PHOTOCHEMISCHE REAKTIONEN—VIII¹

EINE NEUE SYNTHESE VON SPIROSOLAN-ALKALOIDEN DURCH PHOTOLYSE VON N-NITROSO-22,26-IMINO-CHOLESTANEN²

G. ADAM und K. SCHREIBER
Institut für Kulturpflanzenforschung Gatersleben der Deutschen
Akademie der Wissenschaften zu Berlin, DDR

(Received Germany 28 April 1966; accepted for publication 17 May 1966)

Abstract—UV-irradiation of the stereoisomeric N-nitroso-22,26-imino-cholestane-3 β ,16 β -diols I-IV in acidic solution leads to the corresponding spirosolane alkaloids soladulcidine (V), solasodine (VI), and tomatidine (VII) respectively. The photolysis of the 3,16-diacetylated compound (VIII) shows that the primary photoreaction of this novel cyclization consists in the introduction of a C-N double bond. In the 16β -hydroxylated series the photochemically originated azomethines spontaneously undergo in a dark reaction cyclization to the spiroaminoketals.

IN DER voranstehenden Mitteilung¹ berichteten wir über einen neuen Typ photochemischer Fragmentierung, der bei UV-Bestrahlung von N-Chlor-22,26-iminocholestanen in saurer Lösung eintritt und unter Abspaltung des Piperidinringes zu 20-chlorierten Pregnanen führt. In diesem Zusammenhang interessierte das Reaktionsverhalten entsprechender N-Nitroso-Derivate, wobei die Frage geklärt werden sollte, ob Verbindungen dieses Typs in Analogie zu den N-Chloraminen ebenfalls zur Fragmentierung befähigt sind oder in anderer Weise photochemisch verändert werden.

Bei UV-Bestrahlung von (22S:25R)-N-Nitroso-22,26-imino-5 α -cholestan-3 β , 16β -diol (N-Nitroso-tetrahydrosolasodin A (I))³ mit einem 500-W-Quecksilberhochdruck-brenner in absol. Benzol oder Äthanol bei 20-30° unter Argon lag das Ausgangsmaterial nach 3·5 Stdn. weitgehend unverändert vor. Jedoch trat bei Bestrahlung in 0·07 n absol. äthanolischer HCl unter sonst gleichen Reaktionsbedingungen vollständige Umsetzung der Nitrosoverbindung ein. Die Chromatographie des Photolyse-produkts an Al₂O₃ lieferte als Hauptprodukt in 60-proz. Ausbeute eine Verbindung vom Schmp. 206-208° und $[\alpha]_D^{19}$ -52·8°, die sich in allen Eigenschaften mit dem Spirosolan-Alkaloid Soladulcidin ((25R)-5 α ,22 α N-Spirosolan-3 β -ol (V))⁴ als identisch erwies. Produkte einer Photofragmentierung, die bei Übertragung des für die Photolyse analoger N-Chlor-Verbindungen postulierten Reaktionsmechanismus zu 20-Oximino-pregnanen führen sollte, konnten nicht nachgewiesen werden. In ähnlicher Weise ergab die UV-Bestrahlung des entsprechenden Δ ⁵-ungesättigten

¹ VII. Mitteil., G. Adam und K. Schreiber, *Tetrahedron* 22, 3581 (1966); voranstehend.—Die vorliegende Arbeit ist zugleich LXXVII. Mitteil. der Reihe *Solanum*-Alkaloide; LXXVI. Mitteil.: G. Adam und K. Schreiber, *Tetrahedron* 22, 3581 (1966); voranstehend.

² Vorläufige Mitteil.: G. Adam und K. Schreiber, Experientia 21, 471 (1965).

^a K. Schreiber und G. Adam, Liebig's Ann. 666, 155 (1963).

