TRANSFORMATIONS OF PYRIDINIUMS DERIVED FROM AMINO-ALCOHOLS AND FROM DIAMINES

NOVEL RING CLOSURES

Alan R. Katritzky,* \dagger Roland T. Langthorne, Ranjan C. Patel and (in part) Gerard Lhommet
School of Chemical Sciences, University of East Anglia, Norwich, NR4 TTJ, England

(Received in UK 18 December 1980)

Abstract

Pyridiniums derived from amino alcohols cyclise to ethers or rearrange to aldehydes on heating. Monopyridiniums from diamines can be acylated or converted into ureas or thioureas: these products cyclise on heating in solution to give dihydro-thiazoles, -4 H -thiazines, - oxazoles, -4 H -oxazines, or tetrahydro- 3 H -thiazepines.

We have shown that conversion of primary amines by pyryliums into pyridiniums and subsequent nucleophilic displacement affords a useful method for the conversion of amines into a variety of other functionality. ${ }^{1}$ Previously the nucleophilic attack has been intermolecular; the present paper is concerned with intramolecular nucleophilic attack, i.e. the cyclisation of amines carrying another functional group.

Preparation of pyridiniums from amino alcohols. Ethanolamine (3), 2- and 3 - hydroxypropylamine (4 and 5) and 2 - hydroxy - 2 - methylpropylamine have previously given pyridiniums with 2,4,6-triphenylpyrylium perchlorate (1c) and/or tetrafluoroborate (1a). ${ }^{2}$

We have found that a variety of amino alcohols (3-8) reacted readily with triphenylpyrylium (1) and also the pentacyclic analogue (2) to yield pyridiniums 9-14 (Scheme 1): the acridinium analogue was used to give a better leaving group. ${ }^{3}$ The pyryliums were prepared following literature methods. ${ }^{45}$ The pyridiniums (Table 1) are readily prepared at 20° in dichloromethane using triethylamine as catalyst by the standard procedure described elsewhere. ${ }^{6}$

The dibenzoacridinium system with tetrafluoroborate anion gave products that were difficult to crystallise; use of the trifluoromethanesulphonate anion overcame this.

The conditions and the products of pyrolysis are summarised in Table 2. The compounds prepared with the trifluoromethanesulphonate anion were observed to decompose when a specific temperature was reached, whereas those with the tetrafluoroborate anion slowly decomposed over a wider temperature range.

The formation of ethylene oxide from pyrolysis of the N - (2 - hydroxyethyl) pyridinium (9a) has previously been reported. ${ }^{2}$ Attempts to prepare other small rings, however, failed: instead aldehydes were formed via a 1,2 hydrogen migration (\%e, 13b) or a 1,2 methyl group migration (10e). Intramolecular nucleophilic attack by 0 occurred preferentially with the longer chain analogue; 5 -aminopentanol (6) was cyclised to tetrahedropyran in 78% yield. The attempted preparation of morpholine from N - (2 - hydroxyethyl) ethylene diamine (8) yielded an unidentifiable mixture of products.

Preparation of pyridiniums from diamines. 1,6Diaminohexane with 2,4,6-triphenyl- and 2,4-dimethyl

[^0]
Y

$\begin{array}{ll}\mathrm{BF}_{4}{ }^{10}{ }^{10} \\ \mathrm{CF}_{3} \mathrm{SO}_{3} & 10\end{array}$
$\mathrm{ClO}_{4} \quad 1 \mathrm{c}$

R
H
$\mathrm{H} \quad 3$
$\mathrm{CH}_{3} 4$

7

Y $\mathrm{BF}_{4}{ }^{2 \mathrm{am}}$ $\mathrm{CF}_{3} \mathrm{SO}_{3} 2 \mathrm{~b}$

