with 2.2 equiv of EtAlCl₂ in toluene gave aldehydes 22 or a complex mixture, and no Friedel-Crafts product 23 could be isolated.

^aIsolated yield.

Scheme 12

SUMMARY

Treatment of β -sultams with Lewis acids provided various types of products by selective C-S bond cleavage of the β -sultam ring. The reactions were influenced by the cation-stabilizing capability of C-4 substituents and by the configuration of the substituents at C-3 and C-4. Aryl ketones or aldehydes were given from 3-aryl- β -sultams, and some trisubstituted aldehydes were synthesized. β -Sultams bearing a poorly migratory substituent at C-3 gave trans-1,2,3-oxathiazolidine 2-oxides and/or cis-aziridines stereoselectively. A (1R*,2R*)-2-aminoethanol derivative was obtained by hydrolysis of a trans-1,2,3-oxathiazolidine 2-oxide. Tandem intramolecular cyclization proceeded in the reactions of some 4-alkenyl-3-aryl-β-sultams to give bicyclo[3.2.1]- and [2.2.1]-y-sultams via the processes of C-S bond cleavage, 1,2-aryl shift, cation-olefin cyclization and recombination of the sulfonyl anion. An attempt at tandem Friedel-Crafts cyclization of a cationic intermediate was unsuccessful and resulted in the formation of aldehydes.

EXPERIMENTAL SECTION

Melting points were obtained with a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra of solids (KBr) and liquids (NaCl) were recorded on a JASCO IRA-100 spectrophotometer. ¹H NMR spectra were recorded on a JEOL GX-270 (270 MHz) or a JEOL EX-400 (400 MHz) or JEOL EX-90 (90 MHz) spectrometer with tetramethylsilane as an internal standard. ¹³C NMR spectra and NOE were obtained on a JEOL EX-400 spectrometer with chloroform- δ (77.0 ppm) as an internal standard. Mass spectra were recorded on a JEOL JMS-D 300 spectrometer with a direct-insertion probe at 70 eV. Elemental analyses of new compounds were performed by a Yanaco CHN Corder MT-5. All chromatographic isolations were accomplished with either Kieselgel 60 (Merck) or BW-127ZH (Fuji Silysia) for column chromatography or Kieselgel 60 PF₂₅₄ containing gypsum (Merck) for TLC.

Synthesis of β -Sultams by [2+2] Cycloaddition of Sulfonyl Chlorides and Imines

Method A, general procedure. To a stirred solution of an arylmethanesulfonyl chloride (5 mmol) in dry THF (2.5 cm^3) was added dropwise a solution of imine (10 mmol) in dry THF (10 cm^3) under cooling with ice-NaCl under nitrogen and the mixture was stirred at room temperature for 3 days. The precipitate was filtered off through Celite and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc-hexane (1:10 - 1:5 v/v).

Method B, general procedure. An alkylsulfonyl chloride (5 mmol) and an imine (10 mmol) was stirred without solvent at room temperature under nitrogen. After standing at room temperature for 3-7 days, the solidified reaction mixture was purified by column chromatography on silica gel and eluted with EtOAc-hexane (1:10 - 1:5 v/v).

 β -Sultams 1a,³² b,⁷ c,³¹ e,³² r,³¹ s,³¹ t,³¹ u,³¹ x³² and 10f³¹ were prepared by the reported procedures.

trans-2-^{*t*}Butyl-3,4-diphenyl-1,2-thiazetizine 1,1-Dioxide (1d-*trans*) Prepared by Method A, yield 34%, colorless prisms (from EtOAc-hexane), mp 152-157°C; ¹H NMR (CDCl₃) δ : 1.39 (9 H, s, Me x 3), 4.66 (1 H, d, J = 5.9 Hz, 3-H), 5.16 (1 H, d, J = 5.9 Hz, 4-H), 7.39-7.47 (8 H, m, ArH), 7.59 (2 H, d, J = 6.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 27.9 (q), 56.3 (d), 57.1 (s), 83.0 (d), 126.7 (d), 128.9 (s), 129.0 (d), 129.1 (d), 129.4 (d), 138.8 (s), two aromatic carbons are overlapped; MS (EI) *m/z* (rel. int. %): 315 (1, M⁺), 236 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1160 (SO₂); *Anal.* Calcd for C₁₈H₂₁NO₂S: C, 68.54; H, 6.71; N, 4.44. Found: C, 68.37; H, 6.74; N, 4.38.

cis-2-*i***Butyl-3,4-diphenyl-1,2-thiazetizine** 1,1-Dioxide (1d-*cis*) Prepared by Method A, yield 24%, colorless prisms (from EtOAc-hexane), mp 146-149°C; ¹H NMR (CDCl₃) δ : 1.46 (9 H, s, Me x 3), 5.11 (1 H, d, J = 9.3 Hz, 3-H), 5.83 (1 H, d, J = 9.3 Hz, 4-H), 7.15-7.26 (8 H, m, ArH), 7.35 (2 H, d, J = 6.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 28.3 (q), 53.7 (d), 57.2 (s), 79.7 (d), 128.1 (d), 128.2 (d), 128.3 (d), 128.4 (d), 128.8 (d), 130.1 (d), 136.3 (s), an aromatic carbon is overlapped; MS (EI) *m/z* (rel. int. %): 315 (2, M⁺), 236 (100); IR v_{max} (KBr) cm⁻¹: 1310, 1150 (SO₂); *Anal*. Calcd for C₁₈H₂₁NO₂S: C, 68.54; H, 6.71; N, 4.44. Found: C, 68.75; H, 6.76; N, 4.31.

trans-2-Cyclohexyl-3-(4-methylphenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1ftrans) Prepared by Method A, yield 22%, colorless prisms (from EtOAc-hexane), mp 111-113°C; ¹H NMR (CDCl₃) δ : 1.15-1.33 (4 H, m), 1.54-1.77 (5 H, m), 2.13 (1 H, br d, J = 12.7 Hz), 2.34 (3 H, s, Me), 3.28-3.34 (1 H, m, 1'-H), 4.39 (1 H, d, J = 6.8 Hz, 3-H), 5.05 (1 H, d, J = 6.8 Hz, 4-H), 7.16 (2 H, d, J = 7.8Hz, ArH), 7.35-7.42 (7 H, m, ArH); ¹³C NMR (CDCl₃) δ : 21.1 (q), 24.2 (t), 24.4 (t), 25.4 (t), 30.5 (t), 32.0 (t), 57.0 (d), 58.1 (d), 82.9 (d), 126.4 (d), 128.7 (s), 128.9 (d), 129.2 (d), 129.5 (d), 129.7 (d), 135.0 (s), 138.7 (s); MS (EI) m/z (rel. int. %): 355 (21, M⁺), 83 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1170 (SO₂); Anal. Calcd for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94. Found: C, 70.73; H, 7.03; N, 3.95.

cis-2-Cyclohexyl-3-(4-methylphenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1f-*cis*) Prepared by Method A, yield 34%, colorless prisms (from EtOAc-hexane), mp 146-148°C; ¹H NMR (CDCl₃) δ : 1.14-1.39 (4 H, m), 1.58-1.83 (5 H, m), 2.19 (1 H, br d, J = 8.3 Hz), 2.20 (3 H, s, Me), 3.32-3.37 (1 H, m, 1'-H), 4.92 (1 H, d, J = 8.8 Hz, 3-H), 5.66 (1 H, d, J = 8.8 Hz, 4-H), 6.96 (2 H, d, J = 7.8 Hz, ArH), 7.10-7.12 (5 H, m, ArH), 7.18-7.25 (2 H, m, ArH); 13 C NMR (CDCl₃) δ : 21.0 (q), 24.5 (t), 24.9 (t), 25.4 (t), 31.0 (t), 31.9 (t), 55.1 (d), 57.1 (d), 79.6 (d), 127.5 (d), 127.9 (d), 128.5 (d), 128.8 (d), 130.1 (d), 131.9 (s), 137.8 (s), an aromatic carbon is overlapped; MS (EI) m/z (rel. int. %): 355 (16, M⁺), 208 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1160 (SO₂); Anal. Calcd for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94. Found: C, 70.98; H, 7.10; N, 3.96.

trans-2-Cyclohexyl-3-(2-methylphenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1gtrans) Prepared by Method A, yield 28%, colorless prisms (from EtOAc-hexane), mp 118-121°C; ¹H NMR (CDCl₃) δ : 1.21-1.36 (4 H, m), 1.64-1.69 (4 H, m), 1.82 (1 H, br d, J = 11.7 Hz), 2.05 (3 H, s, Me), 2.22 (1H, br d, J = 11.7 Hz), 3.37 (1 H, br s, 1'-H), 4.76 (1 H, d, J = 6.8 Hz, 3-H), 5.02 (1 H, d, J = 6.8 Hz, 4-H), 7.10 (1 H, d, J = 7.3 Hz, ArH), 7.24 (1 H, t, J = 7.3 Hz, ArH), 7.35 (1 H, t, J = 7.3 Hz, ArH), 7.45-7.50 (5 H, m, ArH), 7.91 (1 H, d, J = 7.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 19.3 (q), 24.3 (t), 24.6 (t), 25.4 (t), 30.5 (t), 32.2 (t), 54.3 (d), 57.1 (d), 82.5 (d), 125.9 (d), 126.9 (d), 128.2 (d), 128.8 (s), 128.9 (d), 129.4 (d), 129.7 (d), 130.6 (d), 135.1 (s), 136.4 (s); MS (EI) *m/z* (rel. int. %): 355 (12, M⁺), 83 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1170 (SO₂); Anal. Calcd for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94. Found: C, 70.81; H, 7.04; N, 3.95.

cis-2-Cyclohexyl-3-(2-methylphenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1g-*cis*) Prepared by Method A, yield 52%, colorless prisms (from EtOAc-hexane), mp: 152-155°C; ¹H NMR (CDCl₃) δ : 1.17-1.45 (4 H, m), 1.60-1.82 (5 H, m), 2.01 (3 H, s, Me), 2.26 (1 H, br d, J = 12.2 Hz), 3.32-3.38 (1 H, m, 1'-H), 5.03 (1 H, d, J = 8.3 Hz, 3-H), 5.73 (1 H, d, J = 8.3 Hz, 4-H), 6.85 (1 H, d, J = 7.6 Hz, ArH), 7.02-7.20 (7 H, m, ArH), 7.71 (1 H, d, J = 7.6 Hz, ArH); ¹³C NMR (CDCl₃) δ : 19.1 (q), 24.6 (t), 25.1 (t), 25.4 (t), 31.1 (t), 31.9 (t), 52.5 (d), 57.6 (d), 78.9 (d), 125.4 (d), 127.6 (d), 127.7 (d), 127.9 (d), 128.8 (d), 130.0 (d), 130.4 (d), 133.0 (s), 134.9 (s), an aromatic carbon is overlapped; MS (EI) *m/z* (rel. int. %): 355 (17, M⁺), 208 (100); IR v_{max} (KBr) cm⁻¹: 1325, 1170 (SO₂); *Anal*. Calcd for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94. Found: C, 70.89; H, 7.10; N, 4.00.

trans-2-Cyclohexyl-3-(4-fluorophenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1h-*trans*) Prepared by Method A, yield 26%, colorless prisms (from EtOAc-hexane), mp 140-142°C; ¹H NMR (CDCl₃) δ : 1.12-1.34 (4 H, m), 1.53-1.69 (4 H, m), 1.77 (1 H, br d, J = 13.0 Hz), 2.13 (1 H, br d, J = 13.0 Hz), 3.30-3.35 (1 H, m, 1'-H), 4.40 (1 H, d, J = 6.6 Hz, 3-H), 5.02 (1 H, d, J = 6.6 Hz, 4-H), 7.06 (2 H, dd, $J_{H/o}$) = $J_{F(o)}$ = 8.8 Hz, ArH), 7.39-7.43 (5 H, m, ArH), 7.46 (2 H, dd, $J_{F(m)}$ = 5.4 Hz, $J_{H(o)}$ = 8.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.4 (t), 25.3 (t), 30.5 (t), 32.0 (t), 57.1 (d), 57.7 (d), 83.0 (d), 116.0 (d, ² J_{CF} = 22 Hz), 128.1 (d, ³ J_{CF} = 9 Hz), 128.4 (s), 129.0 (d), 129.2 (d), 129.7 (d), 133.9 (s), 162.9 (s, ¹ J_{CF} = 24 Hz); MS (EI) m/z (rel. int. %): 359 (17, M⁺), 83 (100); IR v_{max} (KBr) cm⁻¹: 1310, 1170 (SO₂) Anal. Calcd for C₂₀H₂₂FNO₂S: C, 66.83; H, 6.17; N, 3.90. Found: C, 66.74; H, 6.21; N, 4.04.

cis-2-Cyclohexyl-3-(4-fluorophenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1h-*cis*) Prepared by Method A, yield 37%, colorless prisms (from EtOAc-hexane), mp 160-162°C; ¹H NMR (CDCl₃) δ : 1.15-1.35 (4 H, m), 1.57-1.80 (5 H, m), 2.20 (1 H, br d, J = 12.7 Hz), 3.32-3.39 (1 H, m, 1'-H), 4.92 (1 H, d, J = 8.8 Hz, 3-H), 5.69 (1 H, d, J = 8.8 Hz, 4-H), 6.85 (2 H, dd, $J_{H(o)} = J_{F(o)} = 8.8$ Hz, ArH), 7.09-7.26 (7 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.8 (t), 25.4 (t), 31.0 (t), 32.0 (t), 54.7 (d), 57.2 (d), 79.5 (d), 115.1 (d, ² $J_{CF} = 22$ Hz), 128.1 (d), 128.3 (s), 128.7 (d), 129.2 (d, ³ $J_{CF} = 9$ Hz), 129.9 (d), 130.9 (s), 162.3 (s, ¹ $J_{CF} = 248$ Hz); MS (EI) *m*/z (rel. int. %): 359 (16, M⁺), 212 (100); IR v_{max} (KBr) cm⁻¹: 1310, 1160 (SO₂); Anal. Calcd for C₂₀H₂₂FNO₂S: C, 66.83; H, 6.17; N, 3.90. Found: C, 66.66; H, 6.22; N, 3.95.

trans-3-(4-Chlorophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1i-*trans*) Prepared by Method A, yield 28%, colorless prisms (from EtOAc-hexane), mp 132-133°C; ¹H NMR (CDCl₃) δ : 1.11-1.34 (4 H, m), 1.53-1.68 (4 H, m), 1.76 (1 H, br d, J = 12.7 Hz), 2.13 (1 H, br d, J = 12.7 Hz), 3.30-3.35 (1 H, m, 1'-H), 4.39 (1 H, d, J = 6.6 Hz, 3-H), 5.02 (1 H, d, J = 6.6 Hz, 4-H), 7.33 (2 H, d, J =8 Hz, ArH), 7.41 (5 H, s, ArH), 7.42 (2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.4 (t), 25.3 (t), 30.5 (t), 32.0 (t), 57.1 (d), 57.7 (d), 83.0 (d), 127.7 (d), 128.2 (s), 129.0 (d), 129.1 (d), 129.2 (d), 129.7 (d), 134.6 (s), 136.7 (s); MS (EI) *m/z* (rel. int. %): 375 (7, M⁺), 228 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1170 (SO₂); *Anal.* Calcd for C₂₀H₂₂ClNO₂S: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.65; H, 5.90; N, 3.81. *cis*-3-(4-Chlorophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1i-*cis*) Prepared by Method A, yield 40%, colorless prisms (from EtOAc-hexane), mp 128°C; ¹H NMR (CDCl₃) δ : 1.14-1.35 (4 H, m), 1.59-1.81 (5 H, m), 2.20 (1 H, br d, J = 12.2 Hz), 3.32-3.37 (1 H, m, 1'-H), 4.90 (1 H, d, J = 8.8 Hz, 3-H), 5.69 (1 H, d, J = 8.8 Hz, 4-H), 7.10-7.19 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.8 (t), 25.4 (t), 31.0 (t), 32.0 (t), 54.8 (d), 57.3 (d), 79.5 (d), 128.1 (d), 128.3 (d), 128.9 (d), 129.9 (d), 133.7 (s), 133.9 (s), two aromatic carbons are overlapped; MS (EI) *m/z* (rel. int. %): 375 (28, M⁺), 55 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1160 (SO₂); *Anal*. Calcd for C₂₀H₂₂ClNO₂S: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.93; H, 5.91; N, 3.76.

cis- and *trans*-3-(2-Chlorophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1j) Prepared by Method A, yield 70%, white powder as a 1.4 : 1 mixture of *cis* and *trans* isomers (from EtOAc-hexane), ¹H NMR (CDCl₃) δ : 1.09-1.39 (total 8 H, m), 1.54-1.83 (total 10 H, m), 2.17 (1 H, br d, J = 9.3 Hz, *trans*), 2.29 (1 H, br d, J = 12.7 Hz, *cis*), 3.32-3.39 (total 2 H, m, 1'-H), 5.04 and 5.08 (each 1 H, d, J = 6.0 Hz, *cis* 3- and 4-H), 5.17 and 5.82 (each 1 H, d, J = 8.8 Hz, *trans* 3- and 4-H), 7.02-7.33 (total 10 H, m, ArH), 7.38-7.48 (total 6 H, m, ArH), 7.73 (1 H, d, J = 7.8 Hz, *cis* ArH), 7.97 (1 H, m, *trans* ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.5 (t), 24.5 (t), 25.1 (t), 25.4 (t), 25.4 (t), 30.3 (t), 31.1 (t), 32.2 (t), 32.3 (t), 52.9 (d), 53.0 (d), 57.2 (d), 58.0 (d), 79.2 (d), 82.8 (d), 126.2 (d), 127.7 (d), 127.7 (d), 127.9 (d), 128.3 (d), 128.8 (d), 128.8 (d), 129.1 (d), 129.3 (d), 129.3 (d), 129.5 (d), 129.6 (d), 129.7 (d), 129.7 (d), 130.5 (d), 132.6 (s), 132.7 (s), 133.1 (s), 136.0 (s), an aromatic carbon is overlapped; MS (EI) *m/z* (rel. int. %): 375 (12, M⁺), 228 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1170 (SO₂); *Anal.* Calcd for C₂₀H₂₂NO₂SCl: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.69; H, 5.89; N, 3.72.

trans-3-(4-Bromophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1k-*trans*) Prepared by Method A, yield 22%, colorless prisms (from EtOAc-hexane), mp 129-131°C; ¹H NMR (CDCl₃) δ : 1.14-1.34 (4 H, m), 1.57-1.65 (4 H, m), 1.77 (1 H, br d, J = 11.7 Hz), 2.14 (1 H, br d, J = 11.2 Hz), 3.32-3.35 (1 H, m, 1'-H), 4.37 (1 H, d, J = 6.8 Hz, 3-H), 5.01 (1 H, d, J = 6.8 Hz, 4-H), 7.35 (2 H, dd, J =2.0 and 6.4 Hz, ArH), 7.41 (5 H, s, ArH), 7.49 (2 H, dd, J = 2.0 and 6.4 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.4 (t), 25.3 (t), 30.5 (t), 32.1 (t), 57.2 (d), 57.8 (d), 82.9 (d), 122.8 (s), 128.0 (d), 128.2 (s), 129.0 (d), 129.2 (d), 129.7 (d), 132.2 (d), 137.2 (s); MS (EI) *m/z* (rel. int. %): 419 (10, M⁺), 83 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1170 (SO₂); *Anal.* Calcd for C₂₀H₂₂BrNO₂S: C, 57.15; H, 5.28; N, 3.33. Found: C, 57.11; H, 5.27; N, 3.37.

cis-3-(4-Bromophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (1k-*cis*) Prepared by Method A, yield 28%, colorless prisms (from EtOAc-hexane), mp 139-141°C; ¹H NMR (CDCl₃) δ : 1.17-1.32 (4 H, m), 1.56-1.76 (5 H, m), 2.20 (1 H, br d, J = 10.7 Hz), 3.32-3.34 (1 H, m, 1'-H), 4.88 (1 H, d, J = 8.8 Hz, 3-H), 5.69 (1 H, d, J = 8.8 Hz, 4-H), 7.10-7.18 (7 H, m, ArH), 7.28 (2 H, d, J = 7.1 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.9 (t), 25.4 (t), 31.0 (t), 32.0 (t), 54.8 (d), 57.3 (d), 79.5 (d), 122.1 (s), 128.1 (s), 128.2 (d), 128.9 (d), 129.2 (d), 129.9 (d), 131.2 (d), 134.3 (s); MS (EI) *m/z* (rel. int. %): 419 (10, M⁺), 55 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1160 (SO₂); *Anal.* Calcd for C₂₀H₂₂BrNO₂S: C, 57.15; H, 5.28; N, 3.33. Found: C, 57.27; H, 5.31; N, 3.53.