⁴ V. Prelog und O. Jeger, in R. H. F. Manske, *The Alkaloids* Vol. VII. Academic Press, New York (1960); K. Schreiber, *ebenda* Vol. X, im Druck; H.-G. Boit, *Ergebnisse der Alkaloid-Chemie bis* 1960. Akademie-Verlag, Berlin (1961).

⁵ L. H. Briggs und R. H. Locker, J. Chem. Soc. 3020 (1950).

(22S:25R)-Nitrosamins II⁵ in 65-proz. Ausbeute Solasodin ((25R)-22 α N-Spirosol-5-en-3 β -ol (VI))⁴ sowie der beiden 22-isomeren (25S)-Verbindungen III und IV³ in ca. 50-proz. Ausbeute das Alkaloid Tomatidin ((25S)-5 α ,22 β N-Spirosolan-3 β -ol (VII))⁴. Als Nebenprodukte wurden in allen Fällen die entsprechenden 22,26-Imino-cholestan-3 β ,16 β -diole isoliert, die unter den sauren Reaktionsbedingungen durch teilweise Hydrolyse der Nitrosamin-Gruppierung entstanden sein dürften.

Im Gegensatz zu unseren Ergebnissen mit entsprechenden N-Chlor-Verbindungen¹ ergibt die Photolyse der N-Nitroso-22,26-imino-cholestandiole I-IV nach diesen Befunden keine Fragmentierung, sondern führt unter Mitbeteiligung der 16β -Hydroxy-Gruppe zur Spiroaminoketalbildung. Diese photochemisch induzierte Ringschlussreaktion stellt somit neben dem bereits früher von uns gefundenen Weg³-6 eine zweite Methode dar, 22,26-Iminocholestandiole in die entsprechenden natürlichen hexacyclischen Spirosolan-Alkaloide zu überführen.

Um einen Einblick in den Mechanismus der Reaktion zu erhalten, wurde (22S:25R)-N-Nitroso- 3β , 16β -diacetoxy-22,26-imino- 5α -cholestan (VIII) unter den angegebenen Bedingungen der UV-Bestrahlung unterworfen. In dieser Verbindung ist die 16β -Hydroxy-Gruppe durch Acetylierung blockiert, so dass ein Ringschluss nicht stattfinden kann. Die Photolyse lieferte zwei Hauptprodukte: Die unpolarere, in 30% Ausbeute gewonnene Verbindung (R_F 0.40) vom Schmp. 136- 139° und $[\alpha]_D^{20} + 84.1^\circ$ war in allen Eigenschaften mit dem von uns auf anderem Wege dargestellten (25R)- 3β , 16β -Diacetoxy-22,26-imino- 5α -cholest-22(N)-en (IX) 7 identisch. Die zweite, in 41% Ausbeute erhaltene Substanz (R_F 0.14) wurde über das Hydrochlorid abgetrennt und erwies sich als durch Entnitrosierung entstandenes (22S:25R)- 3β , 16β -Diacetoxy-22,26-imino- 5α -cholestan (X). 7

Die Bildung des Azomethins IX aus der 16-acetylierten N-Nitroso-Verbindung VIII zeigt, dass die eigentliche Photoreaktion bei der UV-Bestrahlung der N-Nitroso-22,26-imino-cholestane in der Einführung einer C-N-Doppelbindung bestehen dürfte. Nach unseren früheren Untersuchungen sind solche cyclischen Azomethine

⁴ K. Schreiber und G. Adam, Experientia 17, 13 (1961).