15
36

8

- 6 - phenylpyrylium gives the bispyridiniums. ${ }^{7}$ We have previously studied the reactions of $2,4,6$, - triphenylpyrylium tetrafiuoroborate (1a) with 1,2-diaminoethane (15), 1,3-diaminopropane (16), 1,4 - diaminobutane (17) and 1,12 - diaminododecane: the first two gave the monopyridinium ${ }^{2}$ and the others afforded bis - pyridiniums. ${ }^{\text {a }}$
It was reasoned that diamines when reacted with suitable pyryliums would give aminoalkylpyridiniums which could be acylated or thioacylated; intramolecular cyclisation should then give heterocycles, c.g. 1,2-diamine would give dihydro - oxa- and -thia - zoles, whereas 1,3 diamine would give perhydro oxa- and -thia - zines.
In this paper we describe the reactions of five diamines (15-19) with the triphenyl (1) and pentacyclic (2) pyryliums; the general procedure ${ }^{6}$ gave the pyridiniums in good yield (Table 3). Reaction of the dibenzoxanthylium trifluoromethanesulphonate (2b) with 1,4-diaminobutane (17) gave a product that was characterised as the bis trifluoromethanesulphonate salt.

Table 1. Pyridinium salts from amino alcohols

Prodvet no.	Amino-eleohal Name	No.	Pyryllum syatem	Anion	Procedure	Yield 5	M.P. ${ }^{\circ} \mathrm{C}$	Recrysuluinatlon eolvent	$\begin{gathered} \text { Cryatal } \\ \text { form } \end{gathered}$	c	und \% H	N	Molecular formula	C^{H}	quired H
8	3-aminoethanol	3	Pentagyelic	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	C	02	221-223	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	needlen	85.3	4.7	2.5	$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$	85.1	4.7
10e	1-amino-2-propanal	4	Triphenyl	BF_{4}	A	10	202-204	EtOH	needles	68.6	5.2	2.7	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{NO}$	E8. 8	3, 3
100	1-amino-2-propanol	1	Pentacyelic	$\mathrm{Cr}_{3} \mathrm{SO}_{3}$	c	86	244-246	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	pripme	85.3	5.0	2.4	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$	B5, 6	4.8
11a	3-amino-1-propanal	B	Tripheqyl	EF.	A	89	191-103 ${ }^{\text {a }}$	EtOH	priame	-	-	3.0	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{NO}$		
11d	3-amino-1-propanal	5	Pantacyelic	BF_{4}	8	71	122-124	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	primes	71.2	3.7	2.8	$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BP}_{4} \mathrm{NO}$	71.3	5.5
114	1-atmino-1-propaniol	3	Pentaegelic	$\mathrm{Cr}_{3} \mathrm{SO}_{3}$	C	06	208-200	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Mr}_{2} \mathrm{CO}$	noedles	85.5	3.3	2.2	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$	65.6	4.8
12 l	8-amino-1-pemtanol	6	Triphengl	Br_{4}	A	71	201-203	EtOH	needles	89.4	5.8	2.0	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{BF}_{4}{ }^{\mathrm{NO}}$	68.8	8. 4
12d	s-emino-1-pentunol	6	Pentacyelic	BF_{4}	B	72	181-163	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{M} \pm_{2} \mathrm{CO}$	priams	71.4	8.1	2.8	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{NO}$	22.0	8.0
12.	b-amino-1-pentanol	8	Pentacyclio	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	c	11	219-221	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Ne}_{2} \mathrm{CO}$	priome	86.8	8.8	2. ${ }^{\text {a }}$	$\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$	86.6	6.4
13a	2-amino-1-butabol	7	Triphenyl	BF_{4}	A	90	132-134	EtOH	priaras	80.2	8.5	2.9	$\mathrm{C}_{2} \mathrm{~T}^{\mathrm{H}}{ }_{28} \mathrm{BF}_{4} \mathrm{NO}$	68.4	3.8
136	3-amino-1-butanol	7	Triphenyl	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	A	82	86-58	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	primma	64.0	5.1	2.4	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$	83.5	4.8
14*	N-(2-hydroxyethyl) -thylendilimine	8	Pentacyelic	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	C	83	187-18\%	$\mathrm{It}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	priams	63.9	8.2	4.6	$\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	64.4	5.2

" Lut.2 m.p. 188.180°.
Table 2. Thermolysis of hydroxy-alkyl pyridinium salts

Salt no.	Temp. or	Conditions Pressure mm	Flux equiv.	Product	
9e	180	760	1	$\mathrm{CH}_{3} \mathrm{CHO}$	Yield $\%$
14e	190	15	0.1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$	54
12 e	170	15	0.1	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{O}$	85
13 b	120	15	0.1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$	78

> 2,4,6-Triphenylpyridine.
> b Products identified by ${ }^{1} \mathrm{H}$ NMR.

