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ABSTRACT: Experimental, spectroscopic, and computational studies are reported that provide an evidence-based mechanistic 

description of an intermolecular reductive C–N coupling of nitroarenes and arylboronic acids catalyzed by a redox active main group 

catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide, i.e. 1•[O]). The central observations include: (1) catalytic reduction of 1•[O] 

to PIII phosphetane 1 is kinetically fast under conditions of catalysis, (2) phosphetane 1 represents the catalytic resting state as observed 

by 31P NMR spectroscopy, (3) there are no long-lived nitroarene partial-reduction intermediates observable by 15N NMR spectroscopy; 

(4) the reaction is sensitive to solvent dielectric, performing best in moderately polar solvents (viz. cyclopentylmethyl ether); (5) the 

reaction is largely insensitive with respect to common hydrosilane reductants. On the basis of the foregoing studies, new modified 

catalytic conditions are described that expand the reaction scope and provide for mild temperatures (T ≥ 60 °C), low catalyst loadings 

(≥ 2 mol%), and innocuous terminal reductants (polymethylhydrosiloxane). DFT calculations define a two-stage deoxygenation 

sequence for the reductive C–N coupling. The initial deoxygenation involves a rate determining step that consists of a (3+1) 

cheletropic addition between the nitroarene substrate and phosphetane 1; energy decomposition techniques highlight the biphilic 

character of the phosphetane in this step. Although kinetically invisible, the second deoxygenation stage is implicated as the critical 

C–N product forming event, in which a postulated oxazaphosphirane intermediate is diverted from arylnitrene dissociation toward 

heterolytic ring opening with the arylboronic acid; the resulting dipolar intermediate evolves by antiperiplanar 1,2-migration of the 

organoboron residue to nitrogen, resulting in displacement of 1•[O] and formation of the target C–N coupling product upon in situ 

hydrolysis. The method thus described constitutes a mechanistically well-defined and operationally robust main-group complement 

to the current workhorse transition metal-based methods for catalytic intermolecular C–N coupling. 

1. INTRODUCTION 

Aryl- and heteroarylamines are common in pharmaceuticals, 

natural products, agrochemicals, and functional materials. 1 

Consequently, the efficient construction of C–N bonds has been 

the target of considerable innovation. In particular, 

developments in transition metal-catalyzed C–N coupling 

chemistry have shaped the dominant approach to arylamine 

synthesis. 2  Chief among these methods is the Buchwald-

Hartwig reaction (Figure 1A),3 which enables the net redox-

neutral nucleophilic substitution of aryl (pseudo)halide with N-

nucleophiles via Pd(0)/Pd(II) activation of the electrophilic 

partner through oxidative addition.4,5 A growing mastery over 

this important reaction has been enabled by increasingly 

detailed mechanistic understanding, 6  with progressive 

optimizations of reaction conditions,7  ligands,8  and catalyst 

precursors9 resulting in ever-improving scope and efficiency.10  

In an alternative approach, intermolecular C–N cross 

coupling can be achieved in an oxidative manner by the reaction 

of N-nucleophiles with arylboron reagents under aerobic 

copper-catalysis (i.e. Chan-Lam reaction, Figure 1B). In 

addition to the synthetic complementarity, this approach is 

supported in a practical sense by the impressive catalog of 

arylboron derivatives now available both commercially and by 

synthesis. 11  And as with the Buchwald-Hartwig reaction, 

considerable experimental effort has helped to decrypt 

significant aspects of the Chan-Lam mechanism,12 providing 

the basis for an increasingly reliable and predictive model of 

reactivity with this method.13  

As part of an ongoing program aimed at developing designer 

main group compounds as biphilic14 organocatalysts in organic 

synthesis, 15  we reported recently a reductive method for 

intermolecular C–N cross coupling. This method relies on an 

all-main-group system composed of an organophosphorus 

P(III)/P(V)=O redox catalyst and hydrosilane terminal 

reductant to transform nitroarenes and boronic acids into N-

arylamines through intermolecular C–N bond formation 

(Figure 1C).16 The chief attributes of this method include: (1) 

the use of precursors (i.e. nitroarenes) that are distinct from—

but no less accessible than—those used in established C–N 

cross coupling methods, and (2) unique chemoselectivities and 

functional group tolerance inherent to the all-main-group 

conditions of the PIII/PV=O catalytic manifold. 
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Figure 1. A) Redox neutral C–N cross coupling (Buchwald-

Hartwig). B) Oxidative C–N cross coupling (Chan-Lam). C) 

Reductive C–N (PIII/PV=O redox catalysis).  

To better understand the reductive P(III)/P(V)=O catalyzed 

C–N bond forming process and facilitate its further synthetic 

development, we were animated by several unresolved 

questions, including the following: (1) What is the nature of the 

turnover-limiting step in the catalytic C–N coupling reaction, 

and what is the role of the organophosphorus catalyst in this 

step? (2) What is the relationship of the catalytic C–N coupling 

reaction to related methods involving P(III)/P(V)=O-catalyzed 

nitroarene deoxygenation, and to what extent do the reactive 

intermediates coincide? (3) Can further improvements in 

reaction scope be attained, especially as informed through 

hypothesis-based experimentation within a mechanistic 

rationale?  

In this Article, we provide an integrated experimental, 

spectroscopic, and computational description of the biphilic 

organophosphorus-catalyzed reductive C–N coupling strategy 

that systematically delineates the nature of deoxygenative 

events of nitroaromatics especially in the context of the C–N 

bond formation. Among the key findings, we present herein: (1) 

a qualitative description of reaction parameters, culminating in 

a generally-improved set of reaction conditions that enable 

heretofore challenging coupling reactions of azaheterocyclic 

nitroarene and boronic acids partners; (2) competition 

experiments that differentiate the intermolecular C–N cross 

coupling reaction from previous P(III)/P(V)=O-catalyzed C–N 

forming methods, and weigh against the intermediacy of 

veritable arylnitrene intermediates along the C–N coupling 

pathway, (3) experimental spectroscopic and kinetic evidence 

that establish a P(III) resting state of the phosphetane catalyst 

and imply a rapid P(V)=O→P(III) turnover step for this small-

ring phosphacycle; (4) a computational description of the 

overall energy landscape for the C–N coupling reaction 

pathway with an explicit description of the importance of 

organophosphorus biphilicity through energy decomposition 

analysis of the turnover-limiting transition state. Through these 

results, we establish the P(III)/P(V)=O catalyzed 

intermolecular reductive C–N cross coupling of nitroarenes and 

arylboronic acids as an operationally robust and 

mechanistically well-defined main-group complement to the 

established transition metal-based methods for catalytic 

intermolecular C–N coupling. 

