Tetrahedron Letters 54 (2013) 2679-2681

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

N-Heterocyclic carbene catalyzed oxidative stannylation of aldehydes: a facile entry to organotin(IV) carboxylates

Rambabu N. Reddi, Pushpa V. Malekar, Arumugam Sudalai*

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411 008, India

ARTICLE INFO

Article history: Received 10 January 2013 Revised 8 March 2013 Accepted 12 March 2013 Available online 21 March 2013

Keywords: Carboxylic acid stannanes N-Heterocyclic carbene Oxidative stannylation Oxygen Tributyltin chloride

ABSTRACT

A simple protocol is described for the oxidative transformation of aldehydes to the corresponding organotin(IV) carboxylates in high yields (up to 90%) that utilizes atmospheric O_2 as the sole oxidant, *N*-heterocyclic carbene as catalyst (at 10 mol %), and tributyl tin chloride as stannylating agent. The uniqueness of the reaction lies in the direct conversion of aldehydes to the corresponding organotin(IV) carboxylates via stannylation of carboxylic acids, generated from the reaction of a Breslow intermediate with O_2 .

© 2013 Elsevier Ltd. All rights reserved.

Tetrahedro

Organotin(IV) carboxylates have attracted considerable attention owing to the enormous variety of discrete or polymeric structural topologies¹ and their unexpected properties as potential pharmaceuticals such as anti-tumor,² antimicrobial,³ anti-fungal⁴, and cytotoxic activity.⁵ They are also used as fungicides,⁶ pesticides,⁷ antifouling coating materials,⁸ preservatives for wood,⁹ acaricides¹⁰, and homogeneous catalysts¹¹ in industry. In the literature, their synthesis has been reported from the corresponding carboxylic acids¹² and their salts.¹³ However, these methods suffer from disadvantages such as harsh reaction conditions, metals as by-products and often giving low yields.

In recent years, many NHC-catalyzed reactions have been reported for C–C, C–N, and C–O bond-forming reactions.¹⁴ In particular, the direct esterification of aldehydes was well-documented with alcohols as nucleophiles under different oxidative conditions.¹⁵ However, these reactions employ both boronic acids¹⁶ and alkyl halides¹⁷ under aerobic conditions. Recently, we reported a useful preparative procedure for the oxidative esterification¹⁸ of aldehydes under aerobic oxidative conditions with alcohols. Thus, it is of interest to explore NHC catalyzed oxidative metallation of aldehydes with metal halides as electrophiles. In this Letter, we wish to report a new efficient and practical method for the one-step conversion of aldehydes directly into the corresponding organotin(IV) carboxylates using *N*-heterocyclic carbenes as catalysts (Scheme 1).

Figure 1. NHC precatalysts screened for oxidative stannylation.

	NHC cat.(10 mol%)	
	ⁿ Bu₃SnCl (1.2 equiv)	
Ar-CHO	—	ArCO ₂ Sn ⁿ Bu ₃
2a-p	THF, DBU (1.2 equiv) 25°C,16h, O ₂	3а-р

Scheme 1. NHC-catalyzed oxidative stannylation of aromatic aldehydes.

Initially, we have chosen 4-nitrobenzaldehyde **2g** as a test substrate for the oxidative stannylation using tributyltin chloride (1.2 equiv) as tin source, NHC precatalyst **1a** (10 mol %), and DBU

^{*} Corresponding author. Tel.: +91 20 25902174; fax: +91 20 25902676. *E-mail address:* a.sudalai@ncl.res.in (A. Sudalai).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.03.050

Table 1

Oxidative stannylaltion of 4-nitrobenzaldehyde: optimization studies^a

Entry	Catalyst	Solvent	Base	Yield of 3g ^b (%)
1	1a	CH₃CN	DBU	55
		THF	DBU	90
		DMF	DBU	35
		CH_2Cl_2	DBU	5
2	1a	THF	K ₂ CO ₃	40
		THF	KO ^t Bu	35
		THF	NaH	20
3	1b	THF	DBU	41
4	1c	THF	DBU	75
5	1d	THF	DBU	40
6	1e	THF	DBU	33
7	1f	THF	DBU	54
8	1σ	THF	DBU	20

^a Reaction conditions: 4-nitrobenzaldehyde (1 equiv), *n*-tributyltin chloride (1.2 equiv), NHC catalyst (10 mol %), base (1.2 equiv), under O_2 atmosphere; 25 °C, 16 h.