13

$\begin{array}{ll}1 & 11 \\ 3 & 12\end{array}$

Y BF_{4}
$\mathrm{CF}_{3} \mathrm{SO}_{3}$ CIO.
$\mathrm{BF}_{4} \mathrm{CF}_{3} \mathrm{SO}_{3}$

Scheme 1. Pyridiniums from amino-alcohols.

Previously 4,5-dihydro-1,3-oxa- and -thia - zoles have been prepared by base induced intramolecular ring closures in $2-\mathrm{N}$ - acyl- ${ }^{9}$ or $2-\mathrm{N}$ - thioacyl - amino bromoethanes ${ }^{10}$ (Scheme 3i). These acyl compounds are prepared from unstable and toxic 2 - aminobromoethanes. 4,5-Dihydro - 1,3-oxazoles ${ }^{11}$ and 5,6-dihydro - (4H) - 1,3-oxazines ${ }^{116.12}$ (Scheme 3ii) have also been
prepared from the reaction of benzaldehydes with azidoalcohols and by the reaction of benzonitriles with amino - alcohols in the presence of catalysts such as. ZnCl_{2}, $\mathrm{Cd}(\mathrm{OAc})_{2}$ and $\mathrm{Mn}(\mathrm{OAc})_{2}{ }^{13}$

2 - Aminophenyl - 5,6 - dihydro - (4H) - 1,3-oxazines and thiazines have been prepared by isomerisation of azetidine ureas ${ }^{14}$ and thioureas, ${ }^{19}$ (Scheme 3iii) and the latter more recently by reacting phenyl isothiocyanate with 3 - aminopropanol ${ }^{15}$ (Scheme 3iv). Anilines with ω bromoalkylisothiocyanates (prepared using thiophosgene and ω - bromoalkylamine hydrobromides) gave 1,3thiaza - heterocycles, ${ }^{16}$ (55% overall for 2 -iminophenyl - 4,5,6,7 - tetrahydro - (3H) - 1,3 - triazepine) (Scheme 3v).

N - Acylaminoalkylpyridiniums. N - Aminoethyl - 2,4,6 - triphenylpyridinium (20c) and dibenzoacridinium (2Ac) were acylated (Table 4) smoothly (average yield 84\%). When 2,4,6 - triphenylpyridine was the leaving group, internal cyclisation to the required 4,5-dihydro-oxazole ($\mathbf{2 5 c} \mathrm{f}$) did not take place in refluxing ethanol or butanol. The corresponding dibenzoacridinium derivatives (26e, 27e) with the more nucleofugic group (ca. $900 \times$ faster 3) did decompose in refluxing dioxan to give the oxazoles (26f) (27f). See Table 5 and Scheme 4. Table 6 reports ${ }^{1} \mathrm{H}$ NMR of the heterocycles prepared.

The analogous 2 - methyloxazole (20i) was not isolated from the decomposition of the acylaminoalkyldibenzoacridinium (28e).

N - (3 - Aminopropyl) - 5,6,8,9 - tetrahydro - 7 phenyldibenzo[c,h]acridinium trifluoromethanesulphonate (21e) was smoothly benzoylated at $20^{\circ} \mathrm{C}$ and internal cyclisation to the 2 - substituted - 5,6-dihydro (4H) - 1,3-oxazines (31f) (32i) was effected in high yield in refluxing dioxane (Table 5).

Acylation of the aminobutyldibenzoacridinium (22e)
Table 3. Pyridinium salts from diamines