2. RESULTS 

2.1 Impact of Reaction Condition Variables.  

An evaluation of experimental variables for the 

organophosphorus catalyzed reductive C–N coupling of 

nitroarenes 2 and boronic acids was undertaken in order to 

provide a qualitative description of the parameter space that 

controls reaction yield and efficiency.  

2.1.1 Solvent dielectric influences yield. Prior optimization 

efforts had identified the high-boiling hydrocarbon m-xylene 

(ε=2.6) as a suitable solvent for reductive intermolecular C–N 

coupling. Specifically, coupling of nitrobenzene (2) and 

phenylboronic acid (3) in m-xylene proceeds with full 

conversion of starting material and an 86 % yield of product 

diphenylamine 4 over the course of 4 h at 120 °C. The ethereal 

solvent di-n-butyl ether (ε=3.1) performed similarly (Figure 2). 

However, with increasing solvent polarity a significant and 

non-monotonic effect of solvent on the reaction outcome was 

observed. Solvents of moderate polarity, such as cyclopentyl 

methyl ether (CPME, ε=4.8) and 1,2-dichlorobenzene (ε=9.9) 

lead to improved yields (entries 3-4), but further increases in 

solvent polarity (i.e. benzonitrile (PhCN, ε=26.0), N-methyl-2-

pyrrolidone (NMP, ε=32.0) and dimethyl sulfoxide (DMSO, 

ε=46.7) were shown to erode both the conversion and yield. On 

the basis of the foregoing experiments, CPME—which exhibits 

favorable process characteristics17—was selected as the solvent 

of choice for the further study. 

 

Table 1. Effect of hydrosilane loading and identity on the 

organophosphorus-catalyzed reductive C–N coupling reaction. 

Figure 2. Solvent effect evaluation on the organophosphorus-

catalyzed reductive C–N coupling reaction.a 

 

   

a Yields were determined through analysis by gas chromatography 

(GC) with the aid of dodecane as an internal standard. b 1,2-

dichlorobenzene. c Dielectric constant.  

Page 2 of 14

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

 
3 

 

a Yields were determined through analysis by gas chromatography 

(GC) with the aid of dodecane as an internal standard. b TMCTS = 

2,4,6,8-tetramethylcyclotetrasiloxane. c TMDS = 1,1,3,3-

tetramethyldisiloxane. 

2.1.2 Performance is maintained at low catalyst loading and 

temperature. The robustness of the phosphetane catalyst 1•[O] 

under conditions of catalysis allow for significant decreases in 

its loading. For instance, decrease in loading of 1•[O] to 5 mol% 

(Table 1, entry 2) or 2 mol% (entry 3) permits high conversion 

and yield, with the provision of a compensatory elongation of 

the reaction time to 10 h and 36 h, respectively. Relatedly, the 

catalytic transformation is retained with high yield even at 

temperatures down to 60 °C (Table 1, entries 4-5), emphasizing 

the high reactivity of the phosphetane catalyst.  

2.1.3 Numerous common hydrosilane reductants are viable. 

Our ‘first-generation’ conditions for PIII/PV=O catalyzed 

reductive C–N coupling called for the use of 2.0 equiv of 

phenylsilane (PhSiH3) as the terminal reductant with respect to 

limiting nitrobenzene (2) (Table 1, entry 1), but experiments 

show that fewer equivalents may be employed. Indeed, an 

excess of phenylsilane is not inherently required and loadings 

as low as 0.77 equiv lead to qualitatively similar reaction 

outcomes (entry 6); lower loadings do however lead to 

diminished conversion and yield (entries 7,8). Taking into 

consideration that the reductive conversion of nitrobenzene (2) 

to diphenylamine (4) is a two-fold reduction at N, the inference 

from these experiments is that all three Si–H reducing 

equivalents from phenylsilane can be leveraged for productive 

C–N coupling. With its low molecular weight and low effective 

mass per Si–H equivalent, phenylsilane could therefore be 

considered a rather efficient terminal reductant for the PIII/PV=O 

catalyzed C–N coupling reaction. We note, moreover, that 

hydrosilane equivalency shows no influence on reaction time 

(Table S2, Entry 12-26), which has implications for its 

mechanistic role in mediating PIII/PV=O catalysis (vide infra). 

The reaction does not strictly require PhSiH3 as the 

hydrosilane terminal reductant, but instead a wide range of 

common silicon-based reducing reagents are able to be 

interfaced with the PIII/PV=O catalyzed reductive C–N coupling. 

Along with Ph2SiH2 (Table 1, entry 9), a variety of siloxane-

based reductants including 1,1,3,3-tetramethyldisiloxane 

(TMDS, entry 10), 2,4,6,8-tetramethylcyclotetrasiloxane 

(TMCTS, entry 11), and poly(methylhydro)siloxane (PMHS, 

entry 12) are viable.18 Of these, PMHS is particularly attractive 

due to its ease of handling and low cost, recommending it for 

further method development.  

As previously observed, the aryl C–N coupling reaction is 

most effective when arylboronic acid coupling partners are 

employed. Even under optimal reaction conditions, the use of 

phenylboronic acid pinacol ester (Ph–Bpin) in place of 

phenylboronic acid (3) results in only trace formation of 

coupling product 4 (Table 1, entry13). The lower overall 

observed conversion (49%) is connected to substantial catalyst 

decomposition when the less-efficient boronate partner is 

employed.  