cis-2-Cyclohexyl-3-(1-naphthyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (11-*cis*) Prepared by Method A, yield 58%, colorless prisms (from EtOAc-hexane), mp 195-198°C; ¹H NMR (CDCl₃) δ : 1.19-1.45 (4 H, m), 1.65-1.82 (5 H, m), 2.33 (1 H, br d, J = 10.5 Hz), 3.43 (1 H, br s), 5.57 (1 H, d, J = 8 Hz, 3-H), 5.94 (1 H, d, J = 8 Hz, 4-H), 6.86 (3H, br s, ArH), 7.10 (2 H, d, J = 6 Hz, ArH), 7.34-7.44 (3 H, m, ArH), 7.61-7.67 (3 H, m, ArH), 7.92 (1 H, d, J = 6 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.6 (t), 25.1 (t), 25.4 (t), 31.2 (t), 32.0 (t), 52.4 (d), 57.9 (d), 79.6 (d), 121.9 (d), 124.5 (d), 125.6 (d), 125.9 (d), 126.2 (d), 127.3 (d), 127.8 (s), 128.5 (d), 128.6 (d), 128.8 (d), 130.0 (d), 130.1 (s), 130.3 (s), 133.1 (s); MS (EI) *m/z* (rel. int. %): 391 (16, M⁺), 326 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1160 (SO₂); *Anal.* Calcd for C₂₄H₂₅NO₂S: C, 73.63; H, 6.44; N, 3.58. Found: C, 73.63; H, 6.35; N, 3.64.

trans-2-Cyclohexyl-4-(4-methylphenyl)-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1m*trans*) Prepared by Method A, yield 4%, colorless prisms (from EtOAc-hexane), mp 125-126°C; ¹H NMR (CDCl₃) δ : 1.16-1.33 (4 H, m), 1.54-1.77 (5 H, m), 2.13-2.16 (1 H, m), 2.35 (3 H, s, Me), 3.29-3.35 (1 H, m, 1'-H), 4.40 (1 H, d, J = 6.8 Hz, 3-H), 5.03 (1 H, d, J = 6.8 Hz, 4-H), 7.14-7.51 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 21.2 (q), 24.2 (t), 24.4 (t), 25.4 (t), 30.5 (t), 32.0 (t), 57.0 (d), 58.3 (d), 82.8 (d), 125.4 (s), 128.7 (d), 128.9 (d), 129.1 (d), 129.6 (d), 138.2 (s), 139.7 (s), an aromatic carbon is overlapped; MS (EI) m/z (rel. int. %): 355 (17, M⁺), 208 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1165 (SO₂); *Anal*. Calcd for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94. Found: C, 70.71; H, 7.09; N, 3.95.

cis-2-Cyclohexyl-4-(4-methylphenyl)-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1m-*cis*) Prepared by Method A, yield 5%, colorless prisms (from EtOAc-hexane), mp 190-192°C; ¹H NMR (CDCl₃) δ : 1.14-1.39 (4 H, m), 1.60-1.83 (5 H, m), 2.17 (3 H, s, Me), 2.19-2.23 (1 H, m), 3.32-3.40 (1 H, m, 1'-H), 4.93 (1 H, d, J = 8.8 Hz, 3-H), 5.66 (1 H, d, J = 8.8 Hz, 4-H), 6.89 (2 H, d, J = 8.3 Hz, ArH), 7.04 (2 H, d, J = 8.3 Hz, ArH), 7.10-7.25 (5 H, m, ArH); ¹³C NMR (CDCl₃) δ : 21.0 (q), 24.5 (t), 24.9 (t), 25.4 (t), 31.0 (t), 31.9 (t), 55.2 (d), 57.2 (d), 79.5 (d), 125.2 (s), 127.6 (d), 127.9 (d), 128.0 (d), 128.6 (d), 133.0 (d), 135.1 (s), 138.5 (s); MS (EI) *m/z* (rel. int. %): 355 (18, M⁺), 208 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1160 (SO₂); *Anal.* Calcd for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94. Found: C, 70.71; H, 7.14; N, 3.91.

trans-4-(4-Chlorophenyl)-2-cyclohexyl-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1ntrans) Prepared by Method A, yield 38%, colorless prisms (from EtOAc-hexane), mp 170-172°C; ¹H NMR (CDCl₃) δ : 1.16-1.34 (4 H, m), 1.54-1.78 (5 H, m), 2.11-2.14 (1 H, m), 3.29-3.34 (1 H, m, 1'-H), 4.35 (1 H, d, J = 6.8 Hz, 3-H), 5.02 (1 H, d, J = 6.8 Hz, 4-H), 7.25-7.47 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.4 (t), 25.3 (t), 30.5 (t), 32.0 (t), 57.1 (d), 58.5 (d), 82.0 (d), 126.4 (d), 127.1 (s), 129.0 (d), 129.1 (d), 129.2 (d), 130.5 (d), 135.8 (s), 137.7 (s); MS (EI) m/z (rel. int. %): 375 (33, M⁺), 228 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1165 (SO₂); Anal. Calcd for C₂₀H₂₂CINO₂S: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.79; H, 5.85; N, 3.69.

cis-4-(4-Chlorophenyl)-2-cyclohexyl-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1n-*cis*) Prepared by Method A, yield 46%, colorless prisms (from EtOAc-hexane), mp 188-191°C; ¹H NMR (CDCl₃) δ : 1.14-1.39 (4 H, m), 1.61-1.79 (5 H, m), 2.19 (1 H, m), 3.32-3.38 (1 H, m, 1'-H), 4.96 (1 H, d, J = 8.8Hz, 3-H), 5.67 (1 H, d, J = 8.8 Hz, 4-H), 7.06-7.26 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.8 (t), 25.4 (t), 30.9 (t), 31.9 (t), 54.9 (d), 57.2 (d), 78.7 (d), 127.0 (s), 127.4 (d), 128.2 (d), 128.2 (d), 131.3 (d), 134.7 (s), 134.7 (s), an aromatic carbons is overlapped; MS (EI) *m/z* (rel. int. %): 375 (26, M⁺), 228 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1170 (SO₂); *Anal*. Calcd for C₂₀H₂₂ClNO₂S: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.94; H, 5.88; N, 3.70.

trans-4-(2-Chlorophenyl)-2-cyclohexyl-3-phenyl-1,2-thiazetizine 1,1-Dioxide (10trans) Prepared by Method A, yield 36%, colorless prisms (from EtOAc-hexane), mp 191-195°C; ¹H NMR (CDCl₃) δ : 1.15-1.32 (4 H, m), 1.54-1.78 (5 H, m), 2.12 (1 H, br d, J = 12 Hz), 3.28-3.33 (1 H, m, 1'-H), 4.51 (1 H, d, J = 6.8 Hz, 3-H), 5.69 (1 H, d, J = 6.8 Hz, 4-H), 7.24-7.41 (6 H, m, ArH), 7.54 (2 H, d, J =7.3 Hz, ArH), 7.78 (1 H, d, J = 7.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.4 (t), 25.4 (t), 30.5 (t), 32.0 (t), 56.9 (d), 57.2 (d), 79.0 (d), 126.6 (d), 127.2 (s), 127.3 (d), 129.0 (d), 129.1 (d), 129.4 (d), 130.0 (d), 130.4 (d), 135.0 (s), 137.8 (s); MS (EI) *m/z* (rel. int. %): 375 (14, M⁺), 178 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1165 (SO₂); Anal. Calcd for C₂₀H₂₂ClNO₂S: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.79; H, 5.90; N, 3.75.

cis-4-(2-Chlorophenyl)-2-cyclohexyl-3-phenyl-1,2-thiazetizine 1,1-Dioxide (10-*cis*) Prepared by Method A, yield 27%, colorless prisms (from EtOAc-hexane), mp 178-180°C; ¹H NMR (CDCl₃) δ : 1.14-1.35 (4 H, m), 1.56-1.79 (5 H, m), 2.17-2.20 (1 H, m), 3.33-3.40 (1 H, m, 1'-H), 4.99 (1 H, d, J =8.8 Hz, 3-H), 6.28 (1 H, d, J = 8.8 Hz, 4-H), 7.02-7.14 (6 H, m, ArH), 7.25 (2 H, d, J = 7.3 Hz, ArH), 7.86-7.89 (1 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.7 (t), 25.4 (t), 30.9 (t), 31.9 (t), 54.8 (d), 57.0 (d), 75.2 (d), 126.3 (d), 127.2 (s), 127.5 (d), 127.9 (d), 128.2 (d), 128.9 (d), 129.6 (d), 130.7 (d), 133.7 (s), 134.8 (s); MS (EI) *m*/z (rel. int. %): 375 (7, M⁺), 178 (100); IR v_{max} (KBr) cm⁻¹: 1325, 1170 (SO₂); Anal. Calcd for C₂₀H₂₂ClNO₂S: C, 63.90; H, 5.90; N, 3.73. Found: C, 64.09; H, 5.99; N, 3.86.

trans-2-Cyclohexyl-4-(2,4-dichlorophenyl)-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1p*trans*) Prepared by Method A, yield 10%, colorless needles (from EtOAc-hexane), mp 192-194°C; ¹H NMR (CDCl₃) δ : 1.15-1.32 (4 H, m), 1.54-1.77 (5 H, m), 2.10-2.13 (1 H, m), 3.30 (1 H, m, 1'-H), 4.44 (1 H, d, J = 6.8 Hz, 3-H), 5.62 (1 H, d, J = 6.8 Hz, 4-H), 7.33-7.42 (7 H, m, ArH), 7.74 (1 H, d, J = 7.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.3 (t), 25.3 (t), 30.5 (t), 31.9 (t), 57.2 (d), 78.3 (d), 125.9 (s), 126.5 (d), 127.7 (d), 129.1 (d), 129.8 (d), 130.3 (d), 135.7 (s), 136.0 (s), 137.4 (s), an alkyl carbon and an aromatic carbon are overlapped; MS (EI) *m*/z (rel. int. %): 409 (42, M⁺), 262 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1165 (SO₂); *Anal.* Calcd for C₂₀H₂₁Cl₂NO₂S: C, 58.54; H, 5.16; N, 3.41. Found: C, 58.37; H, 5.14; N, 3.42.

trans-2-Cyclohexyl-4-(4-fluorophenyl)-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1q-*trans*) Prepared by Method A, yield 32%, colorless prisms (from EtOAc-hexane), mp 159-160°C; ¹H NMR (CDCl₃) δ : 1.16-1.33 (4 H, m), 1.55-1.78 (5 H, m), 2.11-2.15 (1 H, m), 3.29-3.34 (1 H, m, 1'-H), 4.35 (1 H, d, J =7 Hz, 3-H), 5.03 (1 H, d, J = 7 Hz, 4-H), 7.09 (2 H, dd, $J_{H/o}$) = $J_{F(o)}$ = 8.3 Hz, ArH), 7.32-7.47 (7 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.4 (t), 25.3 (t), 30.5 (t), 32.0 (t), 57.1 (d), 58.7 (d), 82.0 (d), 116.0 (d, ² $J_{CF} =$ 22 Hz), 124.5 (s), 126.4 (d), 128.9 (d), 129.0 (d), 131.1 (d, ³ $J_{CF} =$ 7 Hz), 137.8 (s), 163.4 (s, ¹ $J_{CF} =$ 250 Hz); MS (EI) *m*/z (rel. int. %): 359 (24, M⁺), 212 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1145 (SO₂) *Anal.* Calcd for C₂₀H₂₂FNO₂S: C, 66.83; H, 6.17; N, 3.90. Found: C, 66.55; H, 6.19; N, 3.81.

cis-2-Cyclohexyl-4-(4-fluorophenyl)-3-phenyl-1,2-thiazetizine 1,1-Dioxide (1q-*cis*) Prepared by Method A, yield 45%, colorless prisms (from EtOAc-hexane), mp 160-162°C; ¹H NMR (CDCl₃) δ : 1.15-1.39 (4 H, m), 1.62-1.80 (5 H, m), 2.19-2.23 (1 H, m), 3.34-3.39 (1 H, m, 1'-H), 4.95 (1 H, d, J =8.8 Hz, 3-H), 5.69 (1 H, d, J = 8.8 Hz, 4-H), 6.78 (2 H, dd, $J_{H(o)} = J_{F(o)} =$ 8.3 Hz, ArH), 7.15-7.20 (7 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.8 (t), 25.4 (t), 30.9 (t), 31.9 (t), 55.1 (d), 57.2 (d), 78.7 (d), 115.0 (d, ${}^{2}J_{CF} =$ 22 Hz), 124.4 (s), 127.4 (d), 128.2 (d), 131.9 (d, ${}^{3}J_{CF} =$ 9 Hz), 134.8 (s), 162.6 (s, ${}^{1}J_{CF} =$ 250 Hz), an aromatic carbon is overlapped; MS (EI) m/z (rel. int. %): 359 (19, M⁺), 212 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1135 (SO₂); Anal. Calcd for C₂₀H₂₂FNO₂S: C, 66.83; H, 6.17; N, 3.90. Found: C, 66.99; H, 6.19; N, 3.90.

trans-2-Cyclohexyl-4-methyl-3-(4-methylphenyl)-1,2-thiazetizine 1,1-Dioxide (1vtrans) Prepared by Method B, yield 16%, yellow oil; ¹H NMR (CDCl₃) δ : 1.03-1.38 (4 H, m), 1.61-1.85 (5 H, m), 1.62 (3 H, d, J = 6.8 Hz, 4-Me), 2.17-2.20 (1 H, m), 2.47 (3 H, s, ArMe), 3.26-3.31 (1 H, m, 1'-H), 3.82 (1 H, d, J = 6.8 Hz, 3-H), 4.09 (1 H, quintet, J = 6.8 Hz, 4-H), 7.30 and 7.47 (each 2 H, d, J = 7.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 11.4 (q), 21.1 (q), 24.1 (t), 24.3 (t), 25.3 (t), 30.3 (t), 31.9 (t), 56.9 (d), 58.3 (d), 73.8 (d), 126.3 (d), 129.6 (d), 133.5 (s), 138.6 (s); MS (EI) *m/z* (rel. int. %): 293 (13, M⁺), 132 (100); IR v_{max} (NaCl) cm⁻¹: 1300, 1140 (SO₂); Anal. Calcd for C₁₆H₂₃NO₂S: C, 65.49; H, 7.90; N, 4.77. Found: C, 65.35; H, 7.93; N, 4.77.

cis-2-Cyclohexyl-4-methyl-3-(4-methylphenyl)-1,2-thiazetizine 1,1-Dioxide (1v-*cis*) Prepared by Method B, yield 21%, colorless prisms (from EtOAc-hexane), mp 136-139°C; ¹H NMR (CDCl₃) δ : 1.03 (3 H, d, J = 7.3 Hz, 4-Me), 1.06-1.29 (4 H, m), 1.44-1.73 (5 H, m), 2.06-2.09 (1 H, m), 2.36 (3 H, s, ArMe), 3.20-3.26 (1 H, m, 1'-H), 4.47 (1 H, dq, J = 8.3 and 7.3 Hz, 4-H), 4.56 (1 H, d, J = 8.3 Hz, 3-H), 7.19 and 7.27 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 10.6 (q), 21.0 (q), 24.2 (t), 24.6 (t), 25.3 (t), 30.7 (t), 31.8 (t), 52.9 (d), 56.5 (d), 68.5 (d), 127.5 (d), 129.1 (d), 132.2 (s), 138.2 (s); MS (EI) m/z (rel. int. %): 293 (8, M⁺), 132 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1145 (SO₂); Anal. Calcd for C₁₆H₂₃NO₂S: C, 65.49; H, 7.90; N, 4.77. Found: C, 65.29; H, 7.97; N, 4.80.

trans-3-(4-Chlorophenyl)-2-cyclohexyl-4-methyl-1,2-thiazetizine 1,1-Dioxide (1wtrans) Prepared by Method B, yield 11%, colorless prisms (from EtOAc-hexane), mp 102-103°C; ¹H NMR (CDCl₃) δ : 0.96-1.31 (4 H, m), 1.45-1.61 (4 H, m), 1.53 (3 H, d, J = 6.8 Hz, 4-Me), 1.72-1.75 (1 H, m), 2.06-2.09 (1 H, m), 3.16-3.22 (1 H, m, 1'-H), 3.71 (1 H, d, J = 6.8 Hz, 3-H), 3.96 (1 H, quintet, J = 6.8Hz, 4-H), 7.37 and 7.42 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 11.5 (q), 24.1 (t), 24.3 (t), 25.3 (t), 30.4 (t), 32.0 (t), 57.1 (d), 57.9 (d), 73.9 (d), 127.7 (d), 129.2 (d), 134.6 (s), 137.0 (s); MS (EI) *m/z* (rel. int. %): 313 (12, M⁺), 117 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1140 (SO₂); *Anal.* Calcd for C₁₅H₂₀ClNO₂S: C, 57.41; H, 6.42; N, 4.46. Found: C, 57.59; H, 6.49; N, 4.51.

cis-3-(4-Chlorophenyl)-2-cyclohexyl-4-methyl-1,2-thiazetizine 1,1-Dioxide (1w-cis) Prepared by Method B, yield 10%, colorless prisms (from EtOAc-hexane), mp 81-82°C; ¹H NMR (CDCl₃) δ : 1.04 (3 H, d, J = 6.8 Hz, 4-Me), 1.09-1.32 (4 H, m), 1.43-1.75 (5 H, m), 2.06-2.09 (1 H, m), 3.21-3.26 (1 H, m, 1'-H), 4.46-4.56 (2 H, m, 3- and 4-H), 7.34 and 7.37 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR $(CDCl_3) \delta$: 10.8 (q), 24.2 (t), 24.6 (t), 25.4 (t), 30.8 (t), 32.0 (t), 52.6 (d), 56.7 (d), 68.6 (d), 128.8 (d), 129.0 (d), 134.0 (s), 134.5 (s); MS (EI) *m/z* (rel. int. %): 313 (18, M⁺), 117 (100); IR v_{max} (KBr) cm⁻¹: 1325, 1145 (SO₂); *Anal.* Calcd for C₁₅H₂₀ClNO₂S: C, 57.41; H, 6.42; N, 4.46. Found: C, 57.55; H, 6.48; N, 4.45.

cis-and *trans*-2-Cyclohexyl-4-ethyl-3-(4-methylphenyl)-1,2-thiazetizine 1,1-Dioxide (1 ϵ) Prepared by Method B, yield 29%, yellow oil as a mixture of stereoisomers; ¹H NMR (CDCl₃) δ : 0.86 (3 H, t, J = 7.3 Hz, *cis* Me), 1.01 (3 H, t, J = 7.3 Hz, *trans* Me), 1.03-2.06 (total 24 H, m), 2.36 (total 6 H, s, ArMe x 2), 3.15-3.25 (total 2 H, m, 1'-H x 2), 3.78 (1 H, d, J = 6.3 Hz, *trans* 3-H), 3.84-3.89 (1 H, m, *trans* 4-H), 4.23-4.27 (1 H, m, *cis* 4-H), 4.53 (1 H, d, J = 8.3 Hz, *cis* 3-H), 7.14-7.37 (total 8 H, m, ArH); ¹³C NMR (CDCl₃) δ : 11.6 (q), 11.8 (q), 19.9 (t), 21.1 (q), 21.1 (t), 24.1 (t), 24.2 (t), 24.3 (t), 24.6 (t), 25.4 (t), 30.3 (t), 30.8 (t), 31.8 (t), 31.9 (t), 52.8 (d), 56.3 (d), 56.8 (d), 57.0 (d), 75.7 (d), 80.5 (d), 126.4 (d), 127.5 (d), 129.1 (d), 129.6 (d), 132.6 (s), 135.9 (s), 138.3 (s), 138.5 (s), two alkyl carbons are overlapped; MS (EI) *m*/z (rel. int. %): 307 (13, M⁺), 146 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1175 (SO₂); HRMS (EI) Calcd for C_{17H25}NO₂S: 307.1606. Found: 307.1601.