⁷ G. Adam und K. Schreiber, Chem. Ber. im Druck.

beim Vorliegen einer freien 16β-Hydroxy-Gruppe nicht beständig, sondern gehen spontan und stereopezifisch Ringschlussreaktion zu den entsprechenden Spirosolan-Alkaloiden ein. 3,6 Abweichend von unseren Befunden bei analogen N-Chlor-Verbindungen findet die wesentlich langsamer verlaufende Photolyse der N-Nitrosamine auch in Anwesenheit von Sauerstoff statt. Dies dürfte ebenso wie die glatte Durchführbarkeit der Reaktion in Gegenwart einer \(\Delta 5-Doppelbindung \) einen radikalischen Mechanismus ausschliessen. Layne et al.⁸ haben gezeigt, dass N-Nitroso-Verbindungen in Cyclohexan mit Säuren über eine Wasserstoffbrücke gebundene 1:1-Nitrosamin-Säure-Komplexe bilden, die im UV ein Absorptionsmaximum bei 340 nm ($\varepsilon \sim 100$) aufweisen. Wir nehmen an, dass ein solcher Komplex photochemisch angeregt wird und gemäss Schema (A) unter Abspaltung von untersalpetriger Säure und Einführung einer C-N-Doppelbindung zerfällt. Im Falle der Photolyse von I-IV schliesst sich als Dunkelreaktion die Cyclisierung zum Spiroaminoketal an. Ein Mechanismus entsprechend (A) ist kürzlich auch von anderen Autoren^{9,10} diskutiert worden, die erstmals die Photolyse einfacher Nitrosamine untersuchten und auch hier die Bildung von Azomethinen bzw. deren Folgeprodukte als eine Hauptreaktion beobachteten.

EXPERIMENTELLER TEIL

Die Schmelzpunkte wurden auf dem Mikroheiztisch nach Boetius bestimmt und sind korrigiert. Die spezifischen Drehungen wurden in Chf. gemessen. IR-Spektren: Zeiss-Zweistrahl-Spektralphotometer UR 10 in Nujol; UV-Spektrum: Perkin-Elmer-Spektrophotometer 137 UV.

Säulenchromatographie: Al₂O₂ (Merck), standardisiert nach Brockmann, der jeweils angegebenen Aktiv.-Stufe. Dünnschichtchromatographie (DC): Kieselgel G (Merck) (Laufstrecke ca. 10 cm) unter Verwendung des jeweils angegebenen Entwicklungsgemisches. Zum Nachweis diente Jodreagens (0·5 g Jod + 1 g KJ/1 l Wasser), mit dem die N-Nitroso-Derivate blassgelbe, die übrigen Verbindungen braungelbe Flecke lieferten. Für die spezifische Sichtbarmachung der Nitrosoverbindungen wurde weiterhin der Diphenylamin-PdCl₂-Test nach Preussmann und Mitarb.¹¹ verwendet, wobei die hier beschriebenen N-Nitrosamine nach UV-Bestrahlung graublaue Flecke zeigten.

UV-Bestrahlungen: Extern im Quarzkolben mit dem 500-W-Quecksilberhochdruckbrenner Th U 500 der Fa. Thelta Elektroapparate, Zella-Mehlis, bei einem Kolbenabstand von 20 cm.

Soladulcidin (V) durch Photolyse von (22S:25R)-N-Nitroso-22,26-imino-5 α -cholestan-3 β ,16 β -diol (N-Nitroso-tetrahydrosolasodin A (I))

Nitrosoverbindung I² vom Schmp. 255-257° (Zers.), $[\alpha]_D^{30} + 10.5^{\circ}$ (200 mg) wurde in 13.5 ml 0.07 N absol. äthanol. HCl gelöst und im Quarzkolben mit UV-Licht bestrahlt. Die Temperatur wurde durch Einleiten eines auf -15° vorgekühlten Argonstroms auf 20-30° gehalten. Die dünnschichtchromatographische Verfolgung (Entwicklung mit Chf.-MeOH 9:1) des Reaktionsverlaufs zeigte, dass nach 2.5 Stdn. Bestrahlung kein Ausgangsmaterial (R_p 0.53) mehr vorlag, sondern zwei neue Flecke vom R_p 0.34 und 0.06 auftraten. Die Lösung wurde mit 10 ml Äthanol versetzt, durch Schütteln mit festem NaHCO₂ neutralisiert und nach Filtration i. Vak. eingeengt. Der hinterbliebene kristalline Rückstand (211 mg) wurde in 15 ml Benzol gelöst und an 7 g Al₂O₃ (Aktiv.-Stufe III)

⁸ N. S. Layne, H. H. Jaffe und H. Zimmer, J. Amer. Chem. Soc. 85, 435 (1963).