2.1.4 Modified conditions enable coupling of previously 

challenging partners. With an eye toward an expanded scope 

for the PIII/PV=O catalyzed reductive C–N coupling method, we 

sought to determine if the versatility of the reaction conditions 

observed in the foregoing sections would provide an 

opportunity to approach previously problematic classes of 

coupling partners. The reaction of 1-methyl-5-nitroindole (5) 

with 4-fluorophenylboronic acid (6) is an illustrative example 

(Table 2). When applying typical first-generation reaction 

conditions (entry 1), only 13% yield was obtained of the desired 

reductive coupling product 7. However, consistent with the 

solvent effect reported in Sect 2.1.1, a solvent change to CPME 

resulted in a somewhat improved yield (27 %, entry 2). Even 

more significantly, though, use of the hydrosilane reductant 

PMHS in m-xylene resulted in significantly improved yields 

(47%, entry 3). The beneficial solvent and hydrosilane effects 

are synergistic in this case, such that the reaction of 5 and 6 

conducted with PMHS in CPME provides coupling product 7 

in a preparatively useful yield (68%, entry 4).   

Table 2. Impact of reaction variables on reductive C–N 

coupling of heterocyclic nitroarenes.  

 

a Yields were determined through analysis by 19F NMR with the 

aid of 4-fluorotoluene as an internal standard. b Isolated yield in 

parenthesis. 

These ‘second-generation’ conditions (i.e. catalyst: 15 mol% 

1,2,2,3,4,4-hexamethylphosphetane oxide (1•[O]), reductant: 

poly(methylhydro)siloxane, solvent: CPME) have been found 

Entry Change from “standard 

conditions” 

Conv. (Yield) (%)a 

1 None 99 (96) 

2 5 mol% of 1•[O], 10 h  99 (95)  

3 2 mol% of 1•[O], 36 h 99 (93) 

4 80 °C, 20 h 99 (95)  

5 60 °C, 96 h 99 (93) 

6 0.77 equiv of PhSiH3  98 (94) 

7 0.66 equiv of PhSiH3  85 (79) 

8 0.33 equiv of PhSiH3  49 (46) 

9 3.0 equiv of Ph2SiH2  96 (88) 

10 3.0 equiv of TMDSc  93 (85) 

11 1.5 equiv of TMCTSb  99 (83) 

12 4.0 equiv of PMHS  99 (96) 

13 Ph-Bpin instead of PhB(OH)2 49 (trace) 

Entry SiH (equiv) solvent Yield (%)a 

1 PhSiH3 (2) m-xylene (0.25 M) 13 

2 PhSiH3 (2) CPME (0.25 M) 27 

3 PMHS (6) m-xylene (0.25 M) 47 

4 PMHS (6) CPME (0.25 M) 68 (66)b 
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to provide a general improvement in yield for all C–N coupling 

reactions we have assayed to date, and especially so for a 

variety of five- and six-membered heterocyclic nitroarenes that 

had previously been challenging to the intermolecular reductive 

PIII/PV=O catalyzed C–N coupling method (Table 3). In 

addition to indole 7, a range of heteroarylnitro substrates are 

converted with reductive C–N coupling into the corresponding 

heteroarylamines as exemplified by pyrazole 8, 2H-indazole 9, 

pyrimidine 10, and aminobenzothioazole 11. Furthermore, 

reactions involving the incorporation of heteroaryl boronic  

Table 3. Examples of reductive C–N coupling of heterocyclic 

nitroarenes and/or boronic acids.a 

 
a Yields reported for isolated products. b Reaction was conducted at 

100 ℃.  c Reaction was conducted at 80 ℃. See Supporting 

Information for full experimental details. 

acid coupling partners are similarly advantaged by the modified 

‘second-generation’ conditions; for instance, 1H-indazolyl (12), 

pyrazolyl (13), pyrimidinyl (14), and pyridinyl (15) boronic 

acids are successfully coupled with (hetero)aryl nitro partners. 

In all cases, though, the modified ‘second-generation conditions’ 

afford marked improvements over the previously reported 

‘first-generation conditions’ and allow preparatively useful 

yields of functionally-dense heteroarylamines. In instances 

where the heteroaryl boronic acid is found to be thermally 

unstable with respect to protodeboronation, a further 

modification to decrease the reaction temperature (80 °C – 

100 °C) is found to be permissible (12-14).  

2.2 Competition Studies – Intermolecular C–N Coupling vs 

Arylnitrene Reactivity.  

In an effort to delineate the relationship between the 

reductive C–N coupling reaction from previously reported 

P(III)/P(V)=O catalyzed reactions of nitroarenes, we designed 

a set of competition experiments as described in Tables 4 and 5. 

As a point of reference, subjection of 2-nitrobiphenyl (17) to 

first-generation catalytic conditions with omission of the 

phenylboronic acid coupling partner resulted in formation of 

carbazole (19) by intramolecular cyclization (Table 4, entry 

1).15c
 As previously reported, this Csp2-H amination reaction 

proceeds by two-fold sequential deoxygenation to give an 

arylnitrene that undergoes insertion to the proximal C–H 

position.58,15c, 19  We postulated that if similar arylnitrene 

intermediates were involved in the C–N cross coupling reaction 

with boronic acids, then a competition between intramolecular 

carbazole cyclization and intermolecular aryl amination with 2-

nitrobiphenyl as a probe substrate would favor the former on 

kinetic grounds. In the event, reaction of 2-nitrobiphenyl (17) 

in the presence of phenylboronic acid 3 under otherwise 

identical reaction conditions led preferentially to the 

intermolecular reductive C–N cross coupling as the dominant 

reaction product (Table 4, entry 2). Notably, the use of CPME 

as the solvent (Table 4, entry 3) accentuates the bias in favor of 

the C–N cross coupling. 

In a related fashion, intermolecular competition experiments 

are similarly inconsistent with formation of arylnitrenes on the 

pathway to C–N cross coupling. Deoxygenation of 4-

nitrobenzonitrile (20) under conditions of P(III)/P(V)=O 

catalysis proves competent for arylnitrene generation, as 

inferred from in situ trapping with diethylamine to give azepine 

22 as the major product (Table 5, entry 1).20 However, when 

phenylboronic acid is admitted under otherwise identical 

reaction conditions, the reaction is shunted away from 

formation of azepine 22, instead providing the diarylamine 21 

Table 4. Competition studies between reductive C–N coupling vs arylnitrene reactivity starting from 2-nitrobiphenyl. 