$\begin{aligned} & \text { Silt } \\ & \text { no. } \end{aligned}$	Altached alkylamino	l'yrultice lea:ing group	Anson	Acylatang agent	Procedure	Yicld \%	M.P. ${ }^{\circ} \mathrm{C}$	Itecrystalliation Eolvent	Crystal form	C	$\begin{gathered} \text { ound } \\ \mathrm{H} \end{gathered}$	N	Atolecular formula	C	$\underset{H}{\text { iequirer }}$	${ }_{N}$
25 c	- $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{NH}_{2}$	Triphenyl	ClO_{4}	PhCOCl	A	84	210-212	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	needles	88.9	5.0	5.0	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}$	69.2	4.9	5.0
28 e	- $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	Pentacyclic	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	4-MeC ${ }_{6} \mathrm{H}_{4} \mathrm{COCl}$	\wedge	62	204-206	EtOH	priam:	67.8	4.9	4.1	$\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	68.1	4.9	4.2
$27 e$	$-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	Pentacyelic	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	$4-\mathrm{ClC}_{6}{ }^{11} 4 \mathrm{COCl}$	A	84	151.153	n -hexane/ $/ \mathrm{MA}_{2} \mathrm{CO}$	priama	64.4	4.3	4.0	$\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{CrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	64.3	4.3	4.1
28 e	$-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	Fentacyelle	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	MeCOC	A	84	160-162	n-hexane/ $\mathrm{Me}_{2} \mathrm{CO}$	priama	65.0	4.8	4.6	$\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	64.6	4.9	4.7
30 c	$-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	Triphenyl	ClO_{4}	PhNCS	B	97	135-137	a	priama	65.1	4.8	7.0	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{CLN}_{3} \mathrm{O}_{4} \mathrm{~S}$	65.6	4.8	7.2
31 e	$-\left(\mathrm{CHH}_{2}\right)_{3} \mathrm{NH}_{2}$	Pentacycilic	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	4- $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COCl}$	\wedge	91	155-157	-	prieme	68.4	5.0	3.8	$\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	88.4	5.1	4.1
32 e	- $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$	Pentacycise	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	$4-\mathrm{ClC}_{6} \mathrm{HH}_{4} \mathrm{COCl}$	A	77	149-151	a	priams	64.9	4.4	3.9	$\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	S4.7	4.5	4.0
34c	- $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$	Triphenyl	CLO_{4}	Phncs	B	88	105-107	-	priam:	65.7	6.7	5.1	$\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{CLN}_{3} \mathrm{O}_{4} \mathrm{~S}$	66.0	7.0	5.0
36b	$-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	Triphenyl	$\mathrm{CF}_{3} \mathrm{SO}_{3}$	4-MeC ${ }_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}$	A	74	87-89	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}$	plates	61.0	4.6	4.0	$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 2$	60.6	4.4	4.3

${ }^{2}$ Triturated several times with $\mathrm{Et}_{2} \mathbf{O}$.
Table 5. Preparation of 1,3 - diheterocycles (1 from pyridinium altylamides and ureas

$\mathrm{NH}_{2}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{NH}_{2}$
n
215
316
417

19
$\mathrm{NH}_{2}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{Z}^{+} \mathrm{Y}^{-}$
n
20
21
22

23

24

Scheme 2. Pyridiniums from diamines (see Scheme 1 for disignation of \mathbf{Z} and Y).

$\mathrm{ArCHO}+\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}_{3}$

$n=2,3$
iii

$X=0.5$

iv
$\mathrm{PhNCS}+\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ HCl HCl

$v \quad \mathrm{ArNH} 2+\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NCS}$ \qquad

Scheme 3.

ก	X	R	
2	0	Ph	25
		4-MeC ${ }_{6} \mathrm{H}_{4}$	26
		$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	27
		Me	28
		PhNH	29
2	S	PhNH	30
3	0	$4-\mathrm{MeC}_{8} \mathrm{H}_{4}$	31
		$4-\mathrm{CIC}_{6} \mathrm{H}_{4}$	32
		PhNH	33
3	S	PhNH	34
4	S	PhNH	35

Scheme 4. (See Scheme 1 for designation of Z and Y).
and decomposition in refluxing dioxane led to mixed products. Presumably a competing reaction, the formation of N - acylpyrrolidine is taking place. Attempts to acylate the bis - trifluoromethanesulphonate salt in excess triethylamine failed.

N - Phenyl, N^{\prime} - (alkylpyridiniumyl) thioureas and ureas. Reaction of N - aminoethyl - 2,4,6 - triphenylpyridinium ($\mathbf{2 0 c}$) with phenyl isothiocyanate proceeded readily to give the thiourea ($\mathbf{3 0} \mathbf{0}$) (97%). This decomposed readily in ethanol and, after separation of the triphenyl pyridine by column chromatography and neutralisation of the residue, 4,5-dihydro - 2 - aminophenyl - 1,3 thiazole (30I), identified by ${ }^{13} \mathrm{C}$ NMR, was obtained (51\%).