E. M. Burgess und J. M. Lavanish, Tetrahedron Letters 1221 (1964).

¹⁰ Y.-L. Chow, Tetrahedron Letters 2333 (1964).

¹¹ R. Preussman, D. Daiber und H. Hengy, Nature, Lond. 201, 502 (1964).

chromatographiert (Fraktionen zu 10 ml). Die Fraktionen 1-19 wurden mit Benzol, 20-25 mit Benzol-Äther 1:1 und 26-29 mit Äther eluiert. Die Fraktionen 5-19 lieferten 112 mg (60% d. Th.) Kristalle vom Schmp. 204-205°, nach Kristallisation aus Aceton-Wasser Blättchen vom Schmp. 206-208°, $[\alpha]_{\rm B}^{19}$ -52-8° (c=0.420), die sich nach Misch-Schmp., IR-Spektrum und Dünnschichtchromatogramm (R_p 0.34) mit authent. Soladulcidin aus Solanum dulcamara vom Schmp. 209-211° und $[\alpha]_{\rm B}^{10}$ -50-0° als identisch erwiesen. Die Fraktionen 21-29 lieferten 27 mg (14% d. Th.) Tetrahydrosolasodin A vom Schmp. 280-292° und R_p 0.06. Nach Kristallisation aus Äthanol-Wasser Schmp. 291-295°, $[\alpha]_{\rm B}^{10}$ -3·2° (c=0.489), in allen Eigenschaften identisch mit einem nach Lit. durch katalytische Hydrierung von Solasodin gewonnenen Präparat vom Schmp. 295-299° und $[\alpha]_{\rm B}^{11}$ -3·0°.

Solasodin (VI) durch Photolyse von (22S:25R)-N-Nitroso-22,26-imino-cholest-5-en-3β,16β-diol (N-Nitroso-dihydrosolasodin A (II))

Nitrosoverbindung II (200 mg) vom Schmp. 256–258° (Zers.), $[\alpha]_D^{30}-40.7^\circ$ (c=0.434)¹³ und R_p 0.33 wurde in 18 ml 0.07 N absol. äthanol. HCl wie für die Photolyse von I angegeben mit UV-Licht bestrahlt und aufgearbeitet. Die Benzoleluate der Al₁O₂-Chromatographie lieferten 120 mg (65% d. Th.) Platten (MeOH) vom Schmp. 202–205°, $[\alpha]_D^{30}-106.5^\circ$ (c=0.520) und R_p 0.34, in allen Eigenschaften identisch mit authent. Solasodin⁴ aus Solanum laciniatum vom Schmp. 200–202° und $[\alpha]_D^{10}-107.6^\circ$. Die nachfolgenden Ätherfraktionen ergaben 15 mg (8% d. Th.) Dihydrosolasodin A vom Schmp. 263–265° und $[\alpha]_D^{30}-66.4^\circ$ (c=0.551) und R_p 0.06 [Lit. 5.14: Schmp. 260–264° und $[\alpha]_D^{30}-65.0^\circ$].