 
Entry Equiv of boronic acid (3) Solvent Yield of 18 (%)a Yield of 19 (%)a 

1 0 m-xylene — 82 

2 1.1 m-xylene 76 22 

3 1.1 CPME 88 11 

a Yields were determined through analysis by gas chromatography (GC) with the aid of 1,3,5-trimethoxybenzene as an internal standard. 
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by C–N coupling in good yield (Table 5, entries 2). As before, 

CPME as the solvent (Table 5, entry 3) further favors formation 

of the C–N cross coupling product 21 relative to azepine 22. 

The implications of these results are twofold. First, the C–N 

cross coupling reaction evidently does not result from 

amination of the arylboronic acids by a free arylnitrene, but 

rather the mechanistic branching point along the pathway 

leading to cyclization or coupling must precede arylnitrene 

formation. Second, the impact of CPME on the product ratio 

suggests that the qualitative solvent effect observed in Sect 

2.1.1 may arise through the relative suppression of the nitrene-

forming pathway, which is nonproductive with respect to 

intermolecular C–N bond formation.  

2.3 In-situ Spectroscopic Studies. 

2.3.1 Catalyst Speciation in Reductive C–N Coupling. In 

order to evaluate the catalyst speciation, in situ 31P NMR spectra 

(161.9 MHz, 100 °C) were recorded under conditions of 

catalysis for the coupling reaction of nitrobenzene and 

phenylboronic acid (1.0 equiv of 2, 1.1 equiv of 3, 15 mol% of 

1•[O], 2 equiv of phenylsilane, 0.2 M in toluene-d8). These 

spectra showed that phosphetane oxide 1•[O] (δ 55.9 ppm) is 

rapidly converted (t1/2~5 min) to the corresponding 

tricoordinate phosphetane epimers anti-1 and syn-1 (δ 32.9 and 

δ 19.2 ppm, respectively) 21  (Figure 3). Over the ensuing 

reaction time during which 2 is converted to 4, the tricoordinate 

epimers of 1 remain the only observable phosphorus-containing 

compounds in solution. Evidently, reduction of the phosphetane 

oxide 1•[O] is quite swift and the reduced tricoordinate 

phosphetane 1 represents the resting state with respect to the 

catalytic phosphorus component. These observations run 

counter to prevailing notions about the kinetic inertness of 

phosphine oxides and provide evidence for the exceptional 

reactivity of phosphetane oxide 1•[O] as a biphilic O-atom 

transfer catalyst. 

2.3.2 Reactant Speciation in Reductive C–N Coupling. 1H 

NMR spectra (400 MHz, 100 °C) of a catalytic reaction show 

consumption of nitrobenzene over ca. 3 h with concomitant 

appearance of diphenylamine 4 as the major product (Figure 

S1). 15N NMR spectra (40.5 MHz, 100 °C) collected under 

identical conditions indicate that isotopically enriched 15N-

nitrobenzene (δ 369.4 ppm) is cleanly converted into the 

product diphenylamine (δ 86.0 ppm) and no long-lived 

intermediates are observed in the range 950 ppm > δ > –50 ppm 

(Figure 4).  

 

 
Figure 3. Time-stacked in situ 31P NMR spectra (T = 100 ℃, 

toluene-d8) at t = 0 min, 15 min, 60 min, and 360 min. Chemical 

shifts: 1•[O], δ 55.9 ppm; 1, δ 32.9 (anti) and 19.2 (syn) ppm. Units 

of chemical shift (δ) are ppm relative to 85% H3PO4 as an external 

standard. 
 

 
Figure 4. Time-stacked in situ 15N NMR spectra (T = 100 ℃, 

toluene-d8) at t = 0 min, 15 min, 60 min, and 360 min. Chemical 

shifts: 2, δ 369.4 ppm; 4, δ 86.0 ppm. Units of chemical shift (δ) 

are ppm relative to NH3(l) as an external standard. 

 

2.4 Catalytic Kinetics Experiments.  

The kinetic progress of the catalytic coupling of nitrobenzene 

2 and phenylboronic acid 3 was monitored via ex situ HPLC 

analysis of reaction aliquots drawn at intervals over the course 

of 7 h. Nitrobenzene 2 is converted to diphenylamine 4 in >95 % 

efficiency with no discernable intermediates (chromatograms in 

Figure S3), consistent with the observations from NMR 

Table 5. Competition studies between reductive C–N coupling vs arylnitrene reactivity starting from 4-nitrobenzonitrile. 

 
 

Entry Equiv of boronic acid 3 Solvent Yield of 21 (%)a Yield of 22 (%)a 

1 0 m-xylene — 78 

2 1.1 m-xylene 87 < 2% 

3 1.1 CPME 93 < 2% 

a Yields were determined through analysis by 1H NMR spectroscopy with the aid of dibromomethane as an internal standard. 
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spectroscopy. The decrease in concentration of starting material 

2 as a function of time fits a first-order kinetic model (Figure 

5A), where the initial rates vary linearly with precatalyst 1•[O] 

concentration in the range 0.02 M ≤ [1•[O]] ≤ 0.08 M (Figure 

5B), indicating that the reaction in Figure 3 is first order with 

 

Figure 5. Spectroscopic and experimental mechanistic 

investigations. (A) Plot of conversion of substrate 2 (blue) to 

product 4 (red) vs time. (B) Plot of initial rates for substrate 2 

consumption vs precatalyst 1•[O] concentration. (C) Plot of initial 

rates for substrate 2 consumption vs phenylsilane concentration. (D) 

Plot of initial rates for substrate 2 consumption vs phenylboronic 

acid 3 concentration. 

respect to both substrate 2 and precatalyst 1•[O]. Rate constants 

obtained by the complementary monitoring of increasing 

product 4 concentration with time at varying precatalyst 1•[O] 

concentrations (Figure S6) agree within ±10%. Initial reaction 

rates measured for this catalytic reaction vary neither as a 

function of phenylsilane concentration (0.2 M < [PhSiH3] < 0.8 

M], Figure 5C) nor phenylboronic acid (3) concentration (0.1 

M < [3] < 0.7 M], Figure 5D). The empirical rate law for the 

catalytic C–N coupling therefore is described by the equation:  

ν = kexpt[1•(O)]1[2]1 [3]0[PhSiH3]
0. 