trans-2-Cyclohexyl-3-(3-pyridyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10a-*trans*) Prepared by Method A, yield 22%, colorless prisms (from EtOAc-hexane), mp 182-184°C; ¹H NMR (CDCl₃) δ : 1.10-1.32 (4 H, m), 1.55-1.69 (4 H, m), 1.77 (1 H, br d, J = 13 Hz), 2.14 (1 H, br d, J = 11 Hz), 3.32-3.37 (1 H, m, 1'-H), 4.45 (1 H, d, J = 6.8 Hz, 3-H), 5.07 (1H, d, J = 6.8 Hz, 4-H), 7.36 (1 H, dd, J = 4.9and 7.8 Hz, ArH), 7.43 (5 H, s, ArH), 7.95 (1 H, d, J = 7.8 Hz, ArH), 8.61 (1 H, d, J = 4.9 Hz, ArH), 8.61 (1 H, s, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.3 (t), 25.3 (t), 30.6 (t), 32.0 (t), 56.1 (d), 57.2 (d), 82.8 (d), 124.0 (d), 127.9 (s), 129.1 (d), 129.2 (d), 129.9 (d), 133.9 (d), 148.2 (d), 150.4 (d), an aromatic carbon is overlapped; MS (EI) m/z (rel. int. %): 342 (20, M⁺), 195 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1170 (SO₂); Anal. Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.44; H, 6.46; N, 8.12.

cis-2-Cyclohexyl-3-(3-pyridyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10a-*cis*) Prepared by Method A, yield 29%, colorless prisms (from EtOAc-hexane), mp 161-163°C; ¹H NMR (CDCl₃) δ : 1.14-1.36 (4 H, m), 1.58-1.82 (5 H, m), 2.22 (1 H, br d, J = 12.7 Hz), 3.34-3.40 (1 H, m, 1'-H), 4.96 (1 H, d, J = 9.0 Hz, 3- H), 5.75 (1 H, d, J = 9.0 Hz, 4-H), 7.10 (1 H, dd, J = 5 and 8 Hz, ArH), 7.13-7.27 (5 H, m, ArH), 7.61 (1 H, d, J = 8 Hz, ArH), 8.36 (1 H, dd, J = 2 and 5 Hz, ArH), 8.44 (1 H, d, J = 2 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 24.7 (t), 25.3 (t), 31.0 (t), 32.0 (t), 53.3 (d), 57.4 (d), 79.5 (d), 122.8 (d), 128.0 (s), 128.3 (d), 128.9 (d), 129.8 (d), 131.1 (s), 135.1 (d), 149.0 (d), 149.4 (d); MS (EI) *m/z* (rel. int. %): 342 (17, M⁺), 55 (100); IR v_{max} (KBr) cm⁻¹: 1320, 1160 (SO₂); *Anal*. Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.81; H, 6.40; N, 8.27.

trans-2-Cyclohexyl-3-(4-pyridyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10b-*trans*) Prepared by Method A, yield 23%, colorless prisms (from EtOAc-hexane), mp 149-152°C; ¹H NMR (CDCl₃) δ : 1.11-1.36 (4 H, m), 1.55-1.64 (4 H, m), 1.78 (1 H, br d, J = 13 Hz), 2.17 (1 H, br d, J = 12 Hz), 3.32-3.37 (1 H, m, 1'-H), 4.38 (1 H, d, J = 6.8 Hz, 3-H), 5.02 (1 H, d, J = 6.8 Hz, 4-H), 7.40 (2 H, dd, J = 1and 4 Hz, ArH), 7.43 (5 H, s, ArH), 8.62 (2 H, dd, J = 1 and 4 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.4 (t), 25.3 (t), 30.6 (t), 32.2 (t), 57.2 (d), 57.4 (d), 82.5 (d), 121.1 (d), 127.8 (s), 129.1 (d), 129.2 (d), 130.0 (d), 147.3 (s), 150.6 (d); MS (EI) *m/z* (rel. int. %): 342 (18, M⁺), 195 (100); IR v_{max} (KBr) cm⁻¹: 1310, 1175 (SO₂); *Anal.* Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.77; H, 6.47; N, 8.26.

cis-2-Cyclohexyl-3-(4-pyridyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10b-*cis*) Prepared by Method A, yield 30%, colorless prisms (from EtOAc-hexane), mp 184-186°C; ¹H NMR (CDCl₃) δ : 1.16-1.37 (4 H, m), 1.59-1.74 (4 H, m), 1.81 (1 H, br d, J = 13 Hz), 2.24 (1 H, br d, J = 12 Hz), 3.35-3.40 (1 H, m, 1'-H), 4.88 (1 H, d, J = 9.3 Hz, 3-H), 5.75 (1 H, d, J = 9.3 Hz, 4-H), 7.10-7.19 (7 H, m, ArH), 8.40 (2 H, d, J = 6 Hz, ArH); ¹³C NMR (CDCl₃) δ : 25.0 (t), 25.4 (t), 26.0 (t), 31.6 (t), 32.7 (t), 54.9 (d), 58.2 (d), 80.1 (d), 123.1 (d), 128.3 (s), 128.9 (d), 129.8 (d), 130.5 (d), 145.2 (s), 150.2 (d); MS (EI) *m*/z (rel. int. %): 342 (13, M⁺), 195 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1170 (SO₂); *Anal.* Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.77; H, 6.51; N, 8.21.

trans-2-Cyclohexyl-3-(2-pyridyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10c-trans)

Prepared by Method A, yield 28%, light yellow needles (from EtOAc-hexane), mp 162-164°C; ¹H NMR (CDCl₃) δ : 1.05-1.35 (4 H, m), 1.53-1.78 (5 H, m), 2.15 (1 H, br d, J = 13 Hz), 3.34-3.40 (1 H, m, 1'-H), 4.64 (1 H, d, J = 6.8 Hz, 3-H), 5.31 (1 H, d, J = 6.8 Hz, 4-H), 7.25-7.28 (1 H, m, ArH), 7.37-7.43 (3 H, m, ArH), 7.47-7.49 (2 H, m, ArH), 7.75-7.80 (2 H, m, ArH), 8.53 (1 H, d, J = 4.4 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.3 (t), 25.3 (t), 30.4 (t), 32.1 (t), 57.3 (d), 58.7 (d), 81.6 (d), 121.1 (d), 123.6 (d), 128.5 (s), 129.0 (d), 129.1 (d), 129.5 (d), 137.3 (d), 149.5 (d), 157.9 (s); MS (EI) *m*/z (rel. int. %): 342 (1, M⁺), 182 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1175 (SO₂); Anal. Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.83; H, 6.52; N, 8.22.

cis-2-Cyclohexyl-3-(2-pyridyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10c-cis) Prepared by Method A, yield 35%, light yellow needles (from EtOAc-hexane), mp 186-188°C; ¹H NMR (CDCl₃) δ : 1.16-1.35 (4 H, m), 1.59-1.85 (5 H, m), 2.26 (1 H, br d, J = 13 Hz), 3.38-3.44 (1 H, m, 1'-H), 5.04 (1 H, d, J = 9 Hz, 3-H), 5.82 (1 H, d, J = 9 Hz, 4-H), 7.00 (1 H, dd, J = 5 and 7 Hz, ArH), 7.09-7.11 (3 H, m, ArH), 7.20-7.23 (2 H, m, ArH), 7.57 (1 H, t, J = 7 Hz, ArH), 7.64 (1 H, d, J = 7 Hz, ArH), 8.28 (1 H, d, J = 5 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.8 (t), 25.4 (t), 30.9 (t), 32.1 (t), 56.2 (d), 57.5 (d), 79.4 (d), 122.6 (d), 128.0 (d), 128.3 (s), 128.6 (d), 129.9 (d), 135.9 (d), 149.1 (d), 155.6 (s), an aromatic carbon is overlapped; MS (EI) *m/z* (rel. int. %): 342 (1, M⁺), 180 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1170 (SO₂); Anal. Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.48; H, 6.44; N, 8.11.

cis-2-Cyclohexyl-3-(4-nitorophenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10d-*cis*) Prepared by Method A, yield 25%, colorless prisms (from EtOAc-hexane), mp 133-136°C; ¹H NMR (CDCl₃) δ : 1.16-1.39 (4 H, m), 1.59- 1.79 (4 H, m), 1.81 (1 H, br d, J = 11 Hz), 2.24 (1 H, br d, J = 13 Hz), 3.36-3.41 (1 H, m, 1'-H), 5.00 (1 H, d, J = 8.8 Hz, 3-H), 5.78 (1 H, d, J = 8.8 Hz, 4-H), 7.09-7.19 (5 H, m, ArH), 7.43 (2 H, d, J = 8.5 Hz, ArH), 8.02 (2 H, d, J = 8.5 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 24.7 (t), 25.3 (t), 31.0 (t), 32.1 (t), 54.7 (d), 57.6 (d), 79.6 (d), 123.3 (d), 127.7 (s), 128.3 (d), 128.5 (d), 129.2 (d), 129.8 (d), 142.9 (s), 147.5 (s); MS (EI) *m/z* (rel. int. %): 386 (26, M⁺), 239 (100); IR v_{max} (KBr) cm⁻¹: 1520, 1350 (NO₂), 1320, 1170 (SO₂); *Anal.* Calcd for C₂₀H₂₂N₂O₄S: C, 62.16; H, 5.74; N, 7.25. Found: C, 62.09; H, 5.77; N, 7.31.

trans-2-Cyclohexyl-3-(4-nitorophenyl)-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10dtrans) Prepared by Method A, yield 26%, colorless prisms (from EtOAc-hexane), mp 160-162°C; ¹H NMR (CDCl₃) δ : 1.08-1.37 (4 H, m), 1.58- 1.62 (4 H, m), 1.78 (1 H, br d, J = 13 Hz), 2.17 (1 H, br d, J = 13Hz), 3.34-3.76 (1 H, m, 1'-H), 4.51 (1 H, d, J = 6.8 Hz, 3-H), 5.03 (1 H, d, J = 6.8 Hz, 4-H), 7.43 (5 H, s, ArH), 7.67 (2 H, d, J = 8.8 Hz, ArH), 8.23 (2 H, d, J = 8.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.4 (t), 25.3 (t), 30.6 (t), 32.2 (t), 57.5 (d), 57.7 (d), 82.9 (d), 124.3 (d), 127.2 (d), 127.7 (s), 129.1(d), 129.2 (d), 130.0 (d), 145.4 (s), 148.3 (s); MS (EI) *m/z* (rel. int. %): 386 (18, M⁺), 239 (100); IR v_{max} (KBr) cm⁻¹: 1525, 1360 (NO₂), 1320, 1160 (SO₂); *Anal*. Calcd for C₂₀H₂₂N₂O₄S: C, 62.16; H, 5.74; N, 7.25. Found: C, 61.93; H, 5.69; N, 7.24.

trans-3-(4-Cyanophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10etrans) Prepared by Method A, yield 27%, colorless prisms (from EtOAc-hexane), mp 87-90°C; ¹H NMR (CDCl₃) δ : 1.08-1.19 (4 H, m), 1.58-1.64 (4 H, m), 1.77 (1 H, br d, J = 13 Hz), 2.15 (1 H, br d, J = 11 Hz), 3.35 (1 H, br t, J = 10 Hz, 1'-H), 4.48 (1 H, d, J = 6.8 Hz, 3-H), 5.03 (1 H, d, J = 6.8 Hz, 4-H), 7.42 (5 H, s, ArH), 7.61 (2 H, d, J = 8.3 Hz, ArH), 7.68 (2 H, d, J = 8.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.0 (t), 24.2 (t), 25.2 (t), 30.4 (t), 32.0 (t), 57.3 (d), 57.6 (d), 82.7 (d), 112.7 (s), 118.1 (s), 127.0 (d), 127.7 (s), 129.0 (d), 129.1 (d), 129.8 (d), 132.8 (d), 143.4 (s); MS (EI) *m/z* (rel. int. %): 366 (32, M⁺), 219 (100); IR v_{max} (KBr) cm⁻¹: 2235 (CN), 1300, 1170 (SO₂); HRMS (EI) Calcd for C₂₁H₂₂N₂O₂S: 366.1402. Found: 366.1391.

cis-3-(4-Cyanophenyl)-2-cyclohexyl-4-phenyl-1,2-thiazetizine 1,1-Dioxide (10e-*cis*) Prepared by Method A, yield 32%, colorless prisms (from EtOAc-hexane), mp 102-105°C; ¹H NMR (CDCl₃) δ : 1.14-1.35 (4 H, m), 1.58-1.80 (5 H, m), 2.22 (1 H, br d, J = 11 Hz), 3.34-3.36 (1 H, m, 1'-H), 4.98 (1 H, d, J = 8.8 Hz, 3-H), 5.80 (1 H, d, J = 8.8 Hz, 4-H), 7.10-7.18 (5 H, m, ArH), 7.37 (2 H, d, J = 8.3 Hz, ArH), 7.44 (2 H, d, J = 8.3 Hz, ArH) ¹³C NMR (CDCl₃) δ : 24.1 (t), 24.5 (t), 25.1 (t), 30.7 (t), 31.9 (t), 54.5 (d), 57.3 (d), 79.2 (d), 111.5 (s), 118.1 (s), 127.7 (s), 128.0 (d), 128.1 (d), 128.8 (d), 129.7 (d), 131.6 (d), 140.8 (s); MS (EI) m/z (rel. int. %): 366 (49, M⁺), 219 (100); IR v_{max} (KBr) cm⁻¹: 2250 (CN), 1320, 1160 (SO₂); HRMS (EI) Calcd for C₂₁H₂₂N₂O₂S: 366.1402. Found: 366.1431.

Synthesis of β -Sultam 1 δ by Intramolecular Cyclization³³

Butylene sulfide (24.69 g, 0.28 mol, prepared from butylene oxide by a similar procedure to that reported by Snyder and co-workers³⁴) and benzylamine (60.0 g, 0.56 mol) were heated at 100°C for 20 h under nitrogen. Unreacted butylene sulfide and benzylamine were removed by reduced-pressure distillation. The residual oil was dissolved in ethyl acetate (280 cm³) containing water (10 cm³, 0.56 mol). Chlorine was bubbled into the solution at 0°C with vigorous stirring until the initially formed precipitate disappeared. The reaction mixture was dried (Na₂SO₄), and then treated with potassium carbonate (270 g, 2 mol). The inorganic salts were filtered off and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc-hexane (1:20 - 1:10 v/v) to give 17.44 g (28%) of β -sultam 1 δ . Yellow oil; ¹H NMR (CDCl₃) δ : 1.05 (3 H, t, J = 7.3 Hz, Me), 1.80-1.87 and 2.03-2.10 (each 1 H, m, CH₂CH₃), 2.64 (1 H, t, J = 6 Hz, 3-H), 3.25 (1 H, dd, J = 6 and 7 Hz, 3-H), 4.09 and 4.23 (each 1 H, d, J = 14 Hz, CH₂Ph), 4.17-4.25 (1 H, m, 4-H), 7.28-7.34 (5 H, m, ArH); ¹³C NMR (CDCl₃) δ : 11.4 (q), 22.2 (t), 42.6 (t), 50.1 (t), 72.3 (d), 127.9 (d), 128.5 (d), 128.7 (d), 134.6 (s); MS (EI) *m/z* (rel. int. %): 225 (17, M⁺), 91 (100); IR v_{max} (NaCl) cm⁻¹: 1310, 1155 (SO₂); *Anal*. Calcd for C₁₁H₁₅NO₂S: C, 58.64; H, 6.71; N, 6.22. Found: C, 58.65; H, 6.81; N, 6.21.

Dimethylation of 4-Nonsubstituted β -Sultams

General procedure. To a solution of LDA (3 mmol, prepared from 3 mmol of diisopropylamine (0.39 cm³) and 3 mmol of *n*BuLi in hexane) in dry THF (10 cm³) was added dropwise a solution of a β -sultam (1 mmol) in THF (2-4 cm³) at -78°C under nitrogen. After 30 min., MeI (0.19 cm³, 3 mmol) was added dropwise to it and the whole was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl (4 cm³) was added to the reaction mixture and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc–hexane (1:10 v/v).

2-Cyclohexyl-4,4-dimethyl-3-(4-methylphenyl)-1,2-thiazetidine 1,1-Dioxide (1y) Yield 83%, colorless prisms (from EtOAc-hexane), mp 124-127°C; ¹H NMR (CDCl₃) δ : 1.08 (3 H, s, 4-Me), 1.11-1.31 (4 H, m), 1.46-1.74 (5 H, m), 1.63 (3 H, s, 4-Me), 2.11-2.14 (1 H, m), 2.36 (3 H, s, ArMe), 3.15-3.21 (1 H, m, 1'-H), 4.05 (1 H, s, 3-H), 7.19 and 7.24 (each 2 H, d, J = 7.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 19.0 (q), 21.0 (q), 22.1 (q), 24.3 (t), 24.7 (t), 25.3 (t), 30.9 (t), 32.0 (t), 56.8 (d), 62.1 (d), 75.2 (s), 126.9 (d), 129.1 (d), 132.3 (s), 138.2 (s); MS (EI) *m/z* (rel. int. %): 307 (7, M⁺), 200 (100); IR ν_{max} (KBr) cm⁻¹: 1300, 1125 (SO₂); *Anal.* Calcd for C₁₇H₂₅NO₂S: C, 66.41; H, 8.20; N, 4.56. Found: C, 66.55; H, 8.25; N, 4.59.

2-Cyclohexyl-3-(4-methoxyphenyl)-4,4-dimethyl-1,2-thiazetidine 1,1-Dioxide (1z) Yield 77%, colorless prisms (from EtOAc-hexane), mp 113-114°C; ¹H NMR (CDCl₃) δ : 1.09 (3 H, s, 4-Me), 1.13-1.39 (4 H, m), 1.47-1.74 (5 H, m), 1.62 (3 H, s, 4-Me), 2.10-2.13 (1 H, m), 3.15-3.17 (1 H, m, 1'-H), 3.82 (3 H, s, OMe), 4.02 (1 H, s, 3-H), 6.91 and 7.27 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 19.1 (q), 22.1 (q), 24.4 (t), 24.8 (t), 25.4 (t), 31.0 (t), 32.0 (t), 55.2 (q), 56.9 (d), 62.0 (d), 75.3 (s), 113.9 (d), 127.3 (s), 128.2 (d), 159.7 (s); MS (EI) *m/z* (rel. int. %): 323 (14, M⁺), 216 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1125 (SO₂); *Anal.* Calcd for C₁₇H₂₅NO₃S: C, 63.13; H, 7.79; N, 4.33. Found: C, 63.03; H, 7.98; N, 4.37.

3-(4-Bromophenyl)-2-cyclohexyl-4,4-dimethyl-1,2-thiazetidine 1,1-Dioxide (1 α) Yield 81%, colorless prisms (from EtOAc-hexane), mp 109-111°C; ¹H NMR (CDCl₃) δ : 1.08 (3 H, s, 4-Me), 1.05-1.31 (4 H, m), 1.46-1.75 (5 H, m), 1.64 (3 H, s, 4-Me), 2.11-2.14 (1 H, m), 3.15-3.19 (1 H, m, 1'-H), 4.03 (1 H, s, 3-H), 7.26 and 7.52 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 19.1 (q), 22.2 (q), 24.3 (t), 24.6 (t), 25.3 (t), 30.9 (t), 32.1 (t), 57.0 (d), 61.7 (d), 75.2 (s), 122.4 (s), 128.6 (d), 131.7 (d), 134.6 (s); MS

(EI) m/z (rel. int. %): 371 (12, M⁺), 110 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1125 (SO₂); Anal. Calcd for C₁₆H₂₂BrNO₂S: C, 51.62; H, 5.96; N, 3.76. Found: C, 51.79; H, 5.92; N, 3.85.

Synthesis of 3-'Butyl-2-cyclohexyl-4-methyl-1,2-thiazetidine 1,1-Dioxide 17

To a solution of LDA (2 mmol, prepared from 2 mmol of diisopropylamine (0.26 cm³) and 2 mmol of ⁿBuLi in hexane) in dry THF (10 cm³) was added dropwise a solution of 3-^fbutyl-2-cyclohexyl- β -sultam³¹ (245 mg, 1 mmol) in THF (2 cm³) at -78°C under nitrogen. After 30 min., MeI (0.07 cm³, 1.1 mmol) was added dropwise to it and the whole was stirred at -78°C for 2 h. Saturated aqueous NH₄Cl (4 cm³) was added to the reaction mixture at -78°C and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc–hexane (1:20 v/v) to give 238 mg (87%) of β -sultam 1 γ . Colorless needles (from EtOAc-hexane), mp 96-97°C; ¹H NMR (CDCl₃) δ : 1.00 (9 H, s, ^fBu), 1.07-1.25 (3 H, m), 1.48 (3 H, d, *J* = 6.8 Hz, 4-Me), 1.63-1.86 (5 H, m), 2.02-2.05 (1 H, m), 2.20-2.23 (1 H, m), 2.89 (1 H, d, *J* = 6.8 Hz, 3-H), 3.01 (1 H, tt, *J* = 3 and 12 Hz, 1'-H), 3.90 (1 H, tq, *J* = 6.8 and 6.3 Hz, 4-H); ¹³C NMR (CDCl₃) δ : 13.9 (q), 25.5 (t), 25.8 (t), 26.4 (t), 26.5 (q), 28.9 (t), 31.6 (t), 34.4 (s), 58.2 (d), 61.3 (d), 65.8 (d); MS (EI) *m/z* (rel. int. %): 259 (7, M⁺), 202 (100); IR v_{max} (KBr) cm⁻¹: 1290, 1120 (SO₂); Anal. Calcd for C₁₃H₂₅NO₂S: C, 60.19; H, 9.71; N, 5.40. Found: C, 60.08; H, 9.73; N, 5.37.