This scheme was extended to 3 - aminopropyl - 2,4,6triphenylpyridinium (21c) which reacted with phenyl isothiocyanate to give the corresponding thiourea (34c)
(88\%). Intramolecular cyclisation to give 2 - aminophenyl - 5,6 - dihydro - (4H) - 1,3-thiazine perchlorate (341), (72\%) proceeded rapidly in n - butanol. From the N - (3aminopropyl)dibenzoacridinium trifluoromethanesulphonate (21e) a one pot preparation of the thaizine (34f) was accomplished (44%) without isolation of the intermediate thiourea.

The bis - triffuoromethanesulphonate salt of the N-(4 - aminobutyl)dibenzoacridinium (22e) was stable to phenyl isothiocyanate; preparation of the N - phenyl, N^{\prime} - (4 - aminobutyl) thiourea and reaction with the dibenzoxanthylium trifluoromethanesulphonate (2b) gave a one pot preparation of 2 - iminophenyl - 4,5,6,7 - tetra-hydro-(3H)-1.3-thiazepine (35t) (33\%) Table 5.

Two tautomeric forms exist for these 1,3-thiaza heterocycles:

For the thiazine ring system some authors favour the imino (exo) form and some the amino (endo) form ${ }^{15}$ cf
respectively 348 and $34 f^{\prime}$. For the thiazepine ring system (cf $35 f$) it has been shown by ${ }^{1} \mathrm{H}$ NMR that the imino form predominates since when the double bond is exocyclic the $\delta_{\mathrm{N}-\mathrm{CH}_{2}}$ value is lower, ${ }^{16}$ imino $\delta_{\mathrm{N}-\mathrm{CH}_{2}} \approx 3.32$; amino $\delta_{\mathrm{N}_{-} \mathrm{CH}_{2}}=3.57$).

Phenyl isocyanate was reacted with the N - (2 -aminoethyl)- and the N - (3 - aminopropyl) - dibenzoacridiniums (20 e) and (21e), respectively. The intermediate ureas 29 e and 33 e respectively, were decomposed without isolation to yield 2 - aminophenyl - 4,5 dihydro - 1,3-oxazole (29i) (57%) and 2 -aminophenyl 5,6 - dihydro - (4H) - 1,3-oxazine (331) (80\%). Although nitrogen is more nucleophilic than oxygen we have found that nucleophilic attack occurred by the latter to form for example the aminophenyloxazine rather than a tetrahydro - $(1 H)$ - 3 - phenylpyrimidin - 2 - one. ${ }^{17}$ The oxygen is presumably activated by the presence of the two adjacent electron donating nitrogens (Scheme 4).
N-2-(Toluene - p-sulphonamido) ethyl pyridiniums. Toluene - p-sulphonyl chloride was reacted with the N (2 - aminoethyl)dibenzoacridinium trifluoromethanesulphonate (20e) to prepare a precursor for toluene - psulphonylaziridine (Scheme 5). However the intermediate tended to decompose to dibenzoacridine in the reaction media at 10°. Reaction of toluene - p - sulphonyl chloride with N - (2 - aminoethyl) - 2,4,6-triphenylpyridinium trifluoromethanesulphonate (20b) gave the sulphonamide (36 b) but the intermediate was stable to pyrolysis, ethoxide and triethylamine. The pyridine N CH_{2} bond could not be cleaved.
N - (4 - Ethylpiperazino) - and N - (4 - methylpiperidino) - pyridiniums. Attempts to prepare 1,4. diazabicyclo[2.2.2]octane and 1 - azabicyclo[2.2.1]heptane (Scheme 5) by reaction of dibenzoxanthylium trifluoromethanesulphonate (2b) with 4 - (amino-

endo $\mathrm{C}=\mathrm{N}$ $34 f$
exo $C=N$
$34 r^{\prime}$

23b/23e

Scheme 5. (See Scheme 1 for disignation of \mathbf{Z} and Y).
ethyl)piperazine and 4 - (aminomethyl)piperidine respectively failed. The pentacyclic system with the piperidino amine was unstable-the intermediate could not be characterised. Use of the $2,4,6$ - triphenylpyrylium trifluoromethanesulphonate (1b) gave stable intermediates (2 Ab) but decomposition of the pyridiniums yielded polymeric material. It has been established recently ${ }^{13}$ that pyridiniums with N - aminoethyl (or other 1,3 - aminoalkylpyridiniums) are unstable due to the facile formation of a three membered ring (which polymerises) and the leaving pyridine.