2.5 Computational Studies.  

2.5.1 Initial Deoxygenation and Rate-Determining Step. 

Density functional theory calculations, conducted at the M06-

2X/6-311++G(d,p) level with a polarizable continuum model 

(PCM) for solvation in m-xylene (ε = 2.3478), provide an 

atomistic-level proposal of mechanism that agrees with 

spectroscopic and kinetic studies. In accordance with our 

previous calculations on nitroarene-phosphine reactivity, 15c 

DFT predicts a stepwise pathway for reductive C–N coupling 

initiated by a (3+1) cheletropic addition of nitrobenzene 2 with 

phosphetane 1 to form pentacoordinate spiro-bicyclic 

dioxazaphosphetane Int-1 (Figure 6A). The transition state for 

 

Figure 6. Mechanistic proposal for catalytic reductive C–N coupling supported by density functional theory (DFT) calculations at 

the M06-2X/6-311++G(d,p)/PCM(m-xylene) level of theory. Relative free energies (italics) are given in kcal/mol. (A) Proposed 

mechanism of initial nitrobenzene deoxygenation and rate-determining step. (B) Computed model of TS-1 and TS-2. (C) Proposed 

mechanism of second deoxygenation and product-forming step. (D) Computed model of TS-3a, TS-4 and TS-5. Phosphorus 

(orange), oxygen (red), nitrogen (blue), carbon (gray), boron (pink), hydrogen (white). Bond distances in Å. 
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the concerted (3+1) addition step can be viewed as a 

Woodward-Hoffmann allowed [4πs + 2ωs] cycloaddition (TS-1, 

Figure 6B) with a computed barrier of ΔG‡
rel = +31.0 kcal/mol). 

By virtue of this relatively high barrier, passage through TS-1 

represents the slowest step in the computed pathway, kinetically 

gating all downstream events and providing a rationale for the 

failure to spectroscopically detect any reaction intermediates. 

Dioxazaphosphetane Int-1 evolves by a retro-(2+2) 

fragmentation with a low kinetic barrier via TS-2 (Figure 6B, 

ΔG‡
rel = +10.8 kcal/mol) to give phosphine oxide 1•[O] and 

nitrosobenzene (Int-2) (ΔGrel = –31.9 kcal/mol). The lower 

activation barrier calculated for the collapse of the spirobicyclo 

Int-1 (via TS-2) relative to its formation (via TS-1) stems from 

the incipient dissociation of P-oxide 1•[O] and release of ring 

strain during the fragmentation.  

EDA-NOCV calculations22,23 of the charge flow and pairwise 

orbital interactions of TS-1 validate the biphilic character of 

phosphetane 1. Electrostatic (ΔEelstat = -81.1 kcal/mol) and 

orbital interactions (ΔEorb = -68.2 kcal/mol) between the 

phosphetane 1 and nitrobenzene 2 fragments are attractive and 

comparable in magnitude, accounting for 54.3% and 45.7% of 

the bonding interactions, respectively. Together, ΔEelstat and 

ΔEorb offset the Pauli electron pair repulsion term (ΔEPauli = 

137.8 kcal/mol) to afford a total bonding energy of -11.5 

kcal/mol. Analysis of the deformation densities displays both 

the electron donation from the HOMO of phosphetane 1 to the 

LUMO of nitrobenzene 2 and the backward electron donation 

from the HOMO of nitrobenzene 2 to the LUMO of 

phosphetane 1. The main deformation density ( ∆𝑞σ
d =

−1.0592) corresponds to a strong σ-donation from the 

phosphorus lone pair to the nitroarene and contributes to a 

stabilization of -56.8 kcal/mol (Figure 7A). An additional 

deformation densities with a smaller contribution ( ∆𝑞π
bd =

−0.2823)  is consistent with -backdonation from the 

nitroarene to the P–C σ* antibonding orbitals of the 

phosphetane and provide a considerable stabilization of -9.0 

kcal/mol (Figure 7B).  

A second-order perturbation natural bond orbital (NBO) 24,25 

analysis of TS-1 affords additional insight into donor-acceptor 

interactions. Phosphorus lone pair σ-donation is represented by 

incipient σ P–O bonds polarized toward the oxygen that display 

 

 

Figure 8. DFT studies (M06-2X/6-311++G(d,p)/PCM(m-xylene)) for the competition between intramolecular Cadogan cyclization and 

intermolecular reductive C–N coupling. (A) Initial deoxygenation with 2-nitrobiphenyl. (B) Proposed mechanism of second 

deoxygenation and product-forming step. (C) Computed model of TS-8, TS-9 and TS-11 and TS-12. Phosphorus (orange), oxygen 

(red), nitrogen (blue), carbon (gray), boron (pink), hydrogen (white). Bond distances in Å. 

 
 

 

Figure 7. EDA-NOCV results of the orbital interactions for the 

(3+1) cheletropic addition of nitrobenzene 2 with phosphetane 1 to 

form pentacoordinate spiro-bicyclic dioxazaphosphetane Int-1. 

Red = depletion, blue = accumulation. (A) Forward electron 

donation. (B) Backward electron donation.    
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an approximate composition of 38.52% P(sp3.64) + 61.48% 

O(sp23.53). Interestingly, endocyclic σ P–C bonds of the 

phosphetane, which are polarized towards the carbon and 

present an approximate composition of 37.41% P(sp2.44) + 

62.59% C(sp4.40), also act as donors delocalized into the 

geminal acceptor σ* P–O bonds. In contrast, -symmetry back-

donation from the nitroarene moiety entails delocalization of 

both the σ P–O bonds and the O lone pairs into the geminal σ* 

P–C antibonding orbitals with relative second-order 

perturbation energies consistent with a 4:1 donor prevalence of 

the σ P–O bonds over the O lone pairs.  