Tomatidin (VII)

- (a) Durch Photolyse von (22S:25S)-N-Nitroso-22,26-imino-5 α -cholestan-3 β ,16 β -diol (N-Nitroso-dihydrotomatidin A (III)). Nitrosoverbindung III³ vom Schmp. 215° (Zers.), $[\alpha]_0^{20}$ $-6\cdot1^{\circ 15}$ und R_p 0·51 (200 mg) wurden in 13·5 ml 0·07N absol. äthanol. HCl wie für die Photolyse von I beschrieben bestrahlt und das erhaltene Produkt nach Aufarbeitung an Al₂O₃ chromatographiert. Die Benzoleluate lieferten 97 mg (52% d. Th.) VII in Blättchen (Aceton-Wasser) vom Schmp. 207-209°, $[\alpha]_0^{20}$ +8·7° (c=0.464) und R_p 0·47, in allen Eigenschaften identisch mit authent. Tomatidin⁴ aus Lycopersicon pimpinellifolium vom Schmp. 205-207° und $[\alpha]_0^{20}$ +7·6°. Die nachfolgenden Äthereluate ergaben 36 mg (19% d. Th.) Dihydrotomatidin A vom Schmp. 192-194°, $[\alpha]_0^{20}$ -14·4° (c=0.428) und R_p 0·06, in allen Eigenschaften identisch mit nach Lit. (Schmp. 194·5-195·6°, $[\alpha]_0$ —19°) durch katalytische Hydrierung von Tomatidin gewonnenem Material.
- (b) Durch Photolyse von (22R:25S)-N-Nitroso-22,26-imino-5 α -cholestan-3 β ,16 β -diol (N-Nitroso-dihydrotomatidin B (IV)). Nitrosoverbindung IV* vom Schmp. 273–175° (Zers.), $[\alpha]_D = 5 \cdot 1^{\circ 18}$ und R_p 0.52 (200 mg) wurde in 27 ml 0.07N absol. äthanol. HCl wie angegeben mit UV-Licht bestrahlt und aufgearbeitet. Die Benzoleluate der Al₂O₃-Chromatographie lieferten 90 mg (49% d. Th.) kristallines VII vom Schmp. 196–200°. Nach Umkristallisation aus Aceton-Wasser Blättchen vom Schmp. 205–207°, $[\alpha]_D^{10} + 8 \cdot 1^\circ$ (c = 0.489) und R_p 0.47, in allen Eigenschaften identisch mit dem nach (a) erhaltenen Produkt.

Die nachfolgenden, mit Benzol-Äther 1:1, Äther und Äther-MeOH 95:5 eluierten Fraktionen ergaben 51 mg (27% d. Th.) Dihydrotomatidin B vom Schmp. 229-232° und R_p 0:03, nach Misch-Schmp. und IR-Spektrum identisch mit nach Lit. (Schmp. 230-233°) durch katalytische Hydrierung von Tomatidin gewonnenem Material.

(22S:25R)-N-Nitroso-3β,16β-diacetoxy-22,26-imino-5α-cholestan (VIII)

(22S:25R)-3β,16β-Diacetoxy-22,26-imino-5α-cholestan? (1 g) wurde in 40 ml Eisessig gelöst und innerhalb 30 Min. bei 0° tropfenweise mit 15 g NaNO₃ in 30 ml Wasser versetzt. Die erhaltene weisse Fällung ergab nach Umkristallisation aus MeOH-Wasser 916 mg (87% d. Th.) VIII als abgeflachte

¹⁸ H. Rochelmeyer, Arch. Pharmaz. 277, 329 (1939).

¹⁸ Lit. Schmp. 250-251° (Zers.).

¹⁴ L. H. Briggs und T. O'Shea, J. Chem. Soc. 1654 (1952).

¹⁶ In Lit.² wurden versehentlich die Konstanten für die Nitrosoverbindungen III und IV unrichtig angegeben.

¹⁴ Y. Sato und H. G. Latham, Jr., J. Amer. Chem. Soc. 78, 3146 (1956).

Nadeln vom Schmp. 152–156°, nach zwei weiteren Kristallisationen Schmp. 158–160°, $[\alpha_{10}^{10}] + 42.7^{\circ}$ (c = 0.481). Zur Analyse wurde i. Hochvak. bei 60° über P_{10} -Paraffin bis zur Gewichtskonstanz getrocknet. ($C_{11}H_{10}N_{1}O_{1}$ (530·8): Ber. C, 70·15; H, 9·50; N, 5·28; Gef. C, 70·29; H, 9·54; N, 5·32%.) IR-Banden bei 1735 und 1743 cm⁻¹ (O-Acetyl). UV-Spektrum (EtOH): 240 und 356 nm (log ε 3·77 und 1·93).