EXPERNENTAL

'H NMR spectra were recorded with a Perkin-Elmer R-12 spectrometer using internal $\mathrm{Me}_{4} \mathrm{Si}$ as a standard. IR spectra were obtained on a Perkin-Elmer 297 spectrophotometer. M.ps were recorded on a hot stage apparatus and are uncorrected.
The following compounds were prepared using standard literature procedures: 2,4,6 - triphenylpyrylium $\mathrm{BF}_{4}{ }^{-}$m.p. 249-251 ${ }^{\circ}$ (lit. ${ }^{4}$ m.p. 253-255 $), \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$m.p. 252-254 (lit. ${ }^{5}$ 257-259) and ClO_{4}^{-}m.p. 286-2880 (lit. ${ }^{19}$ m.p. 290 ${ }^{\circ}$); 5,6,8,9 - tetrahydro - 7 phenyldibenzo[c,h]xanthylium $\mathrm{BF}_{4}{ }^{-}$m.p. $258-260^{\circ}$ (lit. ${ }^{20}$ m.p. 265°), $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$m.p. $301-303^{\circ}$ (lit. ${ }^{4}$ m.p. 304°).

Prepanation of N - substituted - 2,4,6-triphenylpyridinium and N - substituted $5,6,8,9$ - tetrahydro - 7 - phenyldibenzo $[c, h]$ acridinium BF_{4}^{-}and $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$salts from amino alcohols (The pyridiniums were prepared following the previousiy determined general procedures. ${ }^{6}$

Procedure A. To a suspension of the pyrylium (0.01 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 ml) was added dropwise a mixture of the aminoalcohol (0.01 mol) and $\mathrm{Et}_{3} \mathrm{~N}(0.01 \mathrm{~mol})$. The resulting soln was stirred for 1 hr at 20°. AcOH (10 drops) was added and the red soln stirred overnight. Dilution with ether (150 ml) yielded crystals which were filtered off, washed with water (5 ml), ether $(10 \mathrm{ml})$ and dried.

Procedure B. As A above except that a gum was obtained on dilution with ether which was crystallised by stirring in ice.
Procedure C. As A above except that the product was precipitated with ether after 3 hr at 20°.
Thermolysis of hydroxy - alkyl pyridinium salts. The pyridinium salt, intimately mixed with $2,4,6$ - Iriphenyl pyridine, ${ }^{4}$ was heated in an oil bath in vacuo (15 mmHg). The distillate was collected in a trap immersed in a solid CO_{2} /acetone cooled Dewar flask.

Preparationof N - substituted pyridinium and acridinium tetrafiuonoborate and infifuoromethanesulphonate salts from diamines
Procedure A. To a suspension of the pyrylium (0.01 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) was added dropwise a mixture of the diamine (0.01 mol) and $\mathrm{Et}_{3} \mathrm{~N}$ (0.01 mol). After stirring for 1 hr at 20° AcO H (10 drops) was added and the soln stirred for 3 hr . Dilution with ether (100 ml) yielded crystals which were filtered off. washed with water (5 ml), ether (10 ml) and dried.
Procedure B. As A above except that the reaction was carried out at 0°.
Procedure C. As A above except that absolute EtOH was used as solvent and the reaction stirred overnight.