Synthesis of 3-'Butyl-2-cyclohexyl-4,4-dimethyl-1,2-thiazetidine 1,1-Dioxide 18

To a solution of LDA (24 mmol, prepared from 24 mmol of diisopropylamine (3.12 cm³) and 24 mmol of ⁿBuLi in hexane) in dry THF (40 cm³) was added dropwise a solution of 3-^rbutyl-2-cyclohexyl- β -sultam³¹ (981 mg, 4 mmol) in THF (6 cm³) at -78°C under nitrogen. After 30 min., MeI (2.3 cm³, 32 mmol) was added dropwise to it and the whole was stirred at room temperature for 3 d. Saturated aqueous NH₄Cl (10 cm³) was added to the reaction mixture at -78°C and the organic layer was separated. The water layer was extracted twice with EtOAc (40 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (80 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc–hexane (1:20 v/v) to give 1.016 g (93%) of β -sultam 18. Colorless needles (from EtOAc-hexane), mp 92-95°C; ¹H NMR (CDCl₃) &: 1.07 (9 H, s, 'Bu), 1.17-1.25 (2 H, m), 1.54 (3 H, s, 4-Me), 1.66 (3 H, s, 4-Me), 1.65-1.87 (6 H, m), 2.05-2.08 (1 H, m), 2.22-2.25 (1 H, m), 2.99-3.06 (1 H, m, 1'-H), 3.15 (1 H, s, 3-H); ¹³C NMR (CDCl₃) &: 19.8 (q), 24.2 (q), 25.6 (t), 25.8 (t), 26.7 (t), 27.7 (t), 28.0 (q), 32.1 (t), 35.0 (s), 58.2 (d), 65.9 (d), 74.6 (s); MS (EI) *m/z* (rel. int. %): 273 (2, M⁺), 152 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1165 (SO₂); *Anal.* Calcd for C₁₄H₂₇NO₂S: C, 61.50; H, 9.95; N, 5.12. Found: C, 61.23; H, 9.97; N, 5.14.

Reactions of β -Sultams 1 with EtAlCl₂: Formation of Ketones and Aldehydes

General procedure. To a stirred solution of a β -sultam 1 (1 mmol) in dry CH₂Cl₂ (10 cm³) was added dropwise 2 equiv of EtAlCl₂ in hexane under nitrogen at room temperature. The mixture was stirred at room temperature for 12 h and quenched with saturated aqueous NaHCO₃ (5 cm³). The whole was vigorously stirred for 30 min, and the inorganic precipitate was filtered off through Celite. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 cm³ x 2). The organic layer and the extracts were combined, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc-hexane (1:10-1:5 v/v)) to give an aryl ketone 2 or an aldehyde 3. Yields are listed in Table 2.

2-Methyl-2-phenylpropanal (3x) Colorless oil; ¹H NMR (CDCl₃) δ : 1.47 (6 H, s, Me x 2), 7.26-7.40 (5 H, m, ArH), 9.50 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 22.4 (q), 50.4 (s), 126.7 (d), 127.2 (d), 128.8 (d), 141.0 (s), 202.3 (d); MS (FAB) *m*/z (rel. int. %): 149 (7, M⁺+1), 136 (100); IR v_{max} (NaCl) cm⁻¹: 2805, 2705, 1730 (CHO); *Anal.* Calcd for C₁₀H₁₂O: C, 81.05: H, 8.16. Found: C, 80.97: H, 8.19.

2-(4-Methoxyphenyl)-2-methylpropanal (3z) Colorless oil; ¹H NMR (CDCl₃) δ: 1.44 (6 H, s,

8961

Me x 2), 3.08 (3 H, s, OMe), 6.91 and 7.19 (each 2 H, d, J = 8.8 Hz, ArH), 9.44 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 22.5 (q), 49.7 (s), 55.2 (q), 114.2 (d), 127.8 (d), 133.0 (s), 158.7 (s), 202.2 (d); MS (FAB) *m/z* (rel. int. %): 179 (12, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2815, 2705, 1725 (CHO); Anal. Calcd for C₁₁H₁₄O₂: C, 74.13; H, 7.92. Found: C, 73.97; H, 8.09.

2-Hydroxy-2-(4-methoxyphenyl)-2-phenylacetaldehyde (4) Light yellow oil; ¹H NMR (CDCl₃) δ : 3.81 (3 H, s, OMe), 4.33 (1 H, br s, OH), 6.92 (2 H, d, J = 8 Hz, ArH), 7.26 (2 H, d, J = 8 Hz, ArH), 7.35-7.40 (5 H, m, ArH), 9.93 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 55.3 (q), 83.1 (s), 114.3 (d), 127.4 (d), 128.4 (d), 128.8 (d), 131.4 (s), 139.4 (s), 159.7 (s), 198.0 (d), an aromatic carbon is overlapped; IR v_{max} (NaCl) cm⁻¹: 3460 (OH), 1720 (C=O); MS (EI) m/z (rel. int. %): 213 (100, M⁺-CHO). The compound was unstable for silica gel and could not be purified enough to exhibit satisfactory elemental analysis. Neither EI-MS nor FAB-MS showed the molecular ion peak.

Reaction of α -Hydroxyaldehyde 4 with Silica Gel

A mixture of aldehyde 4 (24 mg, 0.1 mmol) and silica gel in EtOAc (3 cm³) was stirred at room temperature overnight. The silica gel was filtered off and the filtrate was evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc-hexane (1:10 v/v)) to give 18 mg (86%) of 4-methoxybenzophenone 2e.

Reaction of N-(2-Phenylpropylidene)-ⁿbutylamine 5 with EtAlCl₂

To a stirred solution of imine 5 (189 mg, 1 mmol) in dry CH_2Cl_2 (10 cm³) was added dropwise 2 equiv of EtAlCl₂ in hexane under nitrogen at room temperature. The mixture was stirred at room temperature for 12 h and quenched with saturated aqueous NaHCO₃ (5 cm³). The whole was vigorously stirred for 30 min, and the inorganic precipitate was filtered off through Celite. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (10 cm³ x 2). The organic layer and the extracts were combined, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc-hexane (1:10 v/v) to give 76 mg (63%) of acetophenone **2t**.

Synthesis of 4,4-Disubstituted β -Sultams 6

General procedure. To a solution of LDA (1.5 mmol, prepared from 1.5 mmol of diisopropylamine (0.2 cm³) and 1.5 mmol of *n*BuLi in hexane) in dry THF (10 cm³) was added dropwise a solution of a β -sultam (1 mmol) in THF (2-4 cm³) at -78°C under nitrogen. After 30 min., an alkyl iodide (2 mmol) was added dropwise to it and the whole was stirred at room temperature for several hours. Saturated aqueous NH₄Cl (4 cm³) was added to the reaction mixture and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc-hexane (1:20 - 1:10 v/v). Yields are listed in Table 3.

cis-4-*n*Butyl-2-cyclohexyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (6aa-*cis*) Colorless prisms (from EtOAc-hexane), mp 130-134°C; ¹H NMR (CDCl₃) δ : 0.84 (3 H, t, *J*= 7.3 Hz, Me), 1.03-1.70 (12 H, m), 1.86 (1 H, br d, *J*= 13 Hz), 1.95 (1 H, br d, *J*= 12 Hz), 2.27-2.34 (1 H, m), 2.58-2.66 (1 H, m), 3.17-3.24 (1 H, m, 1'-H), 4.44 (1 H, s, 3-H), 7.04-7.24 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 13.7 (q), 22.7 (t), 24.2 (t), 24.6 (t), 25.4 (t), 27.7 (t), 30.9 (t), 31.5 (t), 40.3 (t), 55.6 (d), 64.4 (d), 88.6 (s), 127.0 (d), 127.5 (d), 128.1 (d), 128.3 (d), 128.4 (d), 128.6 (d), 133.6 (s), 136.0 (s); MS (EI) *m/z* (rel. int. %): 397 (44, M⁺), 250 (100); IR v_{max} (KBr) cm⁻¹: 1290, 1145 (SO₂); *Anal*. Calcd for C₂₄H₃₁NO₂S: C, 72.51: H, 7.86: N, 3.52. Found: C, 72.34: H, 7.89: N, 3.43.

trans-4-^{*n*}Butyl-2-cyclohexyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (6aa-*trans*) White powder, mp 97-100°C; ¹H NMR (CDCl₃) δ : 0.12-0.22 (1 H, m), 0.53 (3 H, t, J= 5.4 Hz, Me), 0.66-1.73 (12 H, m), 1.87-1.94 (1 H, m), 2.11-2.25 (2 H, m), 3.15-3.18 (1 H, m, 1'-H), 4.85 (1 H, s, 3-H), 7.07-7.48 (8 H, m, ArH), 7.68 (2 H, d, J= 7.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 13.4 (q), 22.5 (t), 24.4 (t), 24.8 (t), 25.3 (t), 26.1 (t), 31.0 (t), 32.1 (t), 34.5 (t), 57.1 (d), 60.5 (d), 85.8 (s), 126.8 (d), 127.9 (d), 128.2 (d), 128.5 (d), 128.6 (d), 128.8 (d), 135.6 (s), 136.7 (s); MS (EI) m/z (rel. int. %): 397 (21, M⁺), 250 (100); IR v_{max} (KBr) cm⁻¹: 1315, 1160 (SO₂); Anal. Calcd for C₂₄H₃₁NO₂S: C, 72.51: H, 7.86: N, 3.52. Found: C, 72.60: H, 7.88: N, 3.47.

cis-2-^{*n*}**Butyl**-4-methyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (6cb-*cis*) Colorless prisms (from EtOAc-hexane), mp 93-95°C; ¹H NMR (CDCl₃) δ : 0.93 (3 H, t, *J*= 7.3 Hz, Me), 1.41-1.58 (2 H, m), 1.63-1.78 (2 H, m), 2.19 (3 H, s, 4-Me), 2.91-2.98 and 3.19-3.26 (each 1 H, m, NH₂), 4.34 (1 H, s, 3-H), 7.10-7.16 (8 H, m, ArH), 7.30-7.32 (2 H, m, ArH); ¹³C NMR (CDCl₃) δ : 13.7 (q), 20.4 (t), 24.3 (q), 30.5 (t), 45.7 (t), 66.7 (d), 84.7 (s), 127.6 (d), 127.6 (d), 127.8 (d), 128.2 (d), 128.3 (d), 133.3 (s), 133.9 (s), an aromatic carbon is overlapped; MS (EI) *m/z* (rel. int. %): 329 (64, M⁺), 264 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1165 (SO₂); *Anal*. Calcd for C₁₉H₂₃NO₂S: C, 69.27: H, 7.04: N, 4.25. Found: C, 68.99: H, 7.12: N, 4.19.

trans-2-^{*n*}Butyl-4-methyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (6cb-*trans*) White powder, mp 80-83°C; ¹H NMR (CDCl₃) δ : 0.89 (3 H, t, J= 7.3 Hz, Me), 1.39-1.53 (2 H, m), 1.57 (3 H, s, 4-Me), 1.60-1.75 (2 H, m), 2.78-2.85 and 3.26-3.33 (each 1 H, m, NH₂), 4.74 (1 H, s, 3-H), 7.36-7.53 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 13.6 (q), 20.3 (t), 21.6 (q), 30.5 (t), 46.1 (t), 62.6 (d), 82.7 (s), 126.7 (d), 127.6 (d), 128.4 (d), 128.8 (d), 133.6 (s), 136.6 (s), two aromatic carbons are overlapped; MS (EI) *m/z* (rel. int. %): 329 (36, M⁺), 264 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1165 (SO₂); *Anal.* Calcd for C₁₉H₂₃NO₂S: C, 69.27: H, 7.04: N, 4.25. Found: C, 69.00: H, 7.15: N, 4.12.

cis-3-(4-Chlorophenyl)-2-cyclohexyl-4-methyl-4-phenyl-1,2-thiazetidine 1,1-Dioxide (6ib-*cis*) Colorless prisms (from CHCl₃-hexane), mp 94-95°C; ¹H NMR (CDCl₃) δ : 1.14-1.59 (6 H, m), 1.70-1.73 (2 H, m), 1.82 (1 H, br d, J = 12 Hz), 2.01 (1 H, br d, J = 12 Hz), 2.14 (3 H, s, 4-Me), 3.18-3.26 (1 H, m, 1'-H), 4.44 (1 H, s, 3-H), 7.11-7.26 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.6 (t), 25.3 (t), 26.1 (q), 31.0 (t), 31.5 (t), 56.1 (d), 64.2 (d), 84.0 (s), 127.7 (d), 127.7 (d), 127.9 (d), 128.3 (d), 129.5 (d), 134.0 (s), 134.1 (s), an aromatic carbon is overlapped; MS (EI) *m*/2 (rel. int. %): 389 (29, M⁺), 242 (100); IR ν_{max} (KBr) cm⁻¹: 1300, 1155 (SO₂); *Anal.* Calcd for C₂₁H₂₄ClNO₂S: C, 64.68: H, 6.20: N, 3.59. Found: C, 64.52: H, 6.31: N, 3.55.

trans-3-(4-Chlorophenyl)-2-cyclohexyl-4-methyl-4-phenyl-1,2-thiazetidine 1,1-Dioxide (6ib-*trans*) Colorless prisms (from CHCl₃-hexane), mp 60-64°C; ¹H NMR (CDCl₃) δ : 1.07-1.30 (4 H, m), 1.53-1.76 (5 H, m), 1.53 (3 H, s, 4-Me), 2.16 (1 H, br d, J = 12 Hz), 3.21-3.26 (1 H, m, 1'-H), 4.85 (1 H, s, 3-H), 7.36-7.51 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 21.8 (q), 24.4 (t), 24.8 (t), 25.3 (t), 31.1 (t), 32.2 (t), 57.4 (d), 60.2 (d), 81.8 (s), 126.7 (d), 128.5 (d), 128.8 (d), 128.8 (d), 129.1 (d), 133.9 (s), 134.5 (s), 136.6 (s); MS (EI) *m*/z (rel. int. %): 389 (17, M⁺), 242 (100); IR ν_{max} (KBr) cm⁻¹: 1315, 1165 (SO₂); Anal. Calcd for C₂₁H₂₄ClNO₂S: C, 64.68: H, 6.20: N, 3.59. Found: C, 64.28: H, 6.28: N, 3.45.

cis- and *trans*-2-*n*Butyl-4-ethyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (6cc) Yellow oil as a mixture of stereoisomers; ¹H NMR (CDCl₃) δ : 0.32 and 0.88 (each 3 H, t, *J*= 7.3 Hz, *trans* Me x 2), 0.86 and 0.93 (each 3 H, t, *J*= 7.3 Hz, *cis* Me x 2), 1.32-1.65 (total 8 H, m, CH₂CH₂ x 2), 1.83-1.92 and 2.32-2.40 (each 1 H, m, *trans* 4-CH₂CH₃), 2.35-2.44 and 2.68-2.78 (each 1 H, m, *cis* 4-CH₂CH₃), 2.68-2.78 and 3.18-3.24 (each 1 H, m, *trans* NCH₂), 2.87-2.94 and 3.05-3.12 (each 1 H, m, *cis* NCH₂), 4.35 (1 H, s, *cis* 3-H), 4.64 (1 H, s, *trans* 3-H), 7.04-7.77 (total 20 H, m, ArH); ¹³C NMR (CDCl₃) δ : 8.5 (q, *trans*), 10.1 (q, *cis*), 13.4 (q, *cis*), 20.1 (t, *cis*), 20.2 (t, *trans*), 28.1 (t, *trans*), 30.1 (t, *cis*), 30.4 (t, *trans*), 33.1 (t, *cis*), 44.3 (t, *cis*), 45.7 (t, *trans*), 62.8 (d, *trans*), 166.3 (d, *cis*), 128.4 (d, *cis*), 128.5 (d, *cis*), 128.8 (d, *trans*), 129.0 (d, *trans*), 132.7 (s, *cis*), 133.8 (s, *trans*), 134.4 (s, *cis*), 136.0 (s, *trans*), an alkyl carbon and three aromatic carbons are overlapped; MS (EI) *m/z* (rel. int. %): 343 (70, M⁺), 278 (100); IR v_{max} (NaCl) cm⁻¹: 1305, 1160 (SO₂); HRMS (EI) Calcd for C₂₀H₂₅NO₂S: 343.1606. Found: 343.1611.

Synthesis of 4,4-Disubstituted β -Sultams 7

General procedure. To a solution of LDA (3 mmol, prepared from 3 mmol of diisopropylamine (0.39 cm³) and 3 mmol of *n*BuLi in hexane) in dry THF (10 cm³) was added dropwise a solution of a β -sultam (1 mmol) in THF (2-4 cm³) at -78°C under nitrogen. After 30 min., an alkyl iodide (3 mmol (1.5 mmol for 1,4-

diiodobutane)) was added to it and the whole was stirred at room temperature for several hours. Saturated aqueous NH₄Cl (4 cm³) was added to the reaction mixture and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc–hexane (1:20 - 1:10 v/v). Yields are listed in Table 3.

4,4-Butano-2-cyclohexyl-3-phenyl-1,2-thiazetidine 1,1-Dioxide (7rd) Colorless prisms (from EtOAc-hexane), mp 107-109°C; ¹H NMR (CDCl₃) δ : 1.07-1.74 (14 H, m), 1.88-1.96 (1 H, m), 2.12 (1 H, br d, J = 13 Hz), 2.22-2.28 (1 H, m), 2.74-2.81 (1 H, m), 3.16-3.22 (1 H, m, 1'-H), 4.21 (1 H, s, 3-H), 7.26-7.38 (5 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 24.4 (t), 24.7 (t), 25.1 (t), 25.5 (t), 30.5 (t), 31.0 (t), 32.2 (t), 33.4 (t), 57.1 (d), 60.7 (d), 86.2 (s), 127.2 (d), 128.6 (d), 128.7 (d), 136.5 (s); MS (EI) *m/z* (rel. int. %): 319 (21, M⁺), 158 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1140 (SO₂); *Anal.* Calcd for C₁₈H₂₅NO₂S: C, 67.68: H, 7.89: N, 4.38. Found: C, 67.50: H, 7.89: N, 4.36.

2-Cyclohexyl-3-phenyl-4,4-dipropyl-1,2-thiazetidine 1,1-Dioxide (7re) Colorless prisms (from EtOAc-hexane), mp 108-110 °C; ¹H NMR (CDCl₃) δ : 0.68-2.15 (21 H, m), 1.02 (3 H, t, J = 7 Hz, Me), 3.14-3.19 (1 H, m, 1'-H), 4.10 (1 H, s, 3-H), 7.33-7.41 (5 H, m, ArH); ¹³C NMR (CDCl₃) δ : 14.2 (q), 14.4 (q), 17.3 (t), 17.7 (t), 24.4 (t), 24.8 (t), 25.4 (t), 30.7 (t), 30.9 (t), 32.1 (t), 34.8 (t), 56.5 (d), 62.2 (d), 82.0 (s), 127.7 (d), 128.4 (d), 128.5 (d), 136.0 (s); MS (EI) m/z (rel. int. %): 349 (8, M⁺), 186 (100%); IR v_{max} (KBr) cm⁻¹: 1300, 1125 (SO₂); *Anal.* Calcd for C₂₀H₃₁NO₂S: C, 68.73: H, 8.94: N, 4.01. Found: C, 68.50: H, 8.88: N, 3.98.

Synthesis of Trisubstituted Aldehydes 8 and 9 by Reactions of β -Sultams with EtAlCl₂

General procedure. To a stirred solution of a β -sultam 6 or 7 (0.2 mmol) in dry toluene (2 cm³) was added dropwise 2 equiv of EtAlCl₂ in hexane under nitrogen at room temperature. The mixture was stirred at room temperature for 12-15 h. 2 N Sulfuric acid (3 cm³) was added to the reaction mixture, and the whole was vigorously stirred for 2 h. The organic layer was separated and the aqueous layer was extracted with EtOAc (10 cm³ x 2). The organic layer and the extracts were combined, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc-hexane (1:10 v/v)) to give a trisubstituted aldehyde 8 or 9. Yields are listed in Table 3.