Photolyse von (22S:25R)-N-Nitroso-3β,16β-diacetoxy-22,26-imino-5α-cholestan (VIII)

Nitrosoverbindung VIII (200 mg) wurde in 12 ml 0·07 N absol. āthanol. HCl wie für I angegeben mit UV-Licht bestrahlt, wobei nach 1·5 Stdn. die Abscheidung von Kristallen begann. Nach 3·5 Stdn. war im Dünnschichtchromatogramm (Entwicklung mit Chf.—MeOH 95:5) kein Ausgangsmaterial vom R_p 0·74 mehr nachzuweisen, stattdessen traten 3 neue Flecke vom R_p 0·59, 0·40 und 0·14 auf. Der abgesaugte kristalline Niederschlag bestand aus 67 mg (33% d. Th.) X-Hydrochlorid⁷ vom Schmp. 297–300° (Zers.), nach Umkristallisation aus MeOH-Aceton Stäbchen vom Schmp. 305–308° (Zers.). Durch Lösen in heissem MeOH und Versetzen mit verd. Ammoniak wurde die freie Base X erhalten: Aus Dioxan-Wasser Blättchen vom Schmp. 82–85°, $[\alpha]_{19}^{19}$ +38·9° (c = 0·418), nach Misch-Schmp., IR-Spektrum und DC (R_p 0·14) identisch mit authent. (22S:25R)-3 β ,16 β -Diacetoxy-22,26-imino-5 α -cholestan⁷ vom gleichen Schmp. und $[\alpha]_{19}^{13}$ +37·8°.

Das salzsaure Filtrat der Hydrochloridgewinnung wurde durch Zugabe von verd. Ammoniak alkalisiert, der erhaltene getrocknete Niederschlag (117 mg) in 18 ml Petroläther-Benzol 2:1 gelöst und an 6 g Al₂O₃ (Aktiv.-Stufe I) chromatographiert (Fraktionen zu 5 ml). Die Fraktionen 1-6 wurden mit Petroläther-Benzol 2:1, 7-10 mit Petroläther-Benzol 1:1, 11-16 mit Benzol, 17-21 mit Benzol-Äther 95:5, 22-26 mit Benzol-Äther 9:1 und die Fraktt. 27-32 mit Äther eluiert. Die Fraktionen 11-14 lieferten 23 mg Öl, das nach dem DC aus einer nicht identifizierten Verbindung vom R_p 0:59, verunreinigt durch IX vom R_p 0:40, bestand. Die Fraktionen 15-16 ergaben 57 mg (30% d. Th.) öliges Azomethin IX, das aus MeOH-Wasser in Blättchen vom Schmp. 136-139°, [α]¹⁰ +84·1° (c = 0·401), kristallisierte und nach Misch-Schmp., IR-Spektrum und DC (R_p 0·40) mit authent. (25R)-3 β ,16 β -Diacetoxy-22,26-imino-5 α -cholest-22(N)-en⁷ vom Schmp. 137·5-139° und [α]¹⁴ +85·2° identisch war. Aus den Fraktionen 27-32 liessen sich weitere 15 mg Amin X vom Schmp. 80-85° und R_p 0·14 gewinnen (Gesamtausbeute an X 41 % d. Th.).

Die Mikroelementaranalyse wurde von Herrn Dr. W. Knobloch und Frau F. Knobloch†, Institut für Pharmakologie des medizinisch-biologischen Forschungszentrums Berlin-Buch der DAW zu Berlin, ausgeführt. Fräulein U. Hof danken wir für sorgfältige experimentelle Mitarbeit.