Functionalisation of N - substituted pyridinium alkylamines

Procedure A. The pyridinium alkylamine (0.01 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 ml) was treated dropwise with $\mathrm{Et} 3 \mathrm{~N}(0.01 \mathrm{~mol})$ followed by the acylating agent (0.01 mol). After stirring for 3 hrs at 20° the soln was shaken with water ($2 \times 20 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo (15 mmHg). The resulting crystalline product was washed with ether (20 ml).
Procedure B. To a soln of the pyridinium alkylamine (0.01 mol) in CHCl_{3} (40 ml) was added a soln of phenyl isothiocyanate (0.012 mol) in CHCl_{3} (10 ml). After stirring for 2 hr at 20° the solvent was removed in vacuo ($15 \mathrm{mmH}_{8}$) and the resulting crystals triturated with ether (20 ml).
The pentacyclic pyridinium alkylbenzamide
trifluoromethanesulphonates $25 e, 27 e, 31 \mathrm{e}, 32 \mathrm{e}$, were decomposed according to the following general procedure: The benzamide (0.008 mol) in dioxan (75 ml) was refluxed for the appropriate length of time (Table 5). Any insoluble material was filtered off and the solvent removed in vacuo (15 mmHg). The residue was extracted with hot water ($3 \times 25 \mathrm{ml}$) and the combined extracts basified with solid $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~g})$. The free amine was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in bacuo (15 mmHg).
2-Aminophenyl - 4,5-dihydro - 1,3 - oxazole (29). Compound $200(3.26 \mathrm{~g}, 0.006 \mathrm{~mol})$ in dioxan (50 ml) was treated with phenyl isocyanate ($0.71 \mathrm{~g}, 0.006 \mathrm{~mol}$) and warmed on a water bath. After 1 hr the soln was refluxed for 7 hr , cooled, and the solvent removed in vacuo (15 mmHg). The residue was extracted with hot water ($3 \times 30 \mathrm{ml}$) and the combined aqueous extracts basified with solid $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~g})$. The free amine was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent removed in vacuo (15 mmHg) to yield the oxazole ($0.42 \mathrm{~g} .57 \%$). 2-Aminophenyl - 45 - dihydro - 1,3. thiazole (301). Compound $30 \mathrm{c}(5.9 \mathrm{~g}, 0.01 \mathrm{~mol}$) was refluxed for 3 hr in abs EtOH (50 ml). After cooling to 0°, the resulting 2,4,6-triphenypyridine was filtered off and the solvent removed in vacuo (15 mmHg). The thiazoline perchlorate was purified by column chromatography (silica) using EtOAc/light petroleum b.p. $60-80^{\circ}$ ($75: 25$) as eluant and treated with $\mathrm{KOH}(1.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ to yield the 2 - aminophenylthiazole ($0.9 \mathrm{~g}, 51 \%$).
2-Aminophenyl - 5,6 - dihydro - (4H) - 1,3 - oxazine (33). Compound $21 \mathrm{e}(3 \mathrm{~g}, 0.0053 \mathrm{~mol}$) in dioxan (50 ml) was treated with phenyl isocyanate ($0.63 \mathrm{~g}, 0.0053 \mathrm{~mol})$. The procedure as for 29 gave 2 - aminophenyl oxazine ($0.75 \mathrm{~g}, 80 \%$).
2-Aminophenyl - 5,6 - dihydro - (4 H) - 1,3 - thiazine HClO_{4} (34). Compound $34 \mathrm{c}(6 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{n}-\mathrm{BuOH}(50 \mathrm{ml})$ was refluxed for 3 hr . After cooling to 0° the ppt was filtered off and the solvent removed in vacuo (15 mmHg). The resultant oil was triturated with ether ($3 \times 10 \mathrm{ml}$) to yield the perchlorate $(2.1 \mathrm{~g}$, 72\%).
2-Aminophenyl - 5,6-dihydro - (4H) - 1,3-thiazine (34). Compound $21 \mathrm{e}(2.15 \mathrm{~g}, 0.004$ mol) in dioxan (35 ml) was treated with phenyl isothiocyanate ($0.54 \mathrm{~g}, 0.004 \mathrm{~mol})$. The procedure as for 29 gave the dihydro - 1,3 - thiazine ($0.34 \mathrm{~g}, 44 \%$).
2-Iminophenyl - 4,5,6,7-tetrahydro - (3H) - 1,3 - thiazepine (355). Compound 2 b ($1.04 \mathrm{~g}, 0.002 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 ml) was treated with a mixture of N^{\prime} - (4-aminobutyl) - N - phenyl thiourea ($0.46 \mathrm{~g}, 0.002 \mathrm{~mol}$) (prepared by treating 1,4 - diaminobutane (0.005 mol) in $\mathrm{Et}_{2} \mathrm{O}$ (25 ml) with phenyi isothiocyanate (0.005 mol) and used as crudel and $\mathrm{Et}_{3} \mathrm{~N}$ (0.002 mol). After stirring for 1 hr at 20° AcOH (5 drops) was added and stirring was continued for 1 hr . Dioxan (50 ml) was added and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ distilled off. The soln was refluxed for 6 hr , evaporated to dryness in vacuo (15 mmHg) and the residue extracted with hot water $(2 \times 30 \mathrm{~m})$). Basification with solid $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g})$, extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$, drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of the solvent in vacuo (15 mmHg) gave the 1,3 - thiazepine (0.135 g . 33%).