^b Isolated yields after column chromatographic purification.

(1.2 equiv) as base in CH₃CN, which produced tri-*n*-butyltin 4nitrobenzoate **3g** in 55% yield (Table 1, entry 1). We conducted several experiments to improve the yield and found that THF was the best choice (90%) while other solvents (DMF, CH₂Cl₂) gave only moderate yield of **3g**. Use of other inorganic bases (K₂CO₃, KOBu,^{*t*} and NaH) resulted in a sluggish reaction with poor yields. DBU was thus chosen as the base for further optimization (Table 1, entry 2). Among the NHC precatalysts^{18,20} screened (Fig. 1), thiazolium (**1b** and **1c**)-based precatalysts afforded **3g** in 41% and 75% yields, respectively while the imidazolium (**1d** and **1e**) and triazolium (**1f** and **1g**)-based precatalysts also gave only moderate yields (54%).

With the optimized conditions in hand, we examined the substrate scope of the reaction. Various aldehydes were then subjected to oxidative stannylation; the results of which are presented in Table 2. Aromatic aldehydes, having electron-withdrawing and releasing groups at various positions on the aromatic ring were reacted to give the corresponding organotin(IV) carboxylates (Table 2) in excellent yields. Also, heteroaromatic aldehydes underwent this oxidative stannylation efficiently to give the corresponding tin(IV) carboxylates in 82% and 87% yields, respectively. In the case of α,β -unsaturated aldehydes, the oxidative stannylation under the above optimized conditions gave 3m (entry 13, Table 2) in low yield (22%). However, replacing 1a with 1d gave the corresponding α , β -unsaturated acid stannane in 84% yield. Thus, with **1d** as precatalyst, α , β -unsaturated aldehydes (entries 14– 16) underwent this reaction successfully to give excellent yields of the corresponding organotin(IV) carboxylates. The structure of tri-*n*-butyltin carboxylates **3a**-**p** was specifically ascertained on the basis of spectroscopic techniques. Their carbonyl carbons have shown typical signals in the range δ 169–172 in their ¹³C NMR spectra. Strong characteristic IR absorptions in the range 1600-1640 cm⁻¹ for all the tri-*n*-butyltin carboxylates confirmed the presence of carboxylate functionality. Their structures were further supported by their high resolution mass spectra.

Based on literature reports,¹⁷ a probable mechanistic pathway is shown in Scheme 2. The Breslow intermediate I, upon reaction with O_2 gives the peroxy anion II,^{17a} which then reacts with

Table 2

Oxidative stannylaltion of aromatic aldehydes: substrate scope^a

	Ar-CHO 2a-p	Cat: 1a (10 mol%) ⁿ Bu ₃ SnCl (1.2 equiv) THF, DBU (1.2 equiv), 25°C, 16h	Ar-CO ₂ ″SnB 3a-p	u ₃
Entry	Substrate, A	Ar (2a–p)	Product (3a-p)	Yield ^b (%)
1	Benzaldehv	de	3a	40
2	<i>m</i> -Tolualdehvde		3b	76
3	4-OMe-benzaldehyde		3c	79
4	3.4-(-OCH ₂ O-)benzaldehvde		3d	81
5	Salicylaldehyde		3e	74
6	3-NH ₂ -benzaldehvde		3f	71
7	4-NO ₂ -benzaldehvde		3g	90
8	2-NO ₂ -benzaldehvde		3h	85
9	4-Br-benzaldehvde		3i	70
10	4-CN-benzaldehyde		3j	87
11	3-Pyridine carboxaldehyde		3k	82
12	Furfural	•	31	87
13	Cinnamalde	ehyde	3m	22 (84) ^c
14	4-Br-cinnar	naldehvde	3n	79 ^c

 14
 4-Br-cinnamaldehyde
 3n 79^c

 15
 3,4-(OMe)₂-cinnamaldehyde
 3o 72^c

 16
 1-Br-3,4-dihydronaphthaldehyde
 3p 74^c

 ^a Reaction conditions: aldehyde (5 mmol), *n*-tributyltin chloride (6 mmol), NHC
 74^c

" Reaction conditions: aldenyde (5 mmol), *n*-tributyltin chloride (6 mmol), NHC catalyst **1a** (10 mol %), DBU (6 mmol), under O₂ atmosphere; 25 °C, 16 h.

