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ABSTRACT: The facile oxidation of alcohols to carboxylate salts and H2 is
achieved using a simple and readily accessible cobalt pincer catalyst
(NNNHtBuCoBr2). The reaction follows an acceptorless dehydrogenation pathway
and displays good functional group tolerance. The amine−amide metal−ligand
cooperation in cobalt catalyst is suggested to facilitate this transformation. The
mechanistic studies indicate that in-situ-formed aldehydes react with a base
through a Cannizzaro-type pathway, resulting in potassium hemiacetolate, which
further undergoes catalytic dehydrogenation to provide the carboxylate salts and
H2.

The oxidation of primary alcohols to carboxylic acid is one of
the fundamental transformations in organic synthesis, which
finds interest in basic research, complex molecular synthesis,
and industrial production. In conventional methods, the
oxidation of alcohols to carboxylic acids is carried out with
metal oxidants such as potassium permanganate, pyridine
dichromate, chromium oxide, and sodium hypochlorite.1

These traditional methods require excessive toxic oxidants,
and such synthesis produces a stoichiometric amount of
organic and inorganic waste. Often, these synthetic procedures
are not compatible with other functional groups and undergo
deleterious side reactions. In the last two decades, the
acceptorless dehydrogenative oxidation of alcohols has
received great attention because the process is greener, and
dihydrogen and water are the only byproducts.2

In recent years, homogeneous noble metals such as Rh, Ru,
and Ir complexes have been developed for the oxidation of
alcohols to carboxylic acids. Grützmacher and coworkers have
reported a diolefin-amido-tridentate-ligated rhodium catalyst
for the oxidation of alcohols to acid salts using sacrificial
acceptors such as cyclohexanone, 1-hexene, or O2/DMSO.3

Elegant and robust ruthenium complexes containing tridentate
ligands,4−6 N-heterocyclic carbene (NHC) ligands,7 and
bidentate ligands8 catalyzed the acceptorless dehydrogenation
of alcohols under convenient experimental conditions. Cp*Ir-
(III)9 and bidentate phosphine or NHC-ligated iridium
complexes10 have been reported in which the reaction
proceeded in neutral water and basic solution, respectively.
Very recently, Ni,11 Fe,12 and Mn12,13 pincer complexes and

ZnO14-catalyzed oxidation of alcohols to carboxylic acids have
been reported. Thus the development of nontoxic, cheap, and
abundant base metal catalysts bearing different nonsensitive
donor atoms for this important transformation is desirable.
The cobalt-catalyzed oxidation of alcohols to carboxylic acids is
limited to two reports, which suffer from the use of excess

stoichiometric oxidant, a high catalyst load, and the use of a
heterogeneous catalyst with a limited substrate scope.15

Notably, there is no report on the cobalt-catalyzed oxidation
of alcohols to carboxylic acids that follows the borrowing
hydrogen methodology. Recently, we have reported a readily
accessible cobalt catalyst 1 prepared from NNNHtBu (N,N′-
(pyridine-2,6-diylbis(methylene))bis(2-methylpropan-2-
amine)) and its catalytic application in the synthesis of
disiloxanes and monohydrodisiloxanes.16 Our group is
interested in developing sustainable catalytic transformations
using alcohols. Using ruthenium and manganese catalysis, we
have reported the alkylation and olefination of nitriles and
ketones,17,18 cross-coupling of secondary alcohols,19 ketazine
synthesis from secondary alcohols,20 and selective deuteration
of primary and secondary alcohols.21 In a continuation of these
efforts, herein we report the simple cobalt-complex-1-catalyzed
oxidation of alcohols to carboxylic acids (Scheme 1a) in which
the process is empowered by an acceptorless dehydrogenation
methodology (Scheme 1b).
Benzyl alcohol was taken as a model substrate to optimize