2,2-Diphenylhexanal (8aa) Colorless oil; ¹H NMR (CDCl₃) δ : 0.84 (3 H, t, J = 7.3 Hz, Me), 1.03-1.08 and 1.23-1.29 (each 2 H, m, CH₂CH₂), 2.27 (2 H, t, J = 7.8 Hz, CH₂), 7.17-7.37 (10 H, m, ArH), 9.79 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 13.9 (q), 23.3 (t), 26.9 (t), 33.8 (t), 63.7 (s), 127.2 (d), 128.6 (d), 129.1 (d), 140.3 (s), 198.8 (d); MS (FAB) *m*/z (rel. int. %): 253 (81, M⁺+1), 223 (100); IR v_{max} (NaCl) cm⁻¹: 2825, 2730, 1730 (CHO); HRMS (FAB) Calcd for C₁₈H₂₀O + H: 253.1592. Found: 253.1600.

2-(4-Chlorophenyl)-2-phenylpropanal (8ib) Colorless oil; ¹H NMR (CDCl₃) δ : 1.76 (3 H, s, Me), 7.10 (2 H, d, J = 8 Hz, ArH), 7.15 (2 H, d, J = 7 Hz, ArH), 7.31-7.39 (5 H, m, ArH), 9.86 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 22.6 (q), 59.4 (s), 127.5 (d), 128.1 (d), 128.9 (d), 129.6 (d), 133.3 (s), 140.4 (s), 141.2 (s), 199.1 (d), an aromatic carbon is overlapped; MS (FAB) m/z (rel. int. %): 245 (3, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2825, 2720, 1725 (CHO); Anal. Calcd for C₁₅H₁₃ClO: C, 73.62; H, 5.35. Found: C, 73.49; H, 5.52.

2,2-Diphenylbutanal (8cc) Colorless oil; ¹H NMR (CDCl₃) δ : 0.75 (3 H, t, J = 7.3 Hz, Me), 2.34 (2 H, q, J = 7.3 Hz, CH₂), 7.18-7.38 (10 H, m, ArH), 9.81 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 9.2 (q), 26.7 (t), 64.1 (s), 127.2 (d), 128.6 (d), 129.2 (d), 140.0 (s), 198.8 (d); MS (FAB) *m*/z (rel. int. %): 225 (34, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2820, 2720, 1725 (CHO); *Anal*. Calcd for C₁₆H₁₆O: C, 85.68; H, 7.19. Found: C, 85.50; H, 7.38.

1-Phenylcyclopenatanecarbaldehyde (9rd) Colorless oil; ¹H NMR (CDCl₃) δ : 1.62-1.79 (4 H, m), 1.85-1.92 (2 H, m), 2.50-2.55 (2 H, m), 7.25-7.37 (5 H, m, ArH), 9.40 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 24.2 (t), 32.3 (t), 63.7 (s), 127.1 (d), 127.6 (d), 128.7 (d), 140.3 (s), 200.7 (d); MS (EI) *m/z* (rel. int. %): 174 (5, M⁺), 145 (100); IR v_{max} (NaCl) cm⁻¹: 2805, 2715, 1725 (CHO); *Anal.* Calcd for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.30; H, 8.16.

2-Phenyl-2-propylpentanal (9re) Colorless oil; ¹H NMR (CDCl₃) δ : 0.91 (6 H, t, J = 7.3 Hz, Me x 2), 1.12 (4 H, sextet, J = 7.3 Hz, CH₂ x 2), 1.87-1.92 (4 H, m, CH₂ x 2), 7.21-7.39 (5 H, m, ArH), 9.48 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 14.7 (q), 17.1 (t), 34.5 (t), 57.6 (s), 127.1 (d), 127.5 (d), 128.7 (d), 139.5 (s), 203.1 (d); MS (FAB) m/z (rel. int. %): 205 (14, M⁺+1), 154 (100); IR ν_{max} (NaCl) cm⁻¹: 2815, 2720, 1730 (CHO); HRMS (FAB) Calcd for C₁₄H₂₀O + H: 205.1592. Found: 205.1606.

Ring Transformation of β -Sultams with Aluminum Lewis Acid

General procedure. To a stirred solution of a β -sultam 10 (0.1 mmol) in dry CH₂Cl₂ (1 cm³) was added EtAlCl₂ or AlCl₃ at 0°C or room temperature under nitrogen. The mixture was stirred at appropriate temperature for appropriate time. The reaction was quenched by addition of saturated aqueous NaHCO₃ (5 cm³). The inorganic precipitate was filtered off through Celite and washed well with EtOAc or CHCl₃. The organic layer was separated, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (hexane-EtOAc (2:1 - 1:1 v/v)). Reaction conditions and yields are summarized in Table 4.

(2S*,4R*,5R*)-3-Cyclohexyl-5-phenyl-4-(3-pyridyl)-1,2,3-oxathiazolidine 2-Oxide (11aA) Colorless prisms (from CH₂Cl₂-hexane), mp 174-181°C (dec.); ¹H NMR (CDCl₃) δ : 1.10-1.23 (4 H, m), 1.53-1.81 (4 H, m), 2.01-2.04 (2 H, m), 2.94-3.01 (1 H, m, 1'-H), 4.47 (1 H, d, J = 9.3 Hz, 4-H), 5.76 (1 H, d, J = 9.3 Hz, 5-H), 7.18-7.20 (2 H, m, ArH), 7.34-7.37 (4 H, m, ArH), 7.95-7.98 (1 H, m, ArH), 8.31 (1 H, d, J = 2 Hz, ArH), 8.59 (1 H, dd, J = 2 and 5 Hz, ArH); ¹³C NMR (CDCl₃) δ : 25.3 (t), 25.4 (t), 25.7 (t), 32.1 (t), 33.3 (t), 56.6 (d), 69.9 (d), 89.5 (d), 124.1 (d), 126.8 (d), 128.9 (d), 129.5 (d), 132.6 (s), 134.2 (s), 135.7 (d), 149.5 (d), 150.1 (d); MS (FAB) *m*/z (rel. int. %): 343 (14, M⁺+1), 154 (100); IR ν_{max} (KBr) cm⁻¹: 1165 (SO); *Anal.* Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.48; H, 6.48; N, 8.14.

(2R*,4R*,5R*)-3-Cyclohexyl-5-phenyl-4-(3-pyridyl)-1,2,3-oxathiazolidine 2-Oxide (11aB) Pale yellow solid (from Et₂O-hexane), mp 111-119°C (dec.); ¹H NMR (CDCl₃) δ : 0.83-1.28 (4 H, m), 1.40-1.88 (5 H, m), 2.08-2.11 (1 H, m), 2.76-2.83 (1 H, m, 1'-H), 4.81 (1 H, d, J = 9.3 Hz, 4-H), 5.21 (1 H, d, J = 9.3 Hz, 5-H), 7.22-7.38 (6 H, m, ArH), 7.61 (1 H, d, J = 7.8 Hz, ArH), 8.42 (1 H, d, J = 2 Hz, ArH), 8.64 (1 H, dd, J = 2 and 5 Hz, ArH); ¹³C NMR (CDCl₃) δ : 25.4 (t), 25.5 (t), 26.3 (t), 30.1 (t), 32.2 (t), 55.9 (d), 65.0 (d), 94.9 (d), 124.0 (d), 127.3 (d), 128.8 (d), 129.0 (d), 130.9 (s), 135.4 (s), 135.9 (d), 150.1 (d), 150.4 (d); MS (FAB) m/z (rel. int. %): 343 (18, M⁺+1), 154 (100); IR v_{max} (KBr) cm⁻¹: 1150 (SO); HRMS (FAB) Calcd for C₁₉H₂₂N₂O₂S + H: 343.1480. Found: 343.1476.

1-Cyclohexyl-2-phenyl-3-(3-pyridyl)aziridine (12a) Light brown oil ; ¹H NMR (CDCl₃) δ : 1.26-1.87 (10 H, m), 1.69-1.74 (1 H, m, 1'-H), 2.86 and 2.97 (each 1 H, d, J = 6.3 Hz, 2- and 3-H), 6.99 (1 H, dd, J = 4.8 and 7.8 Hz, ArH), 7.05-7.17 (5 H, m, ArH), 7.36 (1 H, d, J = 7.8 Hz, ArH), 8.29 (1 H, br d, J = 3.4 Hz, ArH), 8.46 (1 H, br s, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 26.2 (t), 32.2 (t), 32.3 (t), 45.3 (d), 48.1 (d), 68.5 (d), 122.5 (d), 126.7 (d), 127.8 (d), 127.9 (d), 133.1 (s), 135.2 (d), 136.4 (s), 147.7 (d), 149.7 (d), an alkyl carbon is overlapped; MS (EI) m/z (rel. int. %): 278 (22, M⁺), 195 (100); IR v_{max} (NaCl) cm⁻¹: 2940, 2855, 1450, 1365, 1025, 715, 700; HRMS (EI) Calcd for C₁₉H₂₂N₂: 278.1783. Found: 278.1785.

 $(2S^*, 4R^*, 5R^*)$ - and $(2R^*, 4R^*, 5R^*)$ -3-Cyclohexyl-5-phenyl-4-(4-pyridyl)-1,2,3oxathiazolidine 2-Oxide (11b) White solid as a mixture of stereoisomers (from Et₂O-hexane); ¹H NMR (CDCl₃) δ : major isomer: 1.11-1.33 (4 H, m), 1.52-1.83 (4 H, m), 1.93-2.03 (2 H, m), 2.97-3.05 (1 H, m, 1'-H), 4.42 (1 H, d, J = 9.3 Hz, 4-H), 5.72 (1 H, d, J = 9.3 Hz, 5-H), 7.18-7.43 (7 H, m, ArH), 8.59 (2 H, d, J = 5 Hz, ArH); minor isomer: 4.37 (1 H, d, J = 7 Hz, 4-H), 5.01 (1 H, d, J = 7 Hz, 5-H), other peaks are overlapped; ¹³C NMR (CDCl₃) δ : major isomer: 25.3 (t), 25.4 (t), 25.7 (t), 32.2 (t), 33.3 (t), 56.9 (d), 71.4 (d), 89.5 (d), 122.8 (d), 127.0 (d), 128.9 (d), 129.5 (d), 134.3 (s), 146.6 (s), 150.3 (d); MS (EI) *m/z* (rel. int. %): 342 (17, M⁺), 195 (100); IR v_{max} (KBr) cm⁻¹: 1160 (SO); *Anal*. Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.59; H, 6.43; N, 8.05.

1-Cyclohexyl-2-phenyl-3-(4-pyridyl)aziridine (12b) Yellow oil; ¹H NMR (CDCl₃) δ : 1.25-1.39 (3 H, m), 1.51-1.73 (5 H, m), 1.83-1.89 (3 H, m), 2.82 and 3.01 (each 1 H, d, J = 6.8 Hz, 2- and 3-H), 7.06-7.26 (7 H, m, ArH), 8.30 (2 H, d, J = 6 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 26.2 (t), 32.2 (t), 32.3 (t), 46.9 (d), 48.7 (d), 68.4 (d), 123.0 (d), 126.8 (d), 127.8 (d), 127.9 (d), 136.1 (s), 146.8 (s), 148.8 (d), an alkyl carbon is overlapped; MS (EI) m/z (rel. int. %): 278 (10, M⁺), 61 (100); IR ν_{max} (NaCl) cm⁻¹: 2940, 2855, 1605, 700; HRMS (EI) Calcd for C₁₉H₂₂N₂: 278.1783. Found: 278.1779.

(2S*,4R*,5R*)- and (2R*,4R*,5R*)-3-Cyclohexyl-5-phenyl-4-(2-pyridyl)-1,2,3oxathiazolidine 2-Oxide (11c) Yellow solid as a mixture of stereoisomers (from Et₂O-hexane); ¹H NMR (CDCl₃) δ : major isomer: 1.08-1.26 (4 H, m), 1.51-1.79 (4 H, m), 1.98 (2 H, m), 3.07-3.12 (1 H, m, 1'-H), 4.73 (1 H, d, J = 8 Hz, 4-H), 5.99 (1 H, d, J = 8 Hz, 5-H), 7.22-7.36 (6 H, m, ArH), 7.78 (1 H, br t, J = 7.8Hz, ArH), 7.96 (1 H, d, J = 7.8 Hz, ArH), 8.48 (1 H, d, J = 5 Hz, ArH); minor isomer: 4.78 (1 H, d, J = 9Hz, 4-H), 5.62 (1 H, d, J = 9 Hz, 5-H), other peaks are overlapped; ¹³C NMR (CDCl₃) δ : major isomer: 25.4 (t), 25.6 (t), 32.4 (t), 33.1 (t), 56.9 (d), 73.1 (d), 89.7 (d), 122.4 (d), 123.0 (d), 126.7 (d), 128.7 (d), 129.1 (d), 135.5(s), 137.3 (d), 149.1 (s), 158.5 (d), an alkyl carbon is overlapped; MS (EI) *m/z* (rel. int. %): 342 (1, M*), 182 (100); IR v_{max} (KBr) cm⁻¹: 1165 (SO); *Anal*. Calcd for C₁₉H₂₂N₂O₂S: C, 66.64; H, 6.48; N, 8.18. Found: C, 66.52; H, 6.52; N, 8.05.

1-Cyclohexyl-2-phenyl-3-(2-pyridyl)aziridine (12c) Pale yellow solid (from Et₂O-hexane), mp 54-57°C; ¹H NMR (CDCl₃) δ : 1.26-1.89 (11 H, m), 3.05 and 3.09 (each 1 H, d, J = 6.8 Hz, 2- and 3-H), 6.94-7.38 (8 H, m, ArH), 8.37 (1 H, d, J = 5 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 24.3 (t), 26.3 (t), 32.2 (t), 32.4 (t), 48.4 (d), 49.1 (d), 68.3 (d), 121.4 (d), 121.9 (d), 126.5 (d), 127.6 (d), 128.1 (d), 135.4 (d), 136.7 (s), 148.5 (d), 157.5 (s); MS (EI) *m/z* (rel. int. %): 278 (27, M⁺), 195 (100); IR v_{max} (KBr) cm⁻¹: 2945, 2860, 1590, 1450, 1440, 1365, 1325, 700; *Anal.* Calcd for C₁₉H₂₂N₂: C, 81.97; H, 7.97; N, 10.06. Found: C, 81.58; H, 7.93; N, 9.78.

 $(2S^*, 4R^*, 5R^*)$ - and $(2R^*, 4R^*, 5R^*)$ -3-Cyclohexyl-4-(4-nitorophenyl)-5-phenyl-1,2,3oxathiazolidine 2-Oxide (11d) Pale yellow solid as a mixture of stereoisomers (from Et₂O-hexane); ¹H NMR (CDCl₃) δ : major isomer: 1.14-1.28 (4 H, m), 1.52-1.83 (4 H, m), 2.01 (2 H, br d, J = 12 Hz), 2.98-3.05 (1 H, m, 1'-H), 4.54 (1 H, d, J = 9.3 Hz, 4-H), 5.74 (1 H, d, J = 9.3 Hz, 5-H), 7.18 (2 H, d, J = 8 Hz, ArH), 7.26-7.42 (3 H, m, ArH), 7.52 (2 H, d, J = 8 Hz, ArH), 8.19 (2 H, d, J = 8 Hz, ArH); minor isomer: 4.88 (1 H, d, J = 9.3 Hz, 4-H), 5.19 (1 H, d, J = 9.3 Hz, 5-H), other peaks are overlapped; ¹³C NMR (CDCl₃) δ : major isomer: 25.3 (t), 25.3 (t), 25.7 (t), 32.2 (t), 33.3 (t), 57.0 (d), 71.9 (d), 89.6 (d), 124.1 (d), 126.9 (d), 128.9 (d), 129.6 (d), 134.1 (s), 144.7 (s), 148.1 (s), an aromatic carbon is overlapped; MS (EI) m/z(rel. int. %): 386 (23, M⁺), 239 (100); IR v_{max} (KBr) cm⁻¹: 1520, 1345 (NO₂), 1160 (SO); HRMS (EI) Calcd for C₂₀H₂₂N₂O₄S: 386.1300. Found: 386.1304.

2-(4-Cyanophenyl)-1-cyclohexyl-3-phenylaziridine (12e) Light yellow oil; ¹H NMR (CDCl₃) δ : 1.26-1.63 (7 H, m), 1.69-1.74 (1 H, m, 1'-H), 1.83-1.87 (3 H, m), 2.89 and 3.00 (each 1 H, d, J = 6.8Hz, 2- and 3-H), 7.06-7.14 (5 H, m, ArH), 7.25 and 7.38 (each 2 H, d, J = 8.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 26.2 (t), 32.2 (t), 32.3 (t), 47.4 (d), 48.8 (d), 68.4 (d), 110.0 (s), 119.1 (s), 126.8 (d), 127.8 (d), 127.9 (d), 128.5 (d), 131.4 (d), 136.2 (s), 143.3 (s), an alkyl carbon is overlapped; MS (EI) *m/z* (rel. int. %): 302 (19, M⁺), 219 (100); IR v_{max} (NaCl) cm⁻¹: 2235 (CN); HRMS (EI) Calcd for C₂₁H₂₂N₂: 302.1783. Found: 302.1795.

 $(2S*,4R*,5R*)-4-t^{B}$ utyl-3-cyclohexyl-5-phenyl-1,2,3-oxathiazolidine 2-Oxide (11fA) Colorless needles (from EtOAc-hexane), mp 109-111°C; ¹H NMR (CDCl₃) δ : 1.06 (9 H, s, ⁴Bu), 1.06-1.38 (4 H, m), 1.57-1.85 (5 H, m), 2.22-2.26 (1 H, m), 2.81-2.88 (1 H, m, 1'-H), 3.33 (1 H, d, J = 5.9 Hz, 4-H), 5.81 (1 H, d, J = 5.9 Hz, 5-H), 7.31-7.39 (5 H, m, ArH); ¹³C NMR (CDCl₃) δ : 25.4 (t), 26.1 (t), 26.9 (t), 27.4 (q), 32.0 (t), 34.6 (s), 34.9 (t), 62.0 (d), 79.4 (d), 86.1(d), 126.8 (d), 128.5 (d), 128.6 (d), 139.4 (s); MS (FAB) *m*/z (rel. int. %): 322 (56, M⁺+1), 154 (100); IR v_{max} (KBr) cm⁻¹: 1160 (SO); Anal. Calcd for C₁₈H₂₇NO₂S: C, 67.25; H, 8.47; N, 4.36. Found: C, 67.10; H, 8.44; N, 4.40.

Reaction of Oxathiazolidine 2-Oxide 11aA with EtAlCl₂

General procedure. To a stirred solution of **11aA** (41 mg, 0.12 mmol) in dry CH_2Cl_2 (2 cm³) was added 2 equiv of EtAlCl₂ in hexane at room temperature under nitrogen. The mixture was stirred at room temperature for 12 h. The reaction was quenched by addition of saturated aqueous NaHCO₃ (5 cm³). The inorganic

precipitate was filtered off through Celite and washed well with CHCl₃. The organic layer was separated, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (hexane-EtOAc (1:1 v/v)) to give 17 mg (50%) of **12a**, 6 mg (15%) of **11aA** and 4 mg (10%) of **11aB**.

Hydrolysis of Oxathiazolidine 2-Oxide 11aA with Hydrochloric Acid

A solution of **11aA** (52 mg, 0.15 mmol) in 1 N HCl (1 cm³) and THF (6 cm³) was stirred at room temperature for 12 h. 0.1 N NaOH (15 cm³) was added to the reaction mixture at 0°C, and the whole was extracted with Et₂O (10 cm³ x 3). The extract was washed with saturated aqueous NaCl, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc) to give 38 mg (84%) of (*IR**,2*R**)-14 from the first fraction and 3 mg (7%) of (*IS**,2*R**)-14 from the second fraction.

 $(IR^*, 2R^*)$ -2-(Cyclohexylamino)-1-phenyl-2-(3-pyridyl)ethanol $((IR^*, 2R^*)$ -14) Light yellow gum; ¹H NMR (CDCl₃) δ : 1.07-1.23 (5 H, m), 1.55-1.69 (4 H, m), 1.95-1.97 (1 H, m), 2.29-2.34 (1 H, m, 1'-H), 2.88 (2 H, br s, NH and OH), 3.77 (1 H, d, J = 8.8 Hz, 2-H), 4.46 (1 H, d, J = 8.8 Hz, 1-H), 7.04-7.24 (6 H, m, ArH), 7.35 (1 H, dd, J = 2 and 7.8 Hz, ArH), 8.17 (1 H, dd, J = 2 Hz, ArH), 8.41 (1 H, dd, J = 1.5 and 4.9 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.5 (t), 24.9 (t), 25.9 (t), 32.7 (t), 34.7 (t), 53.7 (d), 64.9 (d), 77.5 (d), 123.2 (d), 126.8 (d), 127.7 (d), 128.0 (d), 135.2 (d), 136.2 (s), 140.6 (s), 148.5 (d), 149.3 (d); MS (FAB) m/z (rel. int. %): 297 (59, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 3200 (NH and OH); HRMS (FAB) Calcd for C₁₉H₂₄N₂O + H: 297.1967. Found 297.1971.