^b Isolated yield after column chromatographic purification.

^c NHC catalyst **1d** was used.

Scheme 2. Proposed mechanistic pathway for tributyltin(IV) carboxylates.

another molecule of aldehyde to afford carboxylic acid in situ; the stannylation of which with tri-*n*-butyltin chloride produces tri-*n*-butyltin carboxylates.

In conclusion, we have developed an efficient catalytic process¹⁹ for the preparation of organotin(IV) carboxylates^{21,22} using *N*-heterocyclic carbene catalyzed oxidative metallation of aldehydes under aerobic conditions. This methodology illustrates the use of metal electrophiles in NHC catalyzed reactions.

Acknowledgments

R.B.R. and P.M. thank the CSIR, New Delhi for the award of research fellowship and DST, (No. SR/S1/OC-67/2010) New Delhi, for financial support. The authors are thankful to Dr. V. V. Ranade, Head, Chem. Engg. & Process Development., for his constant support and encouragement.

References and notes

- (a) Tiekink, E. R. T. Appl. Organomet. Chem. 1991, 5, 1; (b) Chandrasekhar, V.; Nagendran, S.; Baskar, V. Coord. Chem. Rev. 2002, 235, 1.
- 2. Gielen, M. Appl. Organomet. Chem. 2002, 16, 481.
- Shahzadi, S.; Ali, S.; Shahid, K.; Yousaf, M.; Sharma, S. k.; Qanungo, K. J. Chin. Chem. Soc. 2010, 57, 659.
- Lu, J.; Chen, S.; Du, M.; Tang, L. F. Appl. Organomet. Chem. 2006, 20, 448.
 Baul, T. S. B.; Paul, A.; Pellerito, L.; Scopelliti, M.; Pellerito, C.; Singh, P.; Verma,
- P.; Duthie, A.; Vos, D. D.; Verma, R. P.; Englert, U. J. Inorg. Biochem. **2010**, 104, 950.
- Li, F. L.; Dai, B.; Song, H.; Mi, N.; Tang, L. Heteroat. Chem. 2009, 20, 411.
 Tzimopoulos, D.; Sanidas, I.; Varvogli, A. C.; Czapik, A.; Gdaniec, M.; Nikolakaki, E.: Akrivos, P. D. I. Inorg. Biochem. 2010, 104, 423.
- (a) Fargasova, A.; Kizlink, J. Ecotoxicol. Environ. Saf. 1996, 34, 156; (b) Fargasova, A. Ecotoxicol. Environ. Saf. 1998, 41, 222.
- 9. Seyferth, D.; Masterman, T. C. Appl. Organomet. Chem. 1994, 8, 335.
- 10. Qing-Lan, X.; Zhi-Qiang, Y.; Zu-Xin, Z.; Zhang, D. Appl. Organomet. Chem. 1992, 6, 193.
- 11. Otera J. Chem. Rev. 1993, 93, 1449.
- Angiolini, L.; Caretti, D.; Mazzocchetti, L.; Salatelli, E.; Willem, R.; Biesemans, M. J. Organomet. Chem. 2006, 691, 1965.
- 13. Sandhu, G. K.; Verma, S. P. J. Organomet. Chem. 1987, 321, 15.
- (a) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511; (b) O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Chem. Eur. J. 2006, 12, 4743; (c) Chass, G. A.; O'Brien, C. J.; Hadei, N.; Kantchev, E. A. B.; Mu, W.; Fang, D.; Hopkinson, A. C.; Csizmadia, I. G.; Organ, M. G. Chem. Eur. J. 2009, 15, 4281.
- (a) Reynolds, N. T.; de Aliniz, J.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518; (b) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406; (c) He, M.; Uc, J. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088; (d) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205; (e) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370; (f) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905; (g) Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873; (h) Zeitler, K. Org. Lett. 2006, 8, 637; (i) Burstein, B.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418; (j) Zhao, G. L.; Cordova, A. Tetrahedron Lett. 2007, 48, 5976; (k) Chow, K. Y.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126; (l) Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021.