the oxidation of alcohols to carboxylate salts using cobalt
catalyst 1 and potassium hydroxide base (taken in a
stoichiometric amount to balance the chemical reaction).
The use of other bases such as NaOH, CsOH, and LiOH was
not compatible in this catalytic system because they caused a
parallel self-condensation reaction. For example, with aliphatic
alcohols like ethanol and hexanol, the formation of unidentified
higher chain alcohols (gas chromatography (GC) analysis) was
observed. A preliminary experiment using benzyl alcohol (1
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mmol) and KOH (1.2 mmol) with catalyst 1 at 140 °C for 24
h provided the benzoic acid in 49% yield upon acidic work-up
(entry 1, Table 1). Furthermore, an increase in the base load

from 1.2 to 1.5 equiv enhanced the yield of benzoic acid to
81% (entry 2, Table 1). Performing a similar catalytic reaction
using 2 mol % of catalyst 1 and 1.2 equiv of KOH resulted in a
diminished yield (73%, entry 3, Table 1). Thus an experiment
using 2 mol % of catalyst 1 and 1.5 equiv of KOH was
performed, which provided benzoic acid in 93% yield (entry 4,
Table 1). Without a catalyst, the reaction of alcohols with a
base alone was performed, which failed to provide carboxylic
acid in an appreciable amount (entry 5, Table 1), and this
control experiment confirmed the necessity for a catalyst in this
transformation. Furthermore, the use of simple CoBr2 (2 mol
%) as a catalyst provided benzoic acid in 7% yield, reiterating
the importance of the designed cobalt pincer catalyst 1.
With the optimized reaction condition in hand, an

assortment of alcohols were subjected to the oxidation to
develop the scope of the reaction as well as to identify the
limitation of this catalytic protocol (Table 2). Arylmethanols
with electron-donating groups such as p-methyl, p-isopropyl,
and p-tert-butyl provided the corresponding carboxylic acids

2b−d in very good yield. p-Methoxybenzyl alcohol and 3,5-
dimethoxybenzyl alcohol provided the products 2e and 2f in
95 and 86% yield, respectively. Notably, p-methylthiobenzyl
alcohol was tolerated by cobalt catalysis, which resulted in p-
methylthiobenzoic acid 2g in 78% yield. The electron-
withdrawing group on arylmethanols diminished their
reactivity toward the oxidation reaction, which resulted in
comparatively low yields of the corresponding carboxylic acids.
Thus m-chloro, p-bromo, and p-fluorobenzyl alcohols were
subjected to the cobalt-catalyzed oxidation reaction and the
products 2h−j, obtained in 61−82% yield. Aryl halides are
known to undergo a reduction reaction to the corresponding
arenes when subjected to transition-metal catalysis. However,
no such arene formation was observed under this catalytic
condition (entries 8−10, Table 2). Similarly, the reaction of p-
trifluoromethyl- and p-nitrobenzyl alcohol provided the
carboxylic acids 2k and 2l in 71 and 55% yields, respectively.
Despite the low yield observed for p-nitrobenzoic acid (2l), it
is gratifying to note that the nitro functionality is tolerated;
nitro compounds are incompatible in iridium-catalyzed
oxidation reactions and are under-investigated in this trans-
formation. Biaryl methanols are also tolerated. When 1-
naphthalenemethanol was subjected to the reaction, 1-
naphthalene carboxylic acid (2m) was isolated in 67% yield.
Heteroarene functionalities are susceptible to a hydrogenation
reaction under the acceptorless oxidation, where the catalyst
can utilize the hydrogen liberated from alcohol oxidation.
Remarkably, heteroarylmethanol compounds are well tolerated
in the cobalt-catalyzed oxidation reaction, although the
observed reactivity is low in comparison with that of other
arylmethanols. When 2-pyridinemethanol and 4-pyridineme-
thanol were subjected to oxidation, the corresponding
carboxylate salts 2n and 2o were isolated in 59 and 67%
yield, respectively. Furfuryl alcohol and p-aminobenzyl alcohol
provided the corresponding carboxylic acids 2p and 2q in poor
yield. The cobalt catalysis is very well compatible with diols.
Phthalic acid (2r) and terephthalic acid (2s) were obtained
from the corresponding diols in good yield. However, 2,6-
pyridinedimethanol provided the dicarboxylate salt 2t in only
49% yield.
Furthermore, the scope of the reaction was explored with a