Acknowledgements-We wish to thank the S. R. C. for financial assistance (to R. T. L.). We are grateful to the Universite Pierre et Marie Curie, Paris, for leave of absence, and to C.N.R.S. and N.A.T.O. for financial support (to G.L.).

REFERENCES

'For a review see A. R. Katritzky, Tetrahedion 36, 679 (1980).
${ }^{2}$ A. R. Katritzky, J. B. Bapat, R. M. Claramunt-Elguero, F. S. Yates, A. Dinculescu, A. T. Balaban and F. Chiraleu, J. Chem. Res. (M) 4783 (1978).
${ }^{3}$ A. R. Katritzky, G. Musumarra and K. Sakizadeh, Tetrahedron Lett. 21, 2701 (1980).
${ }^{4}$ R. Lombard and J.-P. Stephan, Bull. Soc. Chim. Fr. 1458 (1958).
'A. R. Katritzky, A. M. El-Mowafy, L. Marzorati, R. C. Patel and S. S. Thind, J. Chem. Res. (S) 310 (1980); J. Chem. Res. (M) 4001 (1980).
${ }^{6}$ A. R. Katritzky, R. H. Manzo, J. M. Lloyd and R. C. Patel,

Angew. Chem. Internat. Edn. 19, 306 (1980); A. R. Katritzky, J. M. Lloyd and R. C. Patel, in preparation.
${ }^{\top}$ E. A. Zvezdina, M. P. Zhdanova, V. A. Bren and G. N. Dorofeenko, Khim. Geterotsikl. Soedin 944 (1978); Chem. Abstr. 89, 179817j (1978).
'B. P. Leddy, M.Sc. Thesis, University of East Anglia, 1975.
${ }^{9}$ S. Gabriel and Th. Heymann, Ber. Disch. Chem. Ges. 23, 2493 (1890).
${ }^{10}$ S. Gabriel and Ph. Heymann. Ibid. 23, 157 (1890).
${ }^{11}$ J. H. Boyer and J. Hamer, J. Am. Chem. Soc. 77, 951 (1955); ${ }^{\text {bJ. }}$
H. Boyer, F. C. Canter, J. Hamer and R. K. Putney, Ibid. 78, 325 (1956).
${ }^{12}$ Z. Eckstein, K. Majewski and P. Gluzinski, Roczniki Chem. 36, 73 (182).
${ }^{13} \mathrm{H}$. Witte and W. Seeliger, Liebigs Ann 9% (1974).
${ }^{14} \mathrm{Y}$. Iwakura, A. Nabeya, T. Nishiguchi and Y. Ichikawa, J. Org. Chem. 30. 3410 (1965).
${ }^{15} \mathrm{M}$. Tisier, Tetrahedron Lett. (12), 12 (1959).
${ }^{16}$ D. L. Garmaise, G. Y. Paris and G. Efthymiadis, Can. J. Chem. 49, 971 (1971).
${ }^{17}$ Y. Iwakura, T. Nishiguchi and A. Nabeya, J. Org. Chem. 31, 1651 (1966).
${ }^{13}$ A. R. Katritzky, K. Burgess and R. C. Patel, in preparation.
${ }^{19}$ A. T. Balaban and C. Toma, Tetrahedron Suppl. 7, 1 (1966).
${ }^{20}$ A. R. Katritzky and S. S. Thind, J. Chem. Soc. Perkin I 1895 (1880).

[^0]: \dagger Present address: Department of Chemistry, University of Florida, Gainesville, FL 32611, U.S.A.

