Tetrahedron Letters 52 (2011) 6939-6941

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A mild method for the deprotection of tetrahydropyranyl (THP) ethers catalyzed by iron(III) tosylate

Matthew R. Bockman, Veronica V. Angeles, Julia M. Martino, Purav P. Vagadia, Ram S. Mohan*

Laboratory for Environmentally Friendly Organic Synthesis, Department of Chemistry, Illinois Wesleyan University, Bloomington, IL 61701, USA

ARTICLE INFO

Article history: Received 30 September 2011 Revised 11 October 2011 Accepted 12 October 2011 Available online 18 October 2011

Keywords: Deprotection Green chemistry Iron(III) tosylate Lewis acid THP ethers

ABSTRACT

A mild method for the deprotection of THP ethers catalyzed by iron(III) tosylate (2.0 mol %) in CH₃OH has been developed. Iron(III) tosylate, Fe(OTs)₃·6H₂O, is a commercially available solid that is inexpensive, noncorrosive, and easy to handle. The room temperature reaction conditions make this method attractive for deprotection of a range of THP ethers.

© 2011 Elsevier Ltd. All rights reserved.

Tetrahydropyranyl (THP) ethers are frequently used to protect alcohols and phenols in the course of a total synthesis.¹ Hence, mild methods for their deprotection are especially desirable and as a result, several methods have been developed for this purpose. Some recent catalysts used for the deprotection of THP ethers include NO⁺BF₄^{-,2} [PCl_{3-n}(SiO₂)_n] (SILPHOS),³ TBPA⁺·SbCl₆^{-,4} H₂O₂/Mn(II) Schiff-base complex,⁵ activated carbon supported sulfuric acid,⁶ ionene supported peroxodisulfates,⁷ P₂O₅/SiO₂,⁸ CH₃COCl,⁹ DABCO-Bromine complex,¹⁰ ceric ammonium nitrate,¹¹ Fe(ClO₄)₃,¹² bromodimethylsulfonium bromide (CH₃)₂S⁺Br Br^{-,13} natural kaolinitic clay,¹⁴ bismuth(III) salts,¹⁵ CrO₃/zeolite,¹⁶ *n*-butyltriphenylphosphonium peroxodisulfate (*n*-BuPPh₃)₂S₂O₈,¹⁷ AlCl₃·6H₂O,¹⁸ and pyridinium *p*-toluenesulfonate.¹⁹ Several methods for the selective deprotection of THP ethers involve aqueous acid and careful pH control.²⁰

Our continued interest in developing environmentally friendly synthetic methodology prompted us to investigate a mild and catalytic method for the deprotection of acetals utilizing inexpensive, commercially available reagents. Herein we wish to report that iron(III) tosylate²¹ (2.0 mol %) in CH₃OH is an efficient catalyst for the deprotection of THP ethers at room temperature (Table 1). The mild conditions make this method attractive for the deprotection of THP ethers, especially on a large scale. As can be seen from Table 1, the reaction worked with a range of THP ethers including those derived from 1° alcohols (entries

1–3), allylic alcohols (entries 4 and 5), 2° alcohols (entries 6–8), 3° alcohols (entry 9), propargylic alcohol (entry 10), benzylic alcohol (entry 11), and phenols (entries 12 and 13). Two methods were developed to work-up the reaction. In one, the crude product was isolated via an aqueous work-up (Method A). When purification was deemed necessary, the crude product was filtered through a short column of silica gel. Alternatively, the product (entries 2 and 10) could also be isolated directly by evaporation of methanol followed by filtration of the crude reaction material through a silica column (Method B). The latter method is especially attractive because it avoids an aqueous waste stream. When product purification was necessary, the direct column work-up (Method B) gave better yields (entries 2 and 10). In contrast to simple acetals, no deprotection was observed in H₂O (entry 2, 24 h, rt).^{21d} Unfortunately, deprotection was sluggish in the safer solvent, ethanol. Even after 24 h, a small amount (5%) of the starting material was present when the deprotection of the THP ether of 4-hydroxyacetophenone (entry 13) was carried out in ethanol. In contrast to the reaction in CH₃OH, the deprotection of the THP ether of isoeugenol (entry 12) in ethanol was not complete in 2 h.

As stated earlier, we have previously developed a $Bi(OTf)_3$ -catalyzed deprotection of THP ethers in DMF/CH₃OH. In contrast to the drastic conditions used in that method, the present methodology utilizes mild reaction conditions, and a less expensive and less moisture sensitive catalyst. In conclusion, a mild and efficient method for the deprotection of THP ethers using an inexpensive, commercially available catalyst, $Fe(OTs)_3$ - $6H_2O$, has been developed.