variety of aliphatic primary alcohols in the catalytic synthesis of
carboxylic acid. A variety of aliphatic primary alcohols provided
moderate to good yields (Table 3). When ethanol and 1-
propanol were subjected to catalysis, potassium acetate and
potassium propanoate salts 3a and 3b were obtained in 67 and
73% yield, respectively. Long-chain linear alcohols such as 1-
hexanol and 1-heptanol underwent facile oxidation to provide
the carboxylic acids 3c,d in good yield. Similarly, cyclo-
butylmethanol, cyclohexylmethanol, and bicyclo[2.2.1]-
heptylmethanol were oxidized to the corresponding carboxylic
acids 3e−g in good yield. Phenethyl alcohol and 3-phenyl-
propanol were transformed to phenylacetic acid (3h) and 3-
phenylpropanoic acid (3i) in 75 and 81% yield, respectively.
Iridium catalysts were not compatible with alkene com-
pounds.10 Although ruthenium catalysts were tolerated, the
olefin functionality underwent in situ hydrogenation.5,6,8 On
the contrary, when cinnamyl alcohols were reacted with cobalt
catalyst 1 and a base, cinnamic acid (3j) was isolated in 78%
yield. Such selective oxidation of alcohol functionality by
catalyst 1, even in the presence of a competing olefin motif, is
remarkable. 1,5-Pentane diol and hexamethylene diol were also

Scheme 1. Catalytic Approach in Acceptorless
Dehydrogenation of Alcohols

Table 1. Optimization for Catalytic Dehydrogenation of
Alcohol Catalyzed by 1a

entry cat (mol %) base (equiv) time (h) yield (%)b

1 1 (1) 1.2 24 49
2 1 (1) 1.5 24 81
3 1 (2) 1.2 16 73
4 1 (2) 1.5 16 93
5c 1.5 24 3
6 CoBr2 (2) 1.5 24 7

aReaction conditions: Alcohol (1 mmol), catalyst, base, and toluene
(2 mL) were taken in a sealed tube and heated to 140 °C. bIsolated
yield of product after acidic work-up with 1 M HCl. cControl reaction
performed without catalyst.
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oxidized, and the corresponding dicarboxylic acids 3k and 3l
were isolated in 79 and 83% yield, respectively.
A series of experiments were performed to identify the

possible intermediates involved in the catalytic cycle. The
catalytic oxidation of benzyl alcohol with KOH in the presence
of mercury provided benzoic acid 2a in 82% yield (against 93%
yield in the absence of mercury; see Scheme 2a and Table 2),
indicating that the reaction proceeds with molecular
intermediates. Furthermore, GC analysis of the gas phase
collected from the catalytic reaction of alcohol with catalyst 1
confirmed the liberation of molecular hydrogen (Scheme 2b).
The amount of dihydrogen liberated from the catalytic
oxidation of alcohol was quantified by reacting 1 mmol of
benzyl alcohol in the presence of catalyst 1 with a
stoichiometric amount of KOH, which resulted in 46 mL of

water displacement in a gas buret that is equivalent to 2 mmol
of dihydrogen (Scheme 2c). Furthermore, the possible
involvement of a Cannizzaro reaction pathway was investigated
using both aromatic and aliphatic aldehydes. The reactions of
benzaldehyde and 1-hexanal with KOH in the absence of
catalyst 1 were tested, which provided benzoic acid and 1-
hexanoic acid in 69 and 67% yield, respectively (GC analyses,
Scheme 2d,e). These results indicate that the oxidation
processes by cobalt catalysis perhaps follow the Cannizzaro-
type reaction pathway. The reaction between benzaldehyde
and benzyl alcohol under catalytic conditions provided only
9% formation of benzyl benzoate (GC analysis, Scheme 2f),
further indicating the possible involvement of the Cannizzaro
pathway. When benzaldehyde was subjected to optimized
experimental conditions, a major amount of benzoic acid