 $(1S^*, 2R^*)$ -2-(Cyclohexylamino)-1-phenyl-2-(3-pyridyl)ethanol $((1S^*, 2R^*)$ -14) Pale yellow solid (from Et₂O-hexane), mp 96-99°C; ¹H NMR (CDCl₃) δ : 0.86-1.25 (5 H, m), 1.55 (1 H, m), 1.65 (2 H, m), 1.76 (1 H, br d, J =13 Hz), 1.91 (1 H, br d, J =12 Hz), *ca.* 1.5-2.0 (2 H, br s, NH and OH), 2.31-2.36 (1 H, m, 1'-H), 4.12 (1 H, d, J = 4.9 Hz, 2-H), 4.86 (1 H, d, J = 4.9 Hz, 1-H), 7.01-7.03 (2 H, m, ArH), 7.14-7.21 (4 H, m, ArH), 7.39 (1 H, d, J = 7.8 Hz, ArH), 8.23 (1 H, s, ArH), 8.45 (1 H, d, J = 4.9 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.7 (t), 25.0 (t), 25.9 (t), 33.1 (t), 34.4 (t), 53.3 (d), 62.9 (d), 75.9 (d), 122.9 (d), 126.4 (d), 127.7 (d), 128.0 (d), 135.1 (s), 135.6 (d), 140.1 (s), 148.7 (d), 149.9 (d); MS (FAB) m/z (rel. int. %): 297 (38, M⁺+1), 154 (100); IR v_{max} (KBr) cm⁻¹: 3300 (NH), 3100 (OH); HRMS (FAB) Calcd for C₁₉H₂₄N₂O + H: 297.1967. Found 297.1976.

Reactions of Some β -Sultams 1 with SnCl₄

General procedure. To a stirred solution of a β -sultam 1 (0.1 mmol) in dry CH₂Cl₂ (1 cm³) was added dropwise SnCl₄ (0.05 cm³, 0.2 mmol) in hexane at room temperature under nitrogen. The reaction mixture was stirred at room temperature for 12 h and saturated aqueous NaHCO₃ (5 cm³) was added to it. The inorganic precipitate was filtered off through Celite and washed with CH₂Cl₂. The organic layer was separated, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (hexane-EtOAc (10:1 v/v)). Yields are listed in Table 5.

1-Cyclohexyl-2,3-diphenylaziridine (13a) White solid (from hexane), mp 36-37°C; ¹H NMR (CDCl₃) δ : 1.27-1.87 (10 H, m), 1.65-1.70 (1 H, m, 1'-H), 2.88 (2 H, s, 2- and 3-H), 7.03-7.17 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.4 (t), 26.3 (t), 32.3 (t), 48.1 (d), 68.8 (d), 126.3 (d), 127.5 (d), 128.0 (d), 137.3 (s); MS (EI) *m/z* (rel. int. %): 277 (23, M⁺), 194 (100); IR v_{max} (KBr) cm⁻¹: 2235 (CN); *Anal.* Calcd for C₂₀H₂₃N: C, 86.59; H, 8.36; N, 5.05. Found: C, 86.44; H, 8.42; N, 5.08.

2-(4-Bromophenyl)-1-cyclohexyl-3-phenylaziridine (13k) Light yellow oil; ¹H NMR (CDCl₃) δ : 1.26-1.85 (10 H, m), 1.65-1.69 (1 H, m, 1'-H), 2.80 and 2.89 (each 1 H, d, J = 6 Hz, 2- and 3-H), 7.01-7.23 (9 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 26.2 (t), 32.3 (t), 47.3 (d), 48.2 (d), 68.6 (d), 120.2 (s), 126.5 (d), 127.7 (d), 128.9 (d), 130.0 (d), 130.6 (d), 136.5 (s), 136.8 (s); MS (EI) *m/z* (rel. int. %): 355 (22, M⁺), 272 (100); IR ν_{max} (NaCl) cm⁻¹: 2950, 2870, 1495, 1455, 1370, 1015, 815, 700; *Anal.* Calcd for C₂₀H₂₂BrN: C, 67.42; H, 6.22; N, 3.93. Found: C, 67.26; H, 6.26; N, 3.85.

Synthesis of 4-Alkenyl-\beta-sultams 15 and 15'

General procedure. To a solution of LDA (1.5 mmol, prepared from 1.5 mmol of diisopropylamine (0.2 cm³) and 1.5 mmol of *n*BuLi in hexane) in dry THF (10 cm³) was added dropwise a solution of a β -sultam (1

mmol) in THF (2-4 cm³) at -78°C under nitrogen. After 30 min., an alkyl iodide (2 mmol) was added dropwise to it and the whole was stirred at room temperature for several hours. Saturated aqueous NH₄Cl (4 cm³) was added to the reaction mixture and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc–hexane (1:20 - 1:10 v/v). Yields are listed in Table 6.

cis- and *trans*-2-^{*n*}Butyl-3,4-diphenyl-4-(2-propenyl)-1,2-thiazetidine 1,1-Dioxide (15ca, 15ca') Yellow oil as a mixture of stereoisomers; ¹H NMR (CDCl₃) δ : 0.87 (3 H, t, *J*= 7.3 Hz, *cis* Me), 0.89 (3 H, t, *J*= 7.3 Hz, *trans* Me), 1.26-1.69 (total 8 H, m, CH₂CH₂), 2.62 (1 H, dd, *J* = 7.8 and 14.6 Hz, *trans*), 2.71-2.77 (1 H, m, *trans*), 2.91-2.98 and 3.02-3.09 (each 1H, m, *cis* NCH₂), 2.91-3.25 (2 H, m, *trans*), 3.15 (1 H, dd, *J* = 7.8 and 14, *cis* CH₂-CH=), 3.32 (1 H, dd, *J* = 6.4 and 14, *cis* CH₂-CH=), 4.43 (1 H, s, *cis* 3-H), 4.42-4.47 (1 H, *trans* CH=CH₂), 4.60 (1 H, d, *J* = 10 Hz, *trans* CH=CH₂), 4.69 (1 H, s, *trans* 3-H), 4.89-4.93 (1 H, m, *trans* CH=CH₂), 5.13 (1 H, d, *J* = 10 Hz, *cis* CH=CH₂), 5.19 (1 H, dd, *J* = 1.5 and 17 Hz, *cis* CH=CH₂), 5.59-5.69 (1 H, m, *cis* CH=CH₂), 6.99-7.66 (total 20 H, m, ArH); ¹³C NMR (CDCl₃) δ : *cis* isomer: 13.5 (q), 20.2 (t), 30.2 (t), 44.0 (t), 44.3 (t), 65.1 (d), 88.0 (s), 120.2 (t), 127.3 (d), 127.5 (d), 128.3 (d), 128.6 (d), 128.7 (d), 128.8 (d), 131.7 (d), 132.9 (s), 134.2 (s); MS (EI) *m/z* (rel. int. %): 355 (100, M⁺); IR v_{max} (KBr) cm⁻¹: 1300, 1155 (SO₂); *Anal.* Calcd for C₂₁H₂₅NO₂S: C, 70.95: H, 7.09: N, 3.94. Found: C, 70.77: H, 7.16: N, 3.83.

cis-4-(3-Butenyl)-2-cyclohexyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ab) Colorless needles (from acetone-hexane), mp 131-133°C; ¹H NMR (CDCl₃) δ :1.10-1.97 (11 H, m), 2.05-2.22 (1 H, m), 2.33-2.44 (1 H, m), 2.70-2.81 (1 H, m), 3.15-3.26 (1 H, m, 1'-H), 4.46 (1 H, s, 3-H), 4.96 (1 H, d, J = 11 Hz, CH=CH₂), 4.97 (1 H, d, J = 17 Hz, CH=CH₂), 5.68-5.83 (1 H, m, CH=CH₂), 7.05-7.26 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.5 (t), 25.4 (t), 29.7 (t), 30.9 (t), 31.4 (t), 39.7 (t), 55.6 (d), 64.3 (d), 88.1 (s), 115.6 (t), 127.1 (d), 127.5 (d), 128.2 (d), 128.3 (d), 128.5 (d), 128.6 (d), 133.3 (s), 135.8 (s), 136.7 (d); MS (EI) *m*/z (rel. int. %): 395 (29, M⁺), 272 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1145 (SO₂); *Anal.* Calcd for C₂₄H₂₉NO₂S: C, 72.87: H, 7.39:N, 3.54. Found: C, 72.84: H, 7.44: N, 3.54.

trans-4-(3-Butenyl)-2-cyclohexyl-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ab') Light yellow oil; ¹H NMR (CDCl₃) δ : 0.86-1.73 (11 H, m), 1.90-2.02 (1 H, m), 2.12 (1 H, br d, J = 12 Hz), 2.26-2.37 (1 H, m), 3.17-3.22 (1 H, m, 1'-H), 4.55 (1 H, dd, J = 1.5 and 17 Hz, CH=CH₂), 4.70 (1 H, d, J = 10 Hz, CH=CH₂), 4.85 (1 H, s, 3-H), 5.35 (1 H, ddt, J = 10, 17 and 7 Hz, CH=CH₂), 7.32-7.50 (8 H, m, ArH), 7.67 (2 H, d, J = 6.4 Hz, ArH); ¹³C NMR (CDCl₃) δ : 24.5 (t), 24.9 (t), 25.4 (t), 28.5 (t), 31.0 (t), 32.1 (t), 34.3 (t), 57.2 (d), 60.5 (d), 85.3 (s), 114.9 (t), 126.8 (d), 128.1 (d), 128.2 (d), 128.7 (d), 128.8 (d), 128.9 (d), 135.4 (s), 136.3 (s), 136.8 (d); MS (EI) *m/z* (rel. int. %): 395 (13, M⁺), 248 (100); IR v_{max} (NaCl) cm⁻¹: 1310, 1160 (SO₂); *Anal*. Calcd for C₂₄H₂₉NO₂S: C, 72.87: H, 7.39:N, 3.54. Found: C, 73.06: H, 7.40:, N, 3.51.

cis-2-Cyclohexyl-4-(4-pentenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ac) Colorless prisms (from EtOAc-hexane), mp 152-154 °C; ¹H NMR (CDCl₃) δ : 1.11-1.69 (10 H, m), 1.82-2.08 (4 H, m), 2.26-2.40 (1 H, m), 2.59-2.66 (1 H, m), 3.17-3.24 (1 H, m, 1'-H), 4.44 (1 H, s, 3-H), 4.93 (1 H, d, J = 10 Hz, CH=CH₂), 4.96 (1 H, d, J = 17 Hz, CH=CH₂), 5.58 (1 H, ddt, J = 10, 17 and 7 Hz, CH=CH₂), 7.04-7.19 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.6 (t), 24.7 (t), 25.4 (t), 30.9 (t), 31.5 (t), 33.4 (t), 39.9 (t), 55.6 (d), 64.4 (d), 88.5 (s), 115.2 (t), 127.1 (d), 127.5 (d), 128.2 (d), 128.3 (d), 128.4 (d), 128.6 (d), 135.5 (s), 135.9 (s), 137.7 (d); MS (EI) *m*/z (rel. int. %): 409 (1, M⁺), 158 (100); IR v_{max} (KBr) cm⁻¹: 1290, 1140 (SO₂); *Anal*. Calcd for C₂₅H₃₁NO₂S: C, 73.31: H, 7.63: N, 3.42. Found: C, 73.21: H, 7.71: N, 3.62.

trans-2-Cyclohexyl-4-(4-pentenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ac') Colorless oil; ¹H NMR (CDCl₃) δ : 0.24-0.29 (1 H, m), 0.76-0.82 (1 H, m), 1.08-1.72 (11 H, m), 1.87-1.94 (1 H, m), 2.11 (1 H, br d, J = 13 Hz), 2.21 (1 H, dt, J = 12.7 and 4.4 Hz), 3.16-3.21 (1 H, m, 1'-H), 4.69-4.76 (2 H, m, CH=CH₂), 4.84 (1 H, s, 3-H), 5.32 (1 H, ddt, J = 10, 17 and 7 Hz, CH=CH₂), 7.14-7.47 (8 H, m, ArH), 7.66 (2 H, d, J = 7 Hz, ArH); ¹³C NMR (CDCl₃) δ : 23.4 (t), 24.4 (t), 24.8 (t), 25.3 (t), 31.0 (t), 32.1 (t), 33.4 (t), 34.3 (t), 57.1 (d), 60.4 (d), 85.7 (s), 114.8 (t), 126.8 (d), 128.0 (d), 128.2 (d), 128.3 (d), 128.6 (d), 128.8 (d), 135.5 (s), 136.5 (s), 137.6 (d); MS (EI) m/z (rel. int. %): 409 (1, M⁺), 158 (100); IR v_{max} (NaCl) cm⁻¹: 1315, 1160 (SO₂); Anal. Calcd for C₂₅H₃₁NO₂S: C, 73.31: H, 7.63: N, 3.42. Found: C, 73.10: H, 7.66: N, 3.34.

cis-2-Cyclohexyl-4-(5-hexenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ad) Colorless prisms (from EtOAc-hexane), mp 87-88 °C; ¹H NMR (CDCl₃) δ : 1.08-1.68 (12 H, m), 1.84 (1 H, br d, J = 12 Hz), 1.87-2.03 (3 H, m), 2.28-2.35 (1 H, m), 2.58-2.66 (1 H, m), 3.17-3.24 (1 H, m, 1'-H), 4.44 (1 H, s, 3-H), 4.89 (1 H, d, J = 10 Hz, CH=CH₂), 4.93 (1 H, d, J = 17 Hz, CH=CH₂), 5.71 (1 H, ddt, J = 10, 17 and 7 Hz, CH=CH₂), 7.03-7.20 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.3 (t), 24.8 (t), 25.0 (t), 25.4 (t), 28.7 (t), 30.9 (t), 31.5 (t), 33.2 (t), 40.3 (t), 55.6 (d), 64.4 (d), 88.5 (s), 114.6 (t), 127.1 (d), 127.5 (d), 128.2 (d), 128.3 (d), 128.5 (d), 128.7 (d), 133.6 (s), 135.9 (s), 138.4 (d); MS (EI) *m/z* (rel. int. %): 423 (1, M⁺), 276 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1155 (SO₂); *Anal.* Calcd for C₂₆H₃₃NO₂S: C, 73.72: H, 7.85: N, 3.31. Found: C, 73.48: H, 7.80: N, 3.28.

trans-2-Cyclohexyl-4-(5-hexenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ad') Colorless oil; ¹H NMR (CDCl₃) δ : 0.16-0.26 (1 H, m), 0.67-0.77 (1 H, m), 0.82-0.92 (1 H, m), 1.00-1.28 (5 H, m), 1.47-1.73 (7 H, m), 1.85-1.93 (1 H, m), 2.11 (1 H, br d, J = 13 Hz), 2.17-2.25 (1 H, m), 3.14-3.19 (1H, m, 1'-H), 4.73-4.48 (2 H, m, CH=CH₂), 4.84 (1 H, s, 3-H), 5.43-5.53 (1 H, m, CH=CH₂), 7.32-7.47 (8 H, m, ArH), 7.66 (2 H, d, J = 7.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 23.4 (t), 24.5 (t), 24.9 (t), 25.4 (t), 28.7 (t), 31.0 (t), 32.1 (t), 33.0 (t), 34.7 (t), 57.1 (d), 60.5 (d), 85.7 (s), 114.2 (t), 126.8 (d), 128.0 (d), 128.2 (d), 128.6 (d), 128.7 (d), 128.8 (d), 135.6 (s), 136.6 (s), 138.4 (d); MS (EI) *m/z* (rel. int. %): 423 (2, M⁺), 276 (100); IR v_{max} (NaCl) cm⁻¹: 1320, 1160 (SO₂); *Anal*. Calcd for C₂₆H₃₃NO₂S: C, 73.72: H, 7.85: N, 3.31. Found: C, 73.51: H, 7.89: N, 3.27.

cis-2-Cyclohexyl-4-(3-methyl-3-butenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ae) Colorless prisms (from EtOAc-hexane), mp 140-143°C; ¹H NMR (CDCl₃) δ : 1.11-1.78 (9 H, m), 1.69 (3 H, s, Me), 1.84 (1 H, br d, J = 13 Hz), 1.96 (1 H, br d, J = 13 Hz), 2.06-2.14 (1 H, m), 2.39-2.46 (1 H, m), 2.76-2.84 (1 H, m), 3.18-3.25 (1 H, m, 1'-H), 4.46 (1 H, s, 3-H), 4.66 and 4.71 (each 1 H, s, olefinic H), 7.03-7.20 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 22.5 (q), 24.2 (t), 24.6 (t), 25.4 (t), 30.9 (t), 31.4 (t), 33.5 (t), 38.8 (t), 55.7 (d), 64.4 (d), 88.2 (s), 110.4 (t), 127.1 (d), 127.6 (d), 128.1 (d), 128.3 (d), 128.4 (d), 128.6 (d), 133.3 (s), 135.8 (s), 144.4 (s); MS (EI) *m*/z (rel. int. %): 409 (1, M⁺), 188 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1145 (SO₂); *Anal.* Calcd for C₂₅H₃₁NO₂S: C, 73.31: H, 7.63: N, 3.42. Found: C, 73.46: H, 7.71: N, 3.30.

trans-2-Cyclohexyl-4-(3-methyl-3-butenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15ae') Light yellow oil; ¹H NMR (CDCl₃) δ : 0.80-0.90 (1 H, m), 1.35 (3 H, s, Me), 1.09-1.72 (10 H, m), 2.03-2.13 (2 H, m), 2.30-2.38 (1 H, m), 3.16-3.19 (1 H, m, 1'-H), 4.19 and 4.45 (each 1 H, s, olefinic H), 4.87 (1 H, s, 3-H), 7.33-7.48 (8 H, m, ArH), 7.68 (2 H, d, J = 7.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 22.0 (q), 24.4 (t), 24.9 (t), 25.3 (t), 31.0 (t), 32.1 (t), 33.4 (t), 57.1 (d), 60.3 (d), 85.4 (s), 110.2 (t), 126.8 (d), 128.1 (d), 128.2 (d), 128.7 (d), 128.8 (d), 128.9 (d), 135.5 (s), 136.3 (s), 144.2 (s), an alkyl carbon is overlapped; MS (EI) *m/z* (rel. int. %): 409 (1, M⁺), 188 (100); IR v_{max} (NaCl) cm⁻¹: 1310, 1160 (SO₂); *Anal.* Calcd for C₂₅H₃₁NO₂S: C, 73.31: H, 7.63: N, 3.42. Found: C, 73.44: H, 7.68: N, 3.39.

 $(3R^*, 4R^*)$ -2-Cyclohexyl-4-methyl-4-(3-methyl-3-butenyl)-3-(4-methylphenyl)-1,2thiazetidine 1,1-Dioxide (15ve) Light yellow oil; ¹H NMR (CDCl₃) δ : 1.12 (3 H, s, 4-Me), 1.11-1.29 (4 H, m), 1.46-1.74 (5 H, m), 1.99 (3 H, s, Me), 1.99-2.13 (4 H, m), 2.28-2.34 (1 H, m), 2.36 (3 H, s, ArMe), 3.17-3.20 (1 H, m, 1'-H), 4.09 (1 H, s, 3-H), 4.75 and 4.78 (each 1 H, s, olefinic H), 7.18 and 7.25 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 16.0 (q), 21.1 (q), 22.4 (q), 22.4 (t), 24.8 (t), 25.4 (t), 31.0 (t), 32.1 (t), 32.7 (t), 34.6 (t), 56.9 (d), 61.9 (d), 78.6 (s), 110.8 (t), 127.3 (d), 129.2 (d), 132.6 (s), 138.3 (s), 144.2 (s); MS (EI) *m*/z (rel. int. %): 361 (1, M⁺), 224 (100); IR v_{max} (NaCl) cm⁻¹: 1305, 1155 (SO₂); *Anal.* Calcd for C₂₁H₃₁NO₂S: C, 69.76: H, 8.64: N, 3.87. Found: C, 69.80: H, 8.89: N, 3.61.