E-mail address: rmohan@iwu.edu (R.S. Mohan).

Table 1

Deprotection of THP ethers catalyzed by Fe(OTs)₃.6H₂O

$\frac{\text{Fe(OTs)}_3 \cdot 6\text{H}_2\text{O} (2.0 \text{ mol}\%)}{\text{CH}_2\text{O} \text{H}_2\text{O} \text{H}_2\text{T}} \qquad \text{ROH}$			
Entry	KO O OH ₃ OH, R	Time ^b	Yield ^c (%)
1	H ₃ C(H ₂ C) ₁₁ O O	3 h	78 ^d
2	H ₃ C	3 h 45 min	72 ^e
3	Ph	2 h 45 min	84 ^d
4	H ₃ C	3 h	75 ^d
5	Ph	4 h 30 min	80 ^d
6		4 h	82 ^d
7	CH ₃ Ph O O	4 h 30 min	86 ^f
8	H ₃ C H ₃ C	3 h	97 ^d
9	H ₃ C CH ₃ O O	1 h 15 min	77 ^f
10		2 h	77 ^e
11	p-NO ₂ C ₆ H ₄ 0 0	2 h 25 min	91 ^d
12	H3C OCH3	2 h	76 ^f
13	H ₃ C	1 h 50 min	89 ^f

^a THP ethers were synthesized by previously reported literature methods.^{15b} THP ether in entry 13 was synthesized using pyridinium *p*-toluenesulfonate (PPTS).²² ^b Reaction progress was monitored by TLC.

^c Reaction progress was monitored by r.c. ^c Refers to yield of isolated product that is $\ge 98\%$ pure by ¹H and ¹³C NMR spectroscopy. ^d Yield after chromatographic purification of crude material obtained by aqueous workup (Method A). ^e Isolated by evaporation of CH₃OH followed by direct filtration of the residue (Method B). ^f Crude product, isolated by Method A, was found to be >98% by ¹H and ¹³C NMR spectroscopy and hence further purification was deemed unnecessary.

Representative procedures

Method A: A solution of the THP ether of cinnamyl alcohol (entry 5) (1.00 g. 4.58 mmol) in CH₃OH (10 mL) was stirred at room temperature as Fe(OTs)₃·6H₂O (0.0621 g, 0.0916 mmol, 2.0 mol %) was added. The reaction progress was monitored by TLC (EtOAc/ heptane, 30/70). After 4 h 30 min, water (15 mL) was added and methanol was removed on a rotary evaporator. The resulting mixture was extracted with EtOAc (2×20 mL). The organic layer was washed with saturated aqueous NaHCO₃ (15 mL), saturated aqueous NaCl (15 mL), dried (Na₂SO₄), and concentrated on a rotary evaporator to yield 0.59 g of the crude product. The crude product was purified by flash chromatography (35 g silica gel, EtOAc/heptane, 30/70) to yield 0.49 g (80%) of a white solid that was identified to be cinnamyl alcohol. The purity was estimated to be >98% by ^1H and ^{13}C NMR spectroscopy, and GC analysis. ^1H NMR: δ 2.56 (s, 1H), 4.29 (dd, J = 1.5, 5.7 Hz, 2H), 6.35 (doublet of triplets, *J* = 5.7, 16.8 Hz, 1H), 6.60 (apparent doublet, *J* = 16.8 Hz, 1H), 7.31 (m, 5H); ¹³C NMR (7 peaks): 63.4, 126.3, 127.5, 128.43, 128.47, 130.8. 136.6

Method B: A solution of the THP ether of 1-ethynyl-1-cyclohexanol (entry 10) (0.50 g, 2.40 mmol) in CH₃OH (5 mL) was stirred at room temperature as Fe(OTs)₃·6H₂O (0.0325 g, 0.0480 mmol, 2.0 mol %) was added. The reaction progress was monitored by TLC (EtOAc/heptane, 30/70). After 2 h, CH₃OH was removed on a rotary evaporator and the residue was purified by flash chromatography (35 g silica gel, EtOAc/pentane, 30/70) to yield 0.23 g (77%) of a colorless liquid that was identified to be 1-ethynyl-1-cyclohexanol. The purity was estimated to be >98% by ¹H and ¹³C NMR spectroscopy, and GC analysis. ¹H NMR: δ 1.55 (d, 10H), 2.4 (s, 1H), 2.7 (s, 1H); ¹³C NMR (6 peaks) 23.0, 24.9. 39.6, 68.4, 72.0, 87.7.

Acknowledgments

We are grateful to the National Science Foundation for an NSF-RUI (Research in Undergraduate Institutions) grant (#0650682) awarded to R.M. In addition, acknowledgment is made to the donors of The American Chemical Society Petroleum Research Fund for partial support of this research (grant awarded to RM).