2.5.2 Second Deoxygenation and Product-Forming Step. Once 

formed, nitrosobenzene (Int-2) itself is subject to reaction with 

phosphetane 1 (Figure 7C) to give an oxazaphosphirane 

intermediate Int-3 (ΔGrel = –1.0 kcal/mol). Isomeric transition 

structures TS-3a and TS-3b differing in the trajectory for the 

phosphetane attack on Int-2 were located. Both structures 

describe an asynchronous (2+1) addition with a P-centered 

spiro geometry that facilitates the interaction of the phosphorus 

lone pair with the π* orbital of the N=O group. TS-3a, which 

corresponds to the attack of the phosphorus on the nitrogen of 

the N=O group,26 is favored by 8.1 kcal/mol relative to TS-3b, 

which represents the attack of the phosphorus on the oxygen27 

in agreement with a prevalence of the LUMO coefficient of the 

N=O group at the nitrogen atom.28 Electrophilic ring opening 

of oxazaphosphirane Int-3 with phenylboronic acid via TS-4 

(ΔG‡
rel = +6.2 kcal/mol) coincides with the favorable formation 

of phosphonium oxyaminoborate betaine Int-4 (ΔGrel = –2.1 

kcal/mol), featuring a typical aminoboronate B−N bond length 

and an intramolecular charge-dipole contact between the 

phosphorus and the OH group of the aminoborate moiety. As a 

suitable zwitterionic retron for 1,2-metallate rearrangement,24,29 

Int-4 represents the immediate precursor to C–N bond 

formation, evolving via TS-5 (ΔG‡
rel = +11.7 kcal/mol) with 

departure of phosphine oxide 1•[O] by antiperiplanar migration 

of the phenyl group from boron to nitrogen to give 

phenylboramidic acid (Figure 7D).  

A DFT analysis of the competition between the Cadogan 

cyclization and the reductive C–N coupling pathways for 2-

nitrobiphenyl (17) qualitatively supports the experimental 

preference for C–N coupling discussed in Section 2.2 (Table 4-

5).30 Following a rate-limiting first deoxygenation of the nitro 

group by phosphetane 1 (TS-6, ΔG‡
rel = +29.7 kcal/mol) to 

afford 2-nitrosobiphenyl (23) (Figure 8A), reaction of the 

nitroso group with 1 takes place via a significantly lower barrier 

(TS-8, ΔG‡
rel = +17.2 kcal/mol) to give the “branching” 

intermediate oxazaphosphirane Int-6. In the Cadogan 

cyclization pathway, Int-6 evolves through loss of phosphetane 

P-oxide 1·[O] (TS-9, ΔG‡
rel = +15.0 kcal/mol) to form the 

carbazole product (19) via C−H insertion of the biphenylnitrene 

Int-7 (TS-10, ΔG‡
rel = +8.9 kcal/mol).15c Alternatively, in the 

reductive C-N coupling pathway, Int-6 reacts with 

phenylboronic acid (TS-11, ΔG‡
rel = +9.9 kcal/mol) to generate 

phosphonium oxyaminoborate betaine Int-8, which undergoes 

1,2-metallate rearrangement and dissociation of phosphetane P-

oxide 1·[O] (TS-12, ΔG‡
rel = +12.2 kcal/mol). Inspection of the 

nonlimiting steps that intervene in the branching of 

oxazaphosphirane Int-6 suggests that the experimental 

preference for reductive C–N coupling can be attributed to the 

circumvention of the biphenylnitrene pathways that mediates 

the Cadogan cyclization via a higher energy barrier TS-9 

(Figure 8B).  

3. DISCUSSION 

As a complement to established net redox neutral (Buchwald-

Hartwig and related) and net oxidative (Chan-Lam) transition 

metal catalyzed C–N coupling methods, the current method 

brings together nitroarene and arylboronic acid coupling 

partners through net reductive catalysis enabled by the 

P(III)/P(V)=O redox couple. Nitroarenes are attractive coupling 

partners because they are readily accessible and easily 

transformed in synthesis; the nitro functional group is both 

easily installed and strategically useful due to its powerful 

inductive effect. 31  And while nitroarenes are common 

precursors to aryl amine and aryl halide substrates for known 

transition metal catalyzed couplings, they are less commonly 

used as substrates themselves for direct catalytic C–N bond 

forming reactions. Precedent within this vein include the work 

of Nicholas, who established iron-catalyzed reductive C–N 

bond construction by reaction of nitroarenes with alkynes.32 

Baran has discovered an iron-catalyzed synthesis of N-

alkylamines by reductive C–N bond formation between 

nitroarenes with alkenes;33 Shaver and Thomas have described 

related transformations catalyzed by an iron 

bis(phenolato)amine catalyst. 34  Hu has reported iron- and 

nickel-catalyzed reductive C–N bond formation by reaction of 

nitroarenes with alkyl and acyl electrophiles, respectively.35 

Apart from these catalytic methods, there exist several reagent-

based approaches to direct conversion of nitroarenes to the 

corresponding N-functionalized anilines. Knochel 36  and 

Kürti37 have demonstrated the use of excess Grignard reagents 

to convert nitroarenes to N-arylanilines directly. Niggemann 

has found that the combination of nitroarenes with organozinc 

reagents in the presence of stoichiometric B2pin2 results in 

reductive conversion to N-functionalized anilines. 38  Recent 

work from our group 39  and Csákÿ 40  have validated a 

stoichiometric, phosphine-mediated reductive coupling of 

nitroarenes and arylboronic acids. Relatedly, Suárez‐Pantiga 

and Sanz reported that phosphine-mediated reductive coupling 

of nitroarenes and boronic acids is catalyzed by an 

oxomolybdenum compound. 41  Among these varied 

approaches, the P(III)/P(V)=O catalyzed method—with its 

relatively mild conditions, commercial catalyst, and 

inexpensive reductant—compares rather favorably.  