 $(3R^*, 4R^*)$ -2-Cyclohexyl-4-ethyl-4-(3-methyl-3-butenyl)-3-(4-methylphenyl)-1,2thiazetidine 1,1-Dioxide (15 ϵ e) Light yellow oil; ¹H NMR (CDCl₃) δ : 0.65 (3 H, t, J =7.3 Hz, Me), 1.08-1.72 (11 H, m), 1.80 (3 H, s, Me), 1.92-2.04 (5 H, m), 2.04 (3 H, s, ArMe), 3.14-3.19 (1 H, m, 1'-H), 4.12 (1 H, s, 3-H), 4.79 (2 H, br s, olefinic H), 7.18 and 7.30 (each 2 H, d, J = 7 Hz, ArH); ¹³C NMR (CDCl₃) δ : 8.3 (q), 21.1 (q), 21.8 (t), 22.4 (q), 24.4 (t), 24.8 (t), 25.4 (t), 30.3 (t), 30.9 (t), 32.0 (t), 56.4 (d), 61.8 (d), 81.7 (s), 110.8 (t), 127.6 (d), 129.1 (d), 132.7 (s), 138.3 (s), 144.2 (s), an alkyl carbon is overlapped; MS (EI) *m/z* (rel. int. %): 375 (1, M⁺), 238 (100); IR v_{max} (NaCl) cm⁻¹: 1305, 1160 (SO₂); Anal. Calcd for C₂₂H₃₃NO₂S: C, 70.36: H, 8.86: N, 3.73. Found: C, 70.25: H, 9.03: N, 3.52.

cis-2-Cyclohexyl-4-(3-methyl-3-butenyl)-3-(4-methylphenyl)-4-phenyl-1,2-thiazetidine 1,1-Dioxide (15fe) Colorless needles (from EtOAc-hexane), mp 152-160°C; ¹H NMR (CDCl₃) δ : 1.10-1.24 (3 H, m), 1.31-1.77 (6 H, m), 1.68 (3 H, s, Me), 1.85 (1 H, br d, J = 13 Hz), 1.93 (1 H, br d, J = 13Hz), 2.04-2.13 (1 H, m), 2.26 (3 H, s, ArMe), 2.41 (1 H, dt, J = 4.4 and 13 Hz), 2.73-2.81 (1 H, m), 3.14-3.22 (1 H, m), 4.44 (1 H, s, 3-H), 4.65 and 4.70 (each 1 H, br s, olefinic H), 6.95 (2 H, d, J = 7.8 Hz, ArH), 7.06-7.09 (7 H, m, ArH); ¹³C NMR (CDCl₃) δ : 21.1 (q), 22.5 (q), 24.2 (t), 24.5 (t), 25.4 (t), 30.9 (t), 31.4 (t), 33.4 (t), 39.0 (t), 55.5 (d), 64.2 (d), 88.0 (s), 110.4 (t), 127.1 (d), 127.5 (d), 128.3 (d), 128.6 (d), 128.9 (d), 132.6 (s), 133.4 (s), 138.3 (s), 144.4 (s); MS (EI) *m/z* (rel. int. %): 423 (2, M⁺), 202 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1145 (SO₂); Anal. Calcd for C₂₆H₃₃NO₂S: C, 73.72: H, 7.85: N, 3.31. Found: C, 73.91: H, 7.94: N, 3.17.

cis-2-Cyclohexyl-4-(2-methyl-2-propenyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (15af) Colorless prisms (from EtOAc-hexane), mp 132-138°C; ¹H NMR (CDCl₃) δ : 1.07-1.29 (4 H, m), 1.46-1.57 (2 H, m), 1.53 (3 H, s, Me), 1.65-1.75 (3 H, m), 2.07 (1 H, br d, J = 13 Hz), 3.08 and 3.48 (each 1 H, d, J = 15.6 Hz, CH₂), 3.19-3.26 (1 H, m, 1'-H), 4.43 (1 H, s, 3-H), 4.67 and 4.75 (each 1 H, br s, olefinic H), 7.00-7.17 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 23.1 (q), 24.4 (t), 24.7 (t), 25.4 (t), 31.0 (t), 31.6 (t), 45.4 (t), 56.5 (d), 64.3 (d), 87.5 (s), 115.8 (t), 127.2 (d), 127.3 (d), 128.0 (d), 128.3 (d), 128.4 (d), 128.7 (d), 132.7 (s), 135.4 (s), 139.7 (s); MS (EI) *m/z* (rel. int. %): 395 (62, M⁺), 129 (100); IR v_{max} (KBr) cm⁻¹: 1305, 1150 (SO₂); *Anal.* Calcd for C₂₄H₂₉NO₂S: C, 72.87: H, 7.39: N, 3.54. Found: C, 72.62: H, 7.43: N, 3.52.

Reactions of 4-Alkenyl-\beta-sultams 15 and 15' with EtAlCl₂

General procedure. To a stirred solution of a β -sultam 15 or 15' (0.2 mmol) in dry toluene (2 cm³) was added dropwise 2 equiv of EtAlCl₂ in hexane under nitrogen at room temperature. The mixture was stirred at room temperature for 12-15 h, and saturated aqueous NaHCO₃ (5 cm³) was added to it. The whole was vigorously stirred for 30 min, and the inorganic precipitate was filtered off through Celite. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 cm³ x 2). The organic layer and the extracts were combined, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc-hexane (1:10 -1:5 v/v)). Reaction conditions and yields are summarized in Table 6.

2,2-Diphenyl-4-pentenal (17ca) Colorless oil; ¹H NMR (CDCl₃) δ : 3.08 (2 H, d, J = 6.8 Hz, 3-H), 4.94 (1 H, d, J = 10 Hz, 5-H), 4.96 (1 H, dd, J = 1.5 and 17 Hz, 5-H), 5.57 (1 H, ddt, J = 10, 17 and 6.8 Hz, 4-H), 7.16-7.40 (10 H, m, ArH), 9.82 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 38.8 (t), 63.4 (s), 118.4 (t), 127.3 (d), 128.6 (d), 129.1 (d), 133.5 (d), 139.7 (s), 198.4 (d); MS (EI) m/z (rel. int. %): 236 (7, M⁺), 129 (100); IR ν_{max} (NaCl) cm⁻¹: 2730, 1725 (CHO); HRMS (EI): Calcd for C₁₇H₁₆O: 236.1201. Found: 236.1196.

3-^{*n*}**Butyl-4,5-diphenyl-5-(2-propenyl)-1,2,3-oxathiazolidine 2-Oxide (18ca)** Light yellow oil; ¹H NMR (CDCl₃) δ : 0.84 (3 H, t, J = 7.3 Hz, Me), 1.19-1.38 (2 H, m, CH₂), 1.60-1.74 (2 H, m, CH₂), 2.52-2.60 and 2.82-2.88 (each 1 H, m, NCH₂), 3.06 (2 H, d, J = 7 Hz, CH_2 -CH=), 4.82 (1 H, s, 4-H), 5.17 (1 H, d, J = 10 Hz, CH=CH₂), 5.22 (1 H, dd, J = 2 and 17 Hz, CH=CH₂), 5.87 (1 H, ddt, J = 10, 17 and 7 Hz, CH=CH₂), 6.70 (2 H, d, J = 7.3 Hz, ArH), 7.04-7.25 (8 H, m, ArH); ¹³C NMR (CDCl₃) δ : 13.8 (q), 20.5 (t), 30.1 (t), 43.7 (t), 44.5 (t), 70.7 (d), 98.4 (s), 119.4 (t), 127.0 (d), 127.2 (d), 127.3 (d), 128.0 (d), 128.3 (d), 132.5 (d), 133.9 (s), 138.0 (s), an aromatic carbon is overlapped; MS (EI) m/z (rel. int. %): 355 (0.3, M⁺), 209 (100); IR v_{max} (NaCl) cm⁻¹: 1165 (SO); *Anal*. Calcd for C₂₁H₂₅NO₂S: C, 70.95: H, 7.09: N, 3.94. Found: C, 71.00: H, 7.14: N, 3.86.

1-ⁿButyl-2,3-diphenyl-2-(2-propenyl)aziridine (19ca) Light yellow oil; ¹H NMR (CDCl₃) δ:

0.95 (3 H, t, J = 7.3 Hz, Me), 1.48 (2 H, sextet, J = 7.3 Hz, CH₂), 1.69 (2 H, quintet, J = 7.3 Hz, CH₂), 2.63-2.69 (2 H, m), 2.71 (1 H, s, 3-H), 2.91-2.97 (1 H, m, CH₂-CH=), 3.08 (1 H, dt, J = 12 and 7.3 Hz, NCH₂), 4.97-5.01 (2 H, m, CH=CH₂), 5.75 (1 H, ddt, J = 10, 17 and 7 Hz, CH=CH₂), 6.95-7.14 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 14.1 (q), 20.7 (t), 32.8 (t), 37.2 (t), 52.6 (t), 53.1 (d), 53.9 (s), 117.0 (t), 126.0 (d), 126.1 (d), 127.2 (d), 127.3 (d), 127.3 (d), 129.2 (d), 135.2 (d), 138.4 (s), 140.1 (s); MS (EI) *m*/z (rel. int. %): 291 (27, M⁺), 290 (100); IR v_{max} (NaCl) cm⁻¹: 2970, 2945, 2860, 1605, 1495, 915, 700; HRMS (EI) Calcd for C₂₁H₂₅N: 291.1987. Found: 291.1977.

2,2-Diphenyl-5-hexenal (17ab) Colorless oil; ¹H NMR (CDCl₃) δ : 1.79 (2 H, br q, J = 7 Hz, 4-H), 2.35-2.40 (2 H, m, 3-H), 4.93 (1 H, d, J = 10 Hz, 6-H), 4.98 (1 H, d, J = 17 Hz, 6-H), 5.78 (1 H, ddt, J = 10 Hz, 5-H), 7.18-7.38 (10 H, m, ArH), 9.81 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 29.0 (t), 33.2 (t), 63.5 (s), 114.6 (t), 127.3 (d), 128.7 (d), 129.0 (d), 138.2 (d), 139.9 (s), 198.3 (d); MS (FAB) *m/z* (rel. int. %): 251 (27, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2815, 2720, 1720 (CHO); *Anal.* Calcd for C₁₈H₁₈O: C, 86.36: H, 7.25. Found: C, 86.11: H, 7.31.

2,2-Diphenyl-6-heptenal (17ac) Colorless oil; ¹H NMR (CDCl₃) δ : 1.11-1.28 (2 H, m, 4-H), 2.04 (2 H, q, J = 7 Hz, 5-H), 2.04-2.07 (2 H, m, 3-H), 4.92 (1 H, d, J = 10 Hz, 7-H), 4.95 (1 H, d, J = 17 Hz, 7-H), 5.72 (1 H, ddt, J = 10, 17 and 7 Hz, 6-H), 7.17-7.37 (10 H, m, ArH), 9.80 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 24.0 (t), 33.4 (t), 34.1 (t), 63.7 (s), 114.8 (t), 127.3 (d), 128.6 (d), 129.0 (d), 138.3 (d), 140.1 (s), 198.6 (d); MS (FAB) *m/z* (rel. int. %): 265 (100, M⁺+1); IR v_{max} (NaCl) cm⁻¹: 2825, 2725, 1715 (CHO); HRMS (FAB) Calcd for C₁₉H₂₀O + H: 265.1592. Found: 265.1572.

2,2-Diphenyl-7-octenal (17ad) Colorless oil; ¹H NMR (CDCl₃) δ : 1.03-1.11 (2 H, m, 4-H), 1.39 (2 H, t, J = 7 Hz, 5-H), 1.98 (2 H, q, J = 7.3 Hz, 6-H), 2.26-2.30 (2 H, m, 3-H), 4.88 (1 H, d, J = 10 Hz, 8-H), 4.93 (1 H, dd, J = 1.5 and 17 Hz, 8-H), 5.72 (1 H, ddt, J = 10, 17 and 7.3 Hz, 7-H), 7.17-7.38 (10 H, m, ArH), 9.80 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 24.0 (t), 29.4 (t), 33.5 (t), 33.8 (t), 63.7 (s), 114.3 (t), 127.2 (d), 128.6 (d), 129.1 (d), 138.7 (d), 140.2 (s), 198.7 (d); MS (FAB) *m/z* (rel. int. %): 279 (18, M⁺+1), 154 (100); IR ν_{max} (NaCl) cm⁻¹: 2820, 2720, 1730 (CHO); *Anal*. Calcd for C₂₀H₂₂O: C, 86.29: H, 7.97. Found: C, 86.02: H, 8.11.

(IR*, 5R*)-7-Cyclohexyl-5-methyl-2,2-diphenyl-6,7-thiazabicyclo[3.2.1]octane 6,6-Dioxide (16ae) Colorless prisms (from EtOAc-hexane), mp 224-226°C; ¹H NMR (CDCl₃) δ : 0.75 -1.02 (3 H, m), 1.23-1.35 (1 H, m), 1.27 (3 H, s, Me), 1.42 (1 H, d, J= 13 Hz), 1.52-1.71 (5 H, m), 1.83-1.85 (1 H, m), 2.07-2.12 (1 H, m), 2.23-2.34 (3 H, m), 2.63-2.68 (1 H, m), 3.33 (1 H, dt, J = 5.4 and 14 Hz), 4.41 (1 H, br d, J = 4.4 Hz, 1-H), 7.13 (1 H, t, J = 7.3 Hz, ArH), 7.20-7.26 (3 H, m, ArH), 7.33-7.41 (6 H, m, ArH); ¹³C NMR (CDCl₃) δ : 18.5 (q), 25.3 (t), 26.0 (t), 26.4 (t), 27.6 (t), 30.5 (t), 30.6 (t), 38.1 (t), 49.4 (s), 58.4 (s), 59.6 (d), 63.3 (d), 126.3 (d), 126.4 (d), 127.2 (d), 127.4 (d), 128.1 (d), 128.9 (d), 144.3 (s), 145.9 (s), an alkyl carbon is overlapped; MS (EI) *m/z* (rel. int. %): 409 (23, M⁺), 178 (100); IR v_{max} (KBr) cm⁻¹: 1280, 1115 (SO₂); Anal. Calcd for C₂₅H₃₁NO₂S: C, 73.31: H, 7.63: N, 3.42. Found: C, 73.54: H, 7.64: N, 3.41.

(1R*,2R*,5R*)-7-Cyclohexyl-2,5-dimethyl-2-(4-methylphenyl)-6,7-

thiazabicyclo[3.2.1]octane 6,6-Dioxide (16veA) Light yellow oil; ¹H NMR (CDCl₃) δ : 1.15-1.41 (4 H, m), 1.12 and 1.25 (each 3 H, s, 2- and 5-Me), 1.50-2.05 (9 H, m), 2.22-2.39 (3 H, m), 2.34 (3 H, s, ArMe), 3.31-3.38 (1 H, m, 1'-H), 4.12 (1 H, d, J = 6.8 Hz, 1-H), 7.16 and 7.20 (each 2 H, d, J = 8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 19.0 (q), 20.8 (q), 25.5 (t), 26.2 (t), 26.4 (t), 29.2 (t), 30.5 (t), 30.8 (t), 31.1 (q), 32.0 (t), 37.3 (t), 42.2 (s), 58.7 (s), 59.5 (d), 62.6 (d), 125.6 (d), 129.6 (d), 135.9 (s), 142.5 (s); MS (EI) *m*/z (rel. int. %): 361 (13, M⁺), 132 (100); IR v_{max} (NaCl) cm⁻¹: 1290, 1150 (SO₂); *Anal.* Calcd for C₂₁H₃₁NO₂S: C, 69.76: H, 8.64: N, 3.87. Found: C, 69.80: H, 8.82: N, 3.64.

 $(1R^*, 2S^*, 5R^*)$ -7-Cyclohexyl-2,5-dimethyl-2-(4-methylphenyl)-6,7thiazabicyclo[3.2.1]octane 6,6-Dioxide (16veB) Colorless needles (from EtOAc-hexane), mp 198-212°C (dec.); ¹H NMR (CDCl₃) δ : 0.68-0.97 (3 H, m), 1.07-1.18 (1 H, m), 1.21-1.88 (8 H, m), 1.32 and 1.37 (each 3 H, s, 2- and 5-Me), 2.11-2.25 (4 H, m), 2.33 (3 H, s, ArMe), 2.99 (1 H, dt, J = 6.3 and 13 Hz), 3.56 (1 H, d, J = 4.4 Hz, 1-H), 7.13 and 7.27 (each 2 H, d, J = 8.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 18.9 (q), 20.8 (q), 24.7 (t), 25.3 (t), 26.0 (t), 26.3 (t), 28.2 (t), 30.0 (t), 30.4 (q), 30.7 (t), 36.5 (t), 40.1 (s), 58.4 (s), 58.7 (d), 65.0 (d), 126.0 (d), 128.8 (d), 135.9 (s), 144.5 (s); MS (EI) m/z (rel. int. %): 361 (21, M⁺), 178 (100); IR ν_{max} (KBr) cm⁻¹: 1285, 1125 (SO₂); Anal. Calcd for C₂₁H₃₁NO₂S: C, 69.76: H, 8.64: N, 3.87. Found: C, 69.92: H, 8.74: N, 3.74.

(1R*,2R*,5R*)-7-Cyclohexyl-2-ethyl-5-methyl-2-(4-methylphenyl)-6,7-

thiazabicyclo[3.2.1]octane 6,6-Dioxide (16 ϵ **eA**) Colorless prisms (from EtOAc-hexane), mp 132-136°C (dec.); ¹H NMR (CDCl₃) δ : 0.52 (3 H, t, J = 7.3 Hz, Me), 1.18-1.36 (3 H, m), 1.23 (3 H, s, 5-Me), 1.50-2.04 (12 H, m), 2.14-2.39 (3 H, m), 2.34 (3 H, s, ArMe), 3.27-3.32 (1 H, m, 1'-H), 3.72 (1 H, d, J = 5.4 Hz, 1-H), 7.13 and 7.16 (each 2 H, d, J = 8.8 Hz, ArH); ¹³C NMR (CDCl₃) δ : 7.9 (q), 19.0 (q), 20.8 (q), 25.5 (t), 26.2 (t), 26.4 (t), 26.5 (t), 30.5 (t), 31.0 (t), 31.5 (t), 35.2 (t), 37.3 (t), 46.0 (s), 59.1 (s), 60.2 (d), 63.2 (d), 126.5 (d), 129.4 (d), 135.7 (s), 139.8 (s); MS (EI) *m/z* (rel. int. %): 375 (17, M⁺), 178 (100); IR v_{max} (NaCl) cm⁻¹: 1285, 1120 (SO₂); *Anal.* Calcd for C₂₂H₃₃NO₂S: C, 70.36: H, 8.86: N, 3.73. Found: C, 70.26: H, 8.98: N, 3.57.

 $(IR^*, 2S^*, 5R^*)$ -7-Cyclohexyl-2-ethyl-5-methyl-2-(4-methylphenyl)-6,7thiazabicyclo[3.2.1]octane 6,6-Dioxide (16 ϵ eB) Colorless needles (from EtOAc-hexane), mp 253-260°C (dec.); ¹H NMR (CDCl₃) δ : 0.52 (3 H, t, J = 7.3 Hz, Me), 0.62-0.96 (3 H, m), 1.11-1.85 (11 H, m), 1.35 (3 H, s, 5-Me), 2.04-2.21 (3 H, m), 2.30 (1 H, d, J = 12.7 Hz, 8-H), 2.32 (3 H, s, ArMe), 2.72-2.81 (1 H, m), 3.67 (1 H, d, J = 5.4 Hz, 1-H), 7.11 and 7.16 (each 2 H, d, J = 8.3 Hz, ArH); ¹³C NMR (CDCl₃) δ : 9.1 (q), 18.8 (q), 20.8 (q), 23.9 (t), 25.2 (t), 26.0 (t), 26.4 (t), 27.3 (t), 29.7 (t), 30.5 (t), 30.8 (t), 35.8 (t), 44.2 (s), 58.0 (s), 58.8 (d), 65.4 (d), 126.8 (d), 128.7 (d), 135.6 (s), 141.5 (s); MS (EI) m/z (rel. int. %): 375 (18, M⁺), 178 (100); IR ν_{max} (NaCl) cm⁻¹: 1275, 1125 (SO₂); Anal. Calcd for C₂₂H₃₃NO₂S: C, 70.36: H, 8.86: N, 3.73. Found: C, 70.28: H, 8.98: N, 3.50.