References and notes

- (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley and Sons: New York, 1999; (b) Hanson, J. R. Protecting Groups in Organic Synthesis, 1st ed.; Blackwell Science: Malden, MA, 1999; (c) Kocienski, P. J. Protecting Groups, 1st ed.; Georg Thieme Verlag: Stuttgart, 1994.
- 2. Tao, W. J.; Tao, W. W.; LongMin, W. Chin. Sci. Bull. 2010, 55, 2803.
- Iranpoor, N.; Firouzabadi, H.; Bahador, H.; Jamalian, A. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 1972.
- 4. Xu, Y.; Tang, S.; Han, J.; She, X.; Pan, X. Tetrahedron Lett. 2008, 49, 3634.
- Tajbakhsh, M.; Hosseinzadeh, R.; Golchoubian, H.; Razavian, R. Lett. Org. Chem. 2008, 5, 308.
- 6. Yang, J. H.; Zhang, X.; Liu, W. Y. Chin. Chem. Lett. 2008, 19, 893.
- Lakouraj, M. M.; Tajbakhsh, M.; Ramzanian-Lehmali, F.; Ghodrati, K. Monatsh Chem. 2008, 139, 537.
- 8. Eshghi, H.; Rahimzadeh, M.; Saberi, S. Chin. Chem. Lett. 2008, 1063.
- 9. Yeom, C.-E.; Shin, Y. J.; Kim, B. M. Bull. Korean Chem. Soc. 2007, 28, 103.
- 10. Tajbakhsh, M.; Heravi, M. M.; Habibzadeh, S. Synth. Commun. 2007, 37, 2967.
- Maulide, N.; Markó, I. E. Synlett **2005**, 2195.
 Heravi, M. M.; Behbahani, F. K.; Oskooie, H. A.; Shoar, R. H. Tetrahedron Lett. **2005**, 46, 2543.
- 13. Khan, A. T.; Mondal, E.; Borah, B. M.; Ghosh, S. Eur. J. Org. Chem. 2003, 4113.
- 14. Bandgar, B. P.; Kasture, S. P.; Patil, S. V.; Makone, S. S. Indian J. Heterocycl. Chem 2003, 13, 83.
- (a) Mohammadpoor-Baltork, I.; Kharamesh, B.; Kolagar, S. Synth. Commun. 2002, 32, 1633; (b) Stephens, J. A.; Butler, P. L.; Clow, C. H.; Oswald, M. C.; Smith, R. C.; Mohan, R. S. Eur. J. Org. Chem. 2003, 3827.
- Heravi, M. M.; Oskooie, H. A.; Sangsefidi, L.; Ghassemzadeh, M.; Tabar-Hydar, K. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 2843.
- Mohammadpoor-Baltork, I.; Hajipour, A. R.; Aghajari, M. Synth. Commun. 2002, 32, 1311.
- 18. Namboodiri, V. V.; Varma, R. S. Tetrahedron Lett. 2002, 43, 1143.
- 19. Miyashita, N.; Yoshikoshi, A.; Grieco, P. J. Org. Chem. 1977, 42, 3772.
- (a) Beier, R.; Mundy, B. P. Synth. Commun. **1979**, 9, 271; (b) Bernady, K. F.; Floyd, M. B.; Poletto, J. F.; Weiss, M. J. J. Org. Chem. **1979**, 44, 1438; (c) Corey, E. J.; Niwa, H.; Knolle, J. J. Org. Chem. **1978**, 100, 1942.
- For examples of use of Fe(OTs)₃ as a catalyst in organic synthesis, see: (a) Mansilla, H.; Afonso, M. M. Synth. Commun. 2008, 38, 2607; (b) Spafford, M. J.; Anderson, E. D.; Lacey, J. R.; Palma, A. C.; Mohan, R. S. Tetrahedron Lett. 2007, 48, 8665; (c) Bothwell, J. M.; Angeles, V. V.; Carolan, J. P.; Olson, M. E.; Mohan, R. S. Tetrahedron Lett. 2010, 51, 1056; (d) Olson, M. E.; Carolan, J. P.; Chiodo, M. V.; Lazzara, P. R.; Mohan, R. S. Tetrahedron Lett. 2010, 51, 3969.
- For use of PPTS as a catalyst for the synthesis of THP ethers, see: (a) Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. **1977**, 42, 3772; (b) Liang, G.; Yang, S.; Jiang, L.; Zhao, Y.; Shao, L.; Xiao, J.; Ye, F.; Li, Y.; Li, X. Chem. Pharm. Bull. **2008**, 56, 162.