With regard to the mechanism of the P(III)/P(V)=O catalyzed 

reductive C–N coupling reaction, the combined experimental 

 
Figure 9. Proposed mechanism for organophosphorus-catalyzed 

reductive C–N coupling. 
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and computational data point toward a catalytic reaction 

sequence that evolves in two stages—an initial deoxygenation 

of the nitroarene substrate to the corresponding nitrosoarene 

(Figure 9, top hemisphere), and a subsequent second 

deoxygenation that converts the intermediate nitrosoarene into 

the observed N-arylated product (Figure 9, bottom hemisphere). 

The common thread uniting these two sequential reduction 

events is the action of the small-ring phosphacycle 1•[O] to 

catalyze O-atom transfer by redox cycling in the P(III)/P(V) 

couple. Since O’Brien’s initial report of an organophosphorus-

catalyzed Wittig reaction,42,43 P(III)/P(V) redox catalysis has 

emerged as an productive area of organophosphorus 

catalysis, 44 - 46  with work from Woerpel, 47 Rutjes and van 

Delft, 48  Werner, 49  Mecinović,48g Kwon, 50  and Voituriez, 51 

among others.52-55 In the context of the current C–N coupling 

method, the observation that the resting state of the catalyst 

resides at the P(III) oxidation state (i.e. phosphetane 1) confirms 

the swift deoxygenation kinetics of small-ring phosphine oxides 

noted by Marsi 56  and Keglevich 57  and make clear that 

P(V)=O→P(III) turnover is not a significant impediment to 

method development in the P(III)/P(V) couple with these 

catalytic structures.  

The initial nitroarene-to-nitrosoarene deoxygenation event is 

gated by a (3+1) cheletropic addition of nitrobenzene 2 with 

phosphetane 1. Consistent with experimental spectroscopy and 

kinetics, DFT modeling confirms that this step is turnover 

limiting and highest in energy of any transition state in the 

entire reductive C–N coupling sequence. Analysis of the 

transition structure within both the EDA-NOCV and NBO 

theoretical frameworks validates the notion of pairwise orbital 

interactions allowing for electron flow both to and from the 

phosphorus site, in accord with the concept of ‘biphilic’ (i.e. 

synergistic single-site donor/acceptor) reactivity of the 

phosphetane. The relative magnitudes of the donor and acceptor 

interactions suggest that the former predominates, which is 

consistent with Hammett studies (see SI) indicating a net 

transfer of electron density to the nitroarene in the transition 

state. 58 - 59  Once formed, Int-1 evolves via retro-(2+2) 

fragmentation to liberate phosphetane oxide 1•[O] and 

nitrosobenzene (Int-2), an obligate albeit unobserved 

intermediate under catalytic conditions. The phosphetane oxide 

1•[O] is itself subject to rapid deoxygenation by hydrosilane to 

return to the P(III) resting state (1) and close the first catalytic 

deoxygenation cycle. 

The second deoxygenation stage commences with capture of 

nitrosobenzene (Int-2) by P(III) phosphetane 1 through an 

asynchronous (2+1) addition to provide an oxazaphosphirane 

Int-3. On the basis of product distributions obtained from 

competition studies between intermolecular C–N coupling vs 

arylnitrene reactivity, we posit that this oxazaphosphirane Int-

3 serves as the pivotal “branching” intermediate whose fate is a 

key determinant of product distribution. Whereas unimolecular 

loss of phosphetane oxide 1•[O] from Int-3 liberates an 

arylnitrene reactive intermediate that results in azepine ring 

expansion or Cadogan cyclization (cf. TS-9), DFT predicts a 

low-energy bimolecular reaction of oxazaphosphirane Int 3 

with arylboronic acid leads to heterolytic ring-opening (cf. TS-

4) and formation of betaine Int-4. We surmise that the apparent 

solvent influence in the competition experiments (Sect 2.1) 

operates by stabilization of partial charge build-up in the 

transition states leading to and from dipolar structure Int-4 (i.e. 

TS-4 and TS-5), relative to dissociative loss of phosphetane 

oxide 1•[O]. In analogy to numerous related electrophilic 

amination reactions of organoboron reagents,24,38a, 60 - 63  an 

ensuing 1,2-metallate rearrangement of betaine Int-4 results in 

the formation of the desired C–N bond, which upon hydrolysis 

with either adventitious water or upon work-up give the target 

amine. A final hydrosilane-mediated reduction of phosphetane 

oxide 1•[O] returns the catalyst to the P(III) resting state (1) and 

closes the second catalytic deoxygenation cycle. 

4. CONCLUSION 

P(III)/P(V)=O catalyzed intermolecular reductive C–N cross 

coupling of nitroarenes and arylboronic acids is emerging as an 

operationally robust and mechanistically well-defined main-

group complement to the established transition metal-based 

methods for catalytic intermolecular C–N coupling. Combined 

experimental, spectroscopic, and computational experiments 

provide a description of the biphilic organophosphorus-

catalyzed method by systematically differentiating the nature of 

deoxygenative events of nitroaromatics especially in the 

context of the C–N bond formation. Namely, the rate 

determining step is a (3+1) addition. The product-determining 

step involves the ring-opening of an oxazaphosphirane. 

Combined, these findings enrich fundamental understanding of 

the biphilic reactivity of phosphetanes as generalized platforms 

for catalytic reductive O-atom transfer operating in the 

PIII/PV=O redox manifold and provide an experimentally-based 

mechanistic framework to guide iterative catalyst design and 

method development. 

5. EXPERIMENTAL SECTION 

A full description of the general experimental methods can be 

found in the Supporting Information. 

5.1 Representative Synthetic Procedure for the Reductive 

C–N Coupling. The appropriate nitro substrate (if solid), 

phosphetane oxide precatalyst 1•[O] (15 mol% unless 

otherwise noted) were added to an oven-dried glass culture 

tubes with threaded end (20 x 125 mm; Fisher Scientific part # 

14-959-35A), outfitted with a phenolic screw-thread open top 

cap (Kimble-Chase part #73804-15425), and PTFE-lined 

silicone septum (Thermo Fisher part # B7995- 15) sequentially. 