- 16. Meng, J.; Gao, M.; Wei, Y.; Zhang, W. Chem. Asian J. 2012, 7, 872.
- (a) Xin, Y.-C.; Shi, S.-H.; Xie, D.-D.; Hui, X.-P.; Xu, P.-F. Eur. J. Org. Chem. 2011, 6527; (b) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
- 18. Kiran, I. N. C.; Lalwani, K.; Sudalai, A. RSC Adv. 2013, 3, 1695.
- (a) Arduengo, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. *Tetrahedron* **1999**, *55*, 14523; (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. **1999**, *1*, 953; (c) Enders, D.; Breuer, K.; Kallfass, U.; Balensiefer, T. Synthesis **2003**, *8*, 1292; (d) Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; Cesar, V. Chem. Rev. **2011**, *111*, 2705.
- 20. Typical experimental procedure: to a stirred solution of *N*-heterocyclic carbene precursor (10 mol %), DBU (6 mmol), and aldehyde (5 mmol) in anhydrous THF (5 ml), tri-*n*-butyltin chloride (6 mmol) was added under an O_2 atmosphere. The reaction mixture was then stirred at 25 °C for 16 h. After completion of the reaction (monitored by TLC), the reaction mixture was concentrated, followed by the addition of H₂O (50 mL). It was extracted with EtOAc (3 × 50 ml) and the combined organic layers dried over anhydrous Na₂SO₄. Removal of solvent gave organotin carboxylates, which were purified by column chromatography over silica gel using pet ether/EtOAc (1/19) as eluent to obtain pure tri-*n*-butyltin(IV) carboxylates in high purity.
- 21. Tri-*n*-butyltin(IV) furan-2-carboxylate (**3**I): Yield: 87%, colorless liquid; IR (CHCl₃, cm⁻¹): 1011, 1364, 1389, 1409, 1549, 1579, 1600, 2853, 2921, 2954; ¹H NMR (200 MHz, CDCl₃): δ 7.53 (s, 1H), 7.11 (d, *J* = 3.4 Hz, 1H), 6.48 (dd, *J* = 3.3 Hz, *J* = 1.6 Hz, 1H), 1.85–1.58 (m, 6H), 1.48–1.25 (m, 12H), 0.92 (t, *J* = 7.1 Hz, 9H); ¹³C NMR (50 MHz, CDCl₃): δ 163.2, 146.3, 145.3, 117.0, 111.5, 27.8, 27.0, 16.8 and 13.6; Analysis: C₁₇H₃₀O₃Sn requires C, 50.90; H, 7.54. Found: C, 50.78; H, 7.39; MS (ESI): [M+Na]* calcd for C₁₇H₃₀NaO₃Sn: 425.11; found: 425.44.
- Tri-*n*-butyltin(IV) 3,4-dimethoxy-*trans*-cinnamate (**30**): Yield: 72%, colorless solid, mp: 224–225 °C; IR (CDCl₃, cm⁻¹); 2954, 2922, 1639, 1513, 1262, 1139, 1025. ¹H NMR (200 MHz, CDCl₃): δ 7.62 (d, *J* = 15.9 Hz, 1H), 7.07 (m, 2H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.32 (d, *J* = 15.9 Hz, 1H), 3.90 (s, 6H), 1.83–1.62 (m, 6H), 1.36–1.28 (m, 12H), 0.93 (t, *J* = 7.2 Hz, 9H). ¹³C NMR (50 MHz, CDCl₃): δ 172.3, 151.1, 149.2, 145.2, 127.5, 122.7, 110.9, 109.6, 55.8, 27.8, 27.0, 16.5 and 13.7; Analysis: C₂₃H₃₈O₄Sn requires C, 55.55; H, 7.70. Found: C, 55.77; H, 7.48. MS (ESI): [M+Na]* calcd for C₂₃H₃₈NAO₄Sn: 521.16; found: 521.25.