 $(1R^*, 2S^*, 5R^*)$ - and $(1R^*, 2R^*, 5R^*)$ -7-Cyclohexyl-5-methyl-2-(4-methylphenyl)-2phenyl-6,7-thiazabicyclo[3.2.1]octane 6,6-Dioxide (16fe) Light yellow prisms as a mixture of stereoisomers (from EtOAc-hexane); ¹H NMR (CDCl₃) δ : 0.75 -1.01 (total 6 H, m), 1.22-1.73 (total 14 H, m), 1.26 (6 H, s, 5-Me x 2), 1.85 (total 2 H, m), 2.06-2.11 (total 2 H, m), 2.23-2.35 (total 6 H, m), 2.25 and 2.32 (each 3 H, s, ArMe x 2), 2.61-2.65 (total 2 H, m), 3.26-3.36 (total 2 H, m), 4.39 (total 2 H, m, 1-H), 7.02-7.39 (total 18 H, m, ArH); ¹³C NMR (CDCl₃) δ : 18.5 (q), 20.7 (q), 20.8 (q), 25.3 (t), 26.0 (t), 26.4 (t), 26.4 (t), 27.5 (t), 27.6 (t), 30.5 (t), 30.5 (t), 30.6 (t), 30.6 (t), 38.0 (t), 49.0 (s), 58.4 (s), 59.5 (d), 59.6 (d), 63.3 (d), 63.3 (d), 126.2 (d), 126.3 (d), 127.0 (d), 127.1 (d), 127.2 (d), 127.3 (d), 128.1 (d), 128.7 (d), 128.8 (d), 129.6 (d), 135.8 (s), 136.0 (s), 141.2 (s), 142.9 (s), 144.5 (s), 146.1 (s), eight alkyl carbons are overlapped; MS (EI) *m/z* (rel. int. %): 423 (11, M⁺), 194 (100); IR v_{max} (KBr) cm⁻¹: 1290, 1115 (SO₂); Anal. Calcd for C₂₆H₃₃NO₂S: C, 73.72: H, 7.85: N, 3.31. Found: C, 73.57: H, 7.93: N, 3.20.

 $(1R^*, 4R^*)$ -3-Cyclohexyl-1-methyl-5,5-diphenyl-2,3-thiazabicyclo[2.2.1]heptane 2,2-Dioxide (16af) Colorless prisms (from CHCl₃-hexane), mp 236-242°C (dec.); ¹H NMR (CDCl₃) δ : 0.85-1.08 (4 H, m), 1.22-1.31 (2 H, m), 1.49-1.66 (3 H, m), 1.53 (3 H, s, 1-Me), 1.83 (1 H, br d, J = 12 Hz), 2.35 (1 H, dd, J = 2 and 11.2 Hz), 2.38 (1 H, d, J = 15 Hz), 2.53 (1 H, d, J = 11.2 Hz), 2.72-2.78 (1 H, m, 1'-H), 3.66 (1 H, dd, J = 2 and 15 Hz), 4.29 (1 H, s, 4-H), 7.11-7.34 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 12.7 (q), 25.3 (t), 25.6 (t), 25.7 (t), 30.3 (t), 31.2 (t), 43.2 (t), 44.0 (t), 55.6 (d), 60.0 (s), 65.5 (d), 65.9 (s), 126.1 (d), 126.2 (d), 127.2 (d), 127.7 (d), 128.6 (d), 128.9 (d), 144.1 (s), 149.9 (s); MS (EI) *m/z* (rel. int. %): 395 (24, M⁺), 331 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1160 (SO₂); Anal. Calcd for C₂₄H₂₉NO₂S: C, 72.87: H, 7.39: N, 3.54. Found: C, 72.82: H, 7.49: N, 3.52.

4-Methyl-2,2-diphenyl-4-pentenal (17af) Colorless oil; ¹H NMR (CDCl₃) δ : 1.32 (3 H, s, Me), 31.4 (2 H, s, 3-H), 4.54 and 4.70 (each 1 H, s, 5-H), 7.21-7.36 (10 H, m, ArH), 9.86 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 24.4 (q), 42.3 (t), 63.5 (s), 115.8 (t), 127.3 (d), 128.4 (d), 129.2 (d), 140.2 (s), 141.5 (s), 198.2 (d); MS (FAB) *m/z* (rel. int. %): 251 (18, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2820, 2730, 1725 (CHO); HRMS (FAB) Calcd for C₁₈H₁₈O + H: 251.1436. Found: 251.1428.

Synthesis of 4-Phenethyl- β -sultams 21

General procedure. To a solution of LDA (1.5 mmol, prepared from 1.5 mmol of diisopropylamine (0.2

cm³) and 1.5 mmol of ⁿBuLi in hexane) in dry THF (10 cm³) was added dropwise a solution of a β -sultam (1 mmol) in THF (2-4 cm³) at -78°C under nitrogen. After 30 min., an alkyl bromide (2 mmol) was added dropwise to it and the whole was stirred at room temperature for several hours. Saturated aqueous NH₄Cl (4 cm³) was added to the reaction mixture and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm³). The organic layer and the extracts were combined, washed with saturated aqueous NaCl (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc–hexane (1:20 - 1:10 v/v). Yields are listed in Scheme 12.

cis-2-Cyclohexyl-3,4-diphenyl-4-phenethyl-1,2-thiazetidine 1,1-Dioxide (21aa) Colorless prisms (from EtOAc-hexane), mp 150-151°C; ¹H NMR (CDCl₃) δ : 1.11-1.24 (3 H, m), 1.30-1.57 (3 H, m), 1.67-1.69 (2 H, m), 1.83 (1 H, br d, J = 13 Hz), 1.95 (1 H, br d, J = 12 Hz), 2.29 (1 H, dt, J = 4.4and 12.7 Hz), 2.57 (1 H, dt, J = 4.9 and 12.7 Hz), 2.78 (1 H, dt, J = 4.4 and 12.7 Hz), 2.94-3.02 (1 H, m), 3.18-3.25 (1 H, m, 1'-H), 4.43 (1 H, s, 3-H), 7.08-7.28 (15 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.6 (t), 25.4 (t), 30.9 (t), 31.4 (t), 32.0 (t), 42.7 (t), 55.7 (d), 64.5 (d), 88.2 (s), 126.2 (d), 127.3 (d), 127.7 (d), 128.2 (d), 128.3 (d), 128.4 (d), 128.5 (d), 128.6 (d), 133.3 (s), 135.7 (s), 140.9 (s), an aromatic carbon is overlapped; MS (EI) *m/z* (rel. int. %): 445 (26, M⁺), 91 (100); IR v_{max} (KBr) cm⁻¹: 1300, 1145 (SO₂); Anal. Calcd for C₂₈H₃₁NO₂S: C, 75.47: H, 7.01: N, 3.14. Found: C, 75.37: H, 7.10: N, 3.27.

cis-2-Cyclohexyl-4-(4-methoxyphenethyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (21ab) White solid (from EtOAc-hexane), mp 122-124 °C; ¹H NMR (CDCl₃) δ : 1.11-1.54 (6 H, m), 1.67-1.69 (2 H, m), 1.83 (1 H, br d, J = 12 Hz), 1.95 (1 H, br d, J = 12 Hz), 2.19-2.27 (1 H, m), 2.54 (1 H, dt, J = 4.4 and 12.7 Hz), 2.72 (1 H, dt, J = 3.9 and 12.7 Hz), 2.90-2.98 (1 H, m), 3.18-3.24 (1 H, m, 1'-H), 3.77 (3 H, s, OMe), 4.43 (1 H, s, 3-H), 6.80 and 7.04 (each 2 H, dd, J = 2 and 7 Hz, ArH), 7.09-7.25 (10 H, m, ArH); ¹³C NMR (CDCl₃) δ : 24.2 (t), 24.6 (t), 25.4 (t), 30.9 (t), 31.1 (t), 31.4 (t), 43.0 (t), 55.3 (q), 55.7 (d), 64.5 (d), 88.2 (s), 113.9 (d), 127.2 (d), 127.7 (d), 128.1 (d), 128.3 (d), 128.4 (d), 128.6 (d), 129.3 (d), 132.9 (s), 133.3 (s), 135.8 (s), 158.0 (s); MS (EI) *m/z* (rel. int. %): 475 (4, M⁺), 121 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1145 (SO₂); Anal. Calcd for C₂₉H₃₃NO₃S: C, 73.23: H, 6.99: N, 2.94. Found: C, 72.42: H, 6.99: N, 2.82.

cis-2-Cyclohexyl-4-(3,4-dimethoxyphenethyl)-3,4-diphenyl-1,2-thiazetidine 1,1-Dioxide (21ac) White foam, mp 53-55°C; ¹H NMR (CDCl₃) δ : 1.11-1.55 (6 H, m), 1.67 (2 H, m), 1.83 (1 H, br d, J = 13 Hz), 1.96 (1 H, br d, J = 13 Hz), 2.23 (1 H, dt, J = 4 and 12.7 Hz), 2.55 (1 H, dt, J = 4 and 12.7 Hz), 2.73 (1 H, dt, J = 4 and 12.7 Hz), 2.97 (1 H, dt, J = 4 and 12.7 Hz), 3.19-2.34 (1 H, m, 1'-H), 3.84 and 3.85 (each 3 H, s, OMe x 2), 4.44 (1 H, s, 3-H), 6.65 (1 H, s, ArH), 6.67 and 6.76 (each 1 H, d, J = 9 Hz, ArH), 7.09-7.19 (10 H, m, ArH) ¹³C NMR (CDCl₃) δ : 24.5 (t), 24.8 (t), 25.7 (t), 31.2 (t), 31.8 (t), 32.0 (t), 43.1 (t), 56.0 (q), 56.2 (q), 64.8 (d), 88.5 (s), 111.6 (d), 112.0 (d), 120.4 (d), 127.6 (d), 128.0 (d), 128.4 (d), 128.6 (d), 128.8 (d), 128.9 (d), 133.7 (s), 133.8 (s), 136.0 (s), 147.8 (s), 149.2 (s); MS (EI) *m/z* (rel. int. %): 505 (59, M⁺), 151 (100); IR v_{max} (KBr) cm⁻¹: 1295, 1145 (SO₂); Anal. Calcd for C₃₀H₃₅NO₄S: C, 71.26: H, 6.98: N, 2.77. Found: C, 71.22: H, 7.02: N, 2.69.

Reactions of 4-Phenethyl- β -sultams 21 with EtAlCl₂

General procedure. To a stirred solution of a β -sultam 21 (0.2 mmol) in dry toluene (2 cm³) was added dropwise 2.2 equiv of EtAlCl₂ in hexane under nitrogen at room temperature. The mixture was stirred at room temperature for 15 h, and saturated aqueous NaHCO₃ (5 cm³) was added to it. The whole was vigorously stirred for 30 min - 2 h, and the inorganic precipitate was filtered off through Celite. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 cm³ x 2). The organic layer and the extracts were combined, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC (EtOAc-hexane (1:10 -1:5 v/v). Yields are listed in Scheme 12.

2,2,4-Triphenylbutanal (22aa) Colorless oil; ¹H NMR (CDCl₃) δ : 2.31-2.35 and 2.57-2.61 (each 2 H, m CH₂CH₂), 7.13-7.40 (15 H, m, ArH), 9.87 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 31.3 (t), 36.2 (t), 63.7 (s), 125.9 (d), 127.4 (d), 128.3 (d), 128.4 (d), 128.8 (d), 129.0 (d), 140.0 (s), 142.2 (s), 198.2 (d); MS (FAB) *m*/z (rel. int. %): 301 (70, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2815, 2715, 1725 (CHO); *Anal.* Calcd for C₂₂H₂₀O: C, 87.96: H, 6.71. Found: C, 87.79: H, 6.86.

4-(4-Methoxyphenyl)-2,2-diphenylbutanal (22ab) Colorless oil; ¹H NMR (CDCl₃) δ : 2.24-2.28 and 2.53-2.57 (each 2 H, m, CH₂CH₂), 3.76 (3 H, s, OMe), 6.79 and 7.05 (each 2 H, d, J = 8.8 Hz, ArH), 7.23 (4 H, d, J = 7 Hz, ArH), 7.31 (2 H, t, J = 7 Hz, ArH), 7.37 (4 H, t, J = 7 Hz, ArH), 9.86 (1 H, s, CHO); ¹³C NMR (CDCl₃) δ : 30.3 (t), 36.5 (t), 55.2 (q), 63.6 (s), 113.8 (d), 127.4 (d), 128.8 (d), 129.0 (d), 129.2 (d), 134.3 (s), 140.1 (s), 157.8 (s), 198.3 (d); MS (FAB) *m/z* (rel. int. %): 331 (23, M⁺+1), 154 (100); IR v_{max} (NaCl) cm⁻¹: 2725, 1725 (CHO); HRMS (FAB) Calcd for C₂₃H₂₂O₂: 331.1698. Found: 331.1713.

X-Ray Study of 1,2,3-Oxathiazolidine 2-Oxide 11fA

Colorless plates were mounted on a glass fiber and transferred to the diffractometer.

Crystal Data. $C_{18}H_{27}NO_2S$, M = 321.48, monoclinic, a = 9.527(4), b = 12.626(3), c = 15.640(2) Å, V = 1814.1(7) Å³ (from setting angles of 25 centred reflections with $20.22 < 2\theta < 32.39^\circ$, $\lambda = 0.71069$ Å, T = 23 °C), space group P2₁/c (# 14), Z = 4, $D_c = 1.177$ g cm⁻³, colorless plates 0.10 x 0.20 x 0.30 mm, μ (Mo-K α) = 1.76 cm⁻¹.

Data Collection and Processing. Rigaku AFC-5R four-circle diffractometer with 12kW rotating anode generator, $\varpi/2\theta$ scans with ϖ scan width (1.21 + 0.30 tan θ)°, graphite-monochromated Mo-K α X-radiation; 4613 reflections measured to $2\theta_{max} = 55^{\circ}$, giving 1704 which were retained in all calculations. No crystal decay was observed and no corrections were applied for absorption.

Structure Solution and Refinement. Automatic direct method³⁵ (all non-H atoms). Full-matrix least-squares refinement³⁶ with all non-H atoms anisotropic. The weighting scheme $w = 4Fo^2/\sigma^2(Fo^2)$ gave satisfactory agreement analyses. Final R = 0.050, $R_w = 0.053$ for 199 refined parameters. The final ΔF synthesis showed no peaks above ± 0.23 e/Å⁻³.

X-Ray Study of Bicyclo-y-sultam 16ae

Colorless prisms were mounted on a glass fiber and transferred to the diffractometer.

Crystal Data. $C_{25}H_{31}NO_2S_2$, M = 409.59, orthorhombic, a = 21.307(6), b = 10.255(6), c = 9.988(7) Å, V = 2182(3) Å³ (from setting angles of 25 centred reflections with 8.81 < 20 < 14.84°, $\lambda = 0.71069$ Å, T = 23 °C), space group Pca2₁ (# 29), Z = 4, $D_c = 1.247$ g cm⁻³, colorless prisms 0.20 x 0.20 x 0.30 mm, μ (Mo-K α) = 1.61 cm⁻¹.

Data Collection and Processing. Rigaku AFC-5R four-circle diffractometer with 12kW rotating anode generator, $\varpi/2\theta$ scans with ϖ scan width (1.37 + 0.30 tan θ)°, graphite-monochromated Mo-K α X-radiation; 2867 reflections measured to $2\theta_{max} = 55^{\circ}$, giving 1347 which were retained in all calculations. No crystal decay was observed and no corrections were applied for absorption.

Structure Solution and Refinement. Automatic direct method³⁵ (all non-H atoms). Full-matrix least-squares refinement³⁶ with all non-H atoms anisotropic. The weighting scheme $w = 4Fo^2/\sigma^2(Fo^2)$ gave satisfactory agreement analyses. Final R = 0.045, $R_w = 0.047$ for 261 refined parameters. The final ΔF synthesis showed no peaks above ± 0.19 e/Å⁻³.

ACKNOWLEDGMENT

This work was supported in part by Grants-in-Aid for Scientific Research No. 08304037 and 09771915 from the Ministry of Education, Science, Sports, and Culture.

REFERENCES AND NOTES

- 1. Iwama, T.; Kataoka, T. Reviews on Heteroatom Chemistry 1996, 15, 25-60.
- 2. Chanet-Ray, J.; Vessiere, R. Org. Prep. Proced. Int. 1986, 18, 157-178.
- 3. Dittmer, D. C.; Sedergran, T. C. In Small Ring Heterocycles Part 3; Hassner, A. Ed.; John Wiley and Sons: New York, 1985; Chap. 5, pp. 431-768.
- Timberlake, J. W.; Elder, E. S. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W. Eds.; Pergamon Press, Oxford: New-York, 1984; vol. 7, pp. 449-489.
- 5. Cavagna, F.; Koller, W.; Linkies, A.; Rehling, H.; Reuschling, D. Angew. Chem., Int. Ed. Engl. 1982,

21, 548-549.

- 6. Koller, W.; Linkies, A.; Rehling, H.; Reuschling, D. Tetrahedron Lett. 1983, 24, 2131-2134.
- 7. Grunder, E.; Leclerc, G. Synthesis 1989, 135-137.
- 8. Müller, M.; Otto, H.-H. Liebigs Ann. Chem. 1991, 171-178.
- 9. Müller, M.; Otto, H.-H. Liebigs Ann. Chem. 1992, 687-692.
- 10. Plagge, H.; Otto, H.-H. Heterocycles 1993, 35, 193-204.
- 11. Schwenkkraus, P.; Otto, H.-H. Arch. Pharm. 1993, 326, 437-441.
- 12. Merkle, S.; Otto, H.-H. Arch. Pharm. 1994, 327, 657-660.
- 13. Schwenkkraus, P.; Merkle, S.; Otto, H.-H. Liebigs Ann. 1997, 1261-1266.
- 14. Berre, A. L.; Petit, J. Tetrahedron Lett. 1972, 13, 213-216.
- 15. Imai, Y.; Hirukawa, H. J. Polym. Sci., Polym. Lett. Ed. 1973, 11, 271-273.
- 16. Imai, Y.; Hirukawa, H.; Okuyama, K.; Ueda, M. Makromol. Chem. 1979, 180, 25-31.
- 17. Imai, Y.; Hirukawa, H.; Ueda, M. Kobunshi Ronbunshu 1974, 31, 755-758.
- 18. Atkins Jr., G. M.; Burgess, E. M. J. Am. Chem. Soc. 1967, 89, 2502-2503.
- 19. Atkins Jr., G. M.; Burgess, E. M. J. Am. Chem. Soc. 1972, 94, 6135-6141.
- 20. Kataoka, T.; Iwama, T. Tetrahedron Lett. 1995, 36, 245-248.
- 21. Kataoka, T.; Iwama, T. Tetrahedron Lett. 1995, 36, 5559-5562.
- 22. Tsuge, O.; Iwanami, S. Bull. Chem. Soc. Jpn. 1970, 43, 3543-3549.
- 23. Hiraoka, T.; Kobayashi, T. Bull. Chem. Soc. Jpn. 1975, 48, 480-483.
- 24. McElvain, S. M.; Mirviss, S. B.; Stevens, C. L. J. Am. Chem. Soc. 1951, 73, 3807-3811.
- 25. Grunder, E.; Leclerc, G.; Ehrhardt, J.-D. J. Heterocycl. Chem. 1989, 26, 1781-1785.
- Bartink, R.; Cebulska, Z.; Orlowska, B.; Faure, R.; Laurent, A.; Loiseleur, H. Bull. Soc. Chim. France 1986, 397-400.
- 27. Hall, J. H.; Huisgen, R.; Ross, C. H.; Scheer, W. J. Chem. Soc., Chem. Commun. 1971, 1188-1190.
- 28. Anastassiou, A. G.; Hammer, R. B. J. Am. Chem. Soc. 1972, 94, 303-305.
- 29. Deyrup, J. A.; Moyer, C. L. J. Org. Chem. 1969, 34, 175-179.
- Saigo, K.; Ogawa, S.; Kikuchi, S.; Kasahara, A.; Nohira, H. Bull. Chem. Soc. Jpn. 1982, 55, 1568-1573.
- 31. Iwama, T.; Takagi, A.; Kataoka, T. Chem. Pharm. Bull. 1998, 46, 757-766.
- 32. Iwama, T.; Kataoka, T.; Muraoka, O.; Tanabe, G. Tetrahedron 1998, in press.
- 33. Champseix, A.; Chanet, J.; Etienne, A.; Berre, A. L.; Masson, J. C.; Napierala, C.; Vessiere, R. Bull. Soc. Chim. France 1985, 463-472.
- 34. Snyder, H. R.; Stewart, J. M.; Ziegler, J. B. J. Am. Chem. Soc. 1947, 69, 2672-2674.
- 35. Structure Solution Methods: MITHRIL: Gilmore CJ. MITHRIL— an integrated direct methods computer program, Univ. of Glasgow, Scotland, J. Appl. Crystallogr. 1984, 17, 42. DIRDIF: Beurskens PT. DIRDIF Direct Methods for Difference Structures— an automatic procedure for phase extension and refinement of difference structure factors. Technical Report 1984/1 Crystallography Laboratory, Toernooiveld, 6525. Ed. Nijmegen, Netherlands.
- 36. Cromer, D. T.; Waber, J. T. in International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974, vol. 4, Table 2.2A.