Table 2. Cobalt-Catalyzed Synthesis of Carboxylic Acid Using Aryl Methanolsa

aReaction conditions: Alcohol (1 mmol), catalyst 1 (2 mol %), base KOH (1.5 equiv), and toluene (2 mL) were taken in a sealed tube and heated
to 140 °C. bCorresponds to isolated yield after acidic work-up using 1 M HCl. cReaction performed with alcohol (1 mmol), catalyst 1 (4 mol %),
and base KOH (3 equiv).
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(88%) and a minor amount of benzyl alcohol (12%) were
isolated (Scheme 2g). Furthermore, the noninvolvement of
ester formation was inferred from 1H NMR and GC
monitoring of this reaction progress, implying that the reaction
via Tishchenko pathway is unlikely (Scheme 2g). Ester
functionalities are not compatible in this dehydrogenation
process. Under standard experimental conditions, the reaction
of 1-hexanol and methylbenzoate provided only 13% formation
of 1-hexanoic acid and the complete formation of benzoic acid
(99%) resulting from ester hydrolysis (Scheme 2h).
Furthermore, the oxidation of alcohol in the presence of
water (instead of KOH) failed to provide the desired
carboxylic acid product (Scheme 2i), indicating that KOH
acts as an oxygen source for the formation of a carboxylate salt
through a Cannizzaro-type reaction.

Although more data are required, a plausible mechanism for
the oxidation of alcohols to carboxylic acid using catalyst 1 is
presented in Scheme 3. Upon reaction with a base, catalyst 1
underwent dehydrohalogenation to provide coordinatively
unsaturated intermediate I. The formation of intermediate I
from catalyst 1 was previously established by us.16

Furthermore, intermediate I reacts with alcohol, resulting in
O−H bond activation, and generates alkoxy-ligated inter-
mediate II. One of the amide arms in intermediate I acts as

Table 3. Cobalt-Catalyzed Synthesis of Carboxylic Acid
from Aliphatic Primary Alcoholsa

aReaction conditions: Alcohol (1 mmol), catalyst 1 (2 mol %), base
KOH (1.5 equiv), and toluene (2 mL) taken in a sealed tube were
heated to 140 °C. bCorresponds to isolated yield after acidic work-up
using 1 M HCl. cReaction performed using diol (1 mmol), catalyst 1
(4 mol %), and base KOH (3 equiv).

Scheme 2. Mechanistic Studies for Oxidation of Alcohol
Catalyzed by 1
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proton acceptor, which facilitates O−H bond activation and
becomes an amine arm in II. The β-hydride elimination of the
alkoxy ligand in intermediate II provides monohydrido cobalt
intermediate III and aldehyde. Intermediate III is probably in
equilibrium with the nonclassical hydrogen-coordinated IV,
and in the process, the amine donor in III becomes an amide
donor in IV. Intermediate IV liberates molecular hydrogen to
regenerate I and completes one loop in a catalytic cycle. The
amine−amide metal−ligand cooperation22,23 operating in the
catalyst facilitates both bond activation and formation and
allows the cobalt to exist in the same oxidation state (+2) in
intermediates I−IV. Free aldehyde reacts with the base and
undergoes a Cannizzaro-type reaction to generate potassium
hemiacetalate salt. The activated alcohol motif in potassium
hemiacetalate can react with I to generate an alkoxy-
coordinated intermediate II′, similar to that of II. Possible β-
hydride elimination from II′ provides potassium carboxylate
salt and intermediate III. Overall, two equivalents of hydrogen
are liberated (estimated experimentally) from this catalytic
transformation.
In summary, we have developed a highly efficient and simple

cobalt catalyst for the acceptorless dehydrogenative oxidation
of alcohols to carboxylate salts using KOH as a base. The
evolved two equivalents of hydrogen are the only byproducts
observed. The mechanistic investigation indicates that KOH
acts as a source for the second oxygen of the carboxylate salt,
and the reaction follows the Cannizzaro-type pathway. This
catalytic protocol is applicable to a wide range alcohols
including aromatic, aliphatic, and heteroaromatic alcohols.
Highly sensitive and competing functional groups such as
pyridyl, nitro, and olefin are well tolerated and retained in
products. Such selectivity and functional group tolerance are

notable. Remarkably, ethanol was oxidized to potassium
acetate, and the diols were successfully converted to
dicarboxylic acids. This phosphine-free simple catalytic system
can be a potential alternative to precious noble-metal catalysts
for the oxidation of alcohols to carboxylic acids.
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