Following evacuation and the introduction of nitrogen on a 

Schlenk line, dry CPME was added via syringe. Lastly, 

hydrosilane and nitro substrate (if liquid) were added and the 

reaction mixture was stirred at 120 °C.  When complete, the 

reaction vessel screw cap was unscrewed (note that in some 

cases pressure release was observed) and 10 mL of distilled 

water was added. With the aid of ethyl acetate, the reaction 

mixture was transferred to a separatory funnel. After mixing 

and separating the aqueous layer, the organic layer was washed 

with 10 mL of a 1 M NaOH aqueous solution, and 10 mL of 

brine. Each aqueous phase was back-extracted with 10 mL 

portions of ethyl acetate. The combined organic layers were 

dried over anhydrous sodium sulfate, filtered and concentrated 

with aid of a rotary evaporator. The crude residues were 

purified via column chromatography to yield pure coupling 

products. Columns were primarily slurry packed with hexanes 

and mobile phase polarity was increased gradually to the 

mixture indicated.  

5.2 Spectroscopic Investigations. To an oven-dried purged 

septum-sealed NMR tube was added 15N labeled nitrobenzene 

(12 mg, 0.10 mmol, 1.0 equiv), phenylboronic acid 3 (11 mg, 

0.11 mmol, 1.1 equiv) and 1•[O] (2.6 mg, 0.015 mmol, 15 

mol%) in toluene-d8 (0.5 mL). The tube was inserted into the 
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NMR probe thermostatted at 100°C and a t = 0 spectrum was 

obtained. The tube was ejected from the probe, phenylsilane (25 

uL, 0.20 mmol, 2.0 equiv) was added via syringe, and the NMR 

tube was reinjected into the probe. 15N (ppm is relative to NH3(l) 

external standard) and 31P NMR spectra (ppm is relative to 85% 

H3PO4 external standard) were collected at 15 min, 60 min, 180 

min, and 360 min.  
5.3 Kinetics Experiments. For a kinetic run corresponding to 

a single rate constant, a solution of nitrobenzene (2) and 

phosphetane P-oxide 1•[O] in m-xylene was prepared under 

nitrogen in an oven-dried, three-neck round-bottom flask fitted 

with a silicon-tipped IR probe and a magnetic stir bar. The 

solution temperature was stabilized at 108 + 2 °C and the 

reaction was initiated by adding PhSiH3. Reaction monitoring 

started 15 min after the addition of PhSiH3 to ensure full 

reduction of 1•[O] as determined by disappearance of the P-

oxide IR absorbance at 1199 cm-1. Sample aliquots (20 L + 

10%) were periodically taken using a calibrated automated 

sampler,64 diluted at room temperature into acetonitrile (80x) 

and analyzed using an HPLC system equipped with a C18 

column (4.6 × 50 mm) and a SPD-20A/20AV UV−vis detector. 

Good pseudo-first-order plots were obtained by monitoring the 

decay of nitrobenzene (2) and growth of diphenylamine (4) 

relative to a standard calibration curve, and the initial rates 

(∆[2]/∆t) were calculated by multiplying the pseudo-first-order 

reaction rate constants (exponential slopes) by the 

corresponding concentrations of nitrobenzene (2). Rates were 

shown to be reproducible within experimental error (+ 10%).  

5.4 Computational Methods. Geometries were optimized in 

Gaussian 0965 using the M06-2X66 density functional with the 

6-311++G(d,p) basis set. The calculated energies (ΔG, 298.15 

K, 1.0 atm) result from the sum of electronic and thermal free 

energies as obtained from the frequency analysis at the same 

level of theory. Open-shell singlet energies were spin-

projected. 67  Frequency calculations for all stationary points 

were carried out to describe them either as minima (i = 0) or as 

first-order transition states (i = 1). For all transition structures, 

visualization of the imaginary frequencies corresponded to the 

expected normal mode for the elementary step under 

investigation. Intrinsic reaction coordinate calculations (IRC) 

1  (a) Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural 

diversity, substitution patterns, and frequency of nitrogen heterocycles 
among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 

10257. (b) Knölker, H.-J. (ed.) The Alkaloids: Chemistry and Biology, 

Elsevier, San Diego, 2011; Vol. 70. (c) Ćiri-Marjanovi, G. Recent 
advances in polyaniline research: polymerization mechanisms, structural 

aspects, properties and applications. Synth. Met. 2013, 177, 1. 

2  (a) Hartwig, J. F. Carbon-Heteroatom Bond Formation Catalysed by 
Organometallic Complexes. Nature 2008, 455, 314. (b) Bariwal, J.; 

Eycken, E. V. der. C–N Bond Forming Cross-coupling Reactions: an 

overview. Chem. Soc. Rev. 2013, 42, 9283. 
3  (a) Jiang, L.; Buchwald, S. L. Palladium-Catalyzed Aromatic Carbon-

Nitrogen Bond Formation, in Metal-Catalyzed Cross-Coupling 

Reactions. De Meijere, A.; Diderich, F., Eds.; Wiley-Blackwell: 
Hoboken, NJ, 2008; ed. 2, pp. 699–760. (b) Dorel, R.; Grugel, C. P.; 

Haydl, A. M. The Buchwald−Hartwig Amination After 25 Years. 

Angew. Chem., Int. Ed. 2019, 58, 17118.   
4  For Ni-catalyzed reactions, see: (a) Marín, M.; Rama, R. J.; Nicasio, M. 

C. Ni-Catalyzed Amination Reactions: An Overview. Chem. Rec. 2016, 

1819. (b) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, 
D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Aryl 

Amination using Ligand-free Ni(II) Salts and Photoredox Catalysis. 

Science 2016, 353, 279. (c) Oderinde, M. S.; Jones, N. H.; Juneau, A.; 
Frenette, M.; Aquila, B.; Tentarelli, S.; Robbins, D. W.; Johannes, J. W. 

Highly Chemoselective Iridium Photoredox and Nickel Catalysis for the 

were performed from the transition states in forward and 

reverse directions to confirm the lowest energy reaction 

pathways that connect the corresponding minima. See 

Supporting Information for further details. 
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