One-Electron and Two-Electron Redox Switch in the Reactions of 1,5-Dihydroflavin and Quinones Controlled by Acid and Base in Acetonitrile

Masashi ISHIKAWA, Yoshiharu MATSUDA, Kazuhiko YAMAMOTO,[†] and Shunichi FUKUZUMI^{††*}
Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering,
Yamaguchi University, Ube, Yamaguchi 755

[†]Laboratory of Organic Chemistry, Osaka Women's University, Sakai, Osaka 590 ^{††}Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565

The acid-catalyzed reactions of 1,5-dihydroriboflavin-2',3',4',5'-tetraacetate (FlH₂) with quinones (Q) result in the one-electron oxidation of FlH₂ to FlH₂^{+•} and the two-electron reduction of Q to the hydroquinones (QH₂) in the presence of HClO₄ in acetonitrile. In the presence of Me₄NOH, the base-catalyzed reactions result in the two-electron oxidation of FlH₂ to Fl and the one-electron reduction of Q to $Q^{-•}$.

In the biological redox systems, flavins and quinones are known to undergo both two-electron and one-electron redox reactions with obligate two-electron donors (e.g., NADH) and obligate one-electron reagents (e.g., iron-sulfur clusters and heme proteins), respectively.¹⁾ Considerable efforts have so far been made to understand the mechanism of the redox switch between one- and two-electron redox systems of flavins and quinones.²⁻⁷⁾ However, most redox reactions of flavins and the two-electron reduced form (dihydroflavins) have so far been studied in protic media where two-electron redox chemistry predominates in both acidic and basic conditions.⁴⁻⁶⁾ We have recently reported unequivocal evidence that the reactions of 1,5-dihydroribo-flavin-2',3',4',5'-tetraacetate (FlH₂) with quinones (Q) in an aprotic medium (acetonitrile) proceed via electron transfer from FlH₂ to Q, followed by proton and hydrogen transfer, resulting in the net two-electron reduction of Q to QH₂ and two-electron oxidation of FlH₂ to Fl.⁸⁾ We report herein that acid and base in acetonitrile (MeCN) can control the one- and two-electron redox switch in the reaction of 1,5-dihydroflavin and quinones.

The FlH₂ was prepared by the reduction of riboflavin-2',3',4',5'-tetraacetate (Fl) by sodium dithionite according to the literature.⁹) Upon mixing FlH₂ (1.0 x 10^{-4} mol dm⁻³) and *p*-benzoquinone (Q; 5.0 x 10^{-5} mol

$$\begin{array}{c} \text{CH}_2\text{OCOCH}_3\\ (\text{CHOCOCH}_3)_3\\ (\text{CH}_2 \\ \text{H}_2 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O} \\ \text{FIH}_2 \end{array}$$

dm⁻³) in the presence of HClO₄ (1.5 x 10^{-2} mol dm⁻³) in deaerated MeCN, the two-electron reduction of Q to hydroquinone (QH₂) occurs accompanied by the one-electron oxidation of FlH₂ to the radical cation (FlH₂+•). The stoichiometry was determined by the spectral titration as given by Eq. 1. The electronic spectrum of FlH₂+• ($\lambda_{max} = 504$ nm)

$$2FlH_2 + Q + 2H^{\dagger} \longrightarrow 2FlH_2^{\dagger \bullet} + QH_2$$
 (1)

formed in the reaction of FlH2 with p-benzoquinone is shown in Fig. 1.

The FlH2^{+•} thus formed was very stable and no apparent decay was observed in 7 days. In the presence of slight excess HClO4, FlH2 is protonated to FlH3⁺ in MeCN as shown in Fig. 1. The reducing ability of FlH3⁺ is decreased significantly as compared to FlH2, judging from the more positive one-electron oxidation potential of FlH3⁺ than that of FlH2. ¹⁰) Thus, the unprotonated FlH2 that is in equilibrium with FlH3⁺ may reduce Q to QH2, accompanied by the oxidation of FlH2 to FlH⁺ (Scheme 1). It is well known that FlH⁺

Fig. 1. Electronic spectra observed before and after the addition of p-benzoquinone (5.0 x 10^{-5} mol dm⁻³) to FlH₂ (1.0 x 10^{-4} mol dm⁻³) in the presence of HClO₄ (1.5 x 10^{-2} mol dm⁻³) in MeCN at 298 K.

is readily converted to ${\rm FlH_2}^{+\bullet}$ by the facile comproportionation reaction with ${\rm FlH_3}^+$ in the presence of HClO₄ in MeCN (Scheme 1).^{2,3,11})

The net reaction in Scheme 1 gives the overall stoichiometry of Eq. 1, where the rate-determining step may be the reaction of FlH₂ with Q. In such a case, the rate of formation of FlH₂^{+•} should obey the second-order kinetics under the experimental conditions that the ratio of initial concentrations of FlH₂ to Q is 2 ([FlH₂]₀/[Q]₀ = 2), as given by Eq. 2, where t is reaction time, and [FlH₂^{+•}] and [FlH₂^{+•}]_{∞} are the concentration at the reac-

$$k_{obsd} t = 1/([FlH_2^{+\bullet}]_{\infty} - [FlH_2^{+\bullet}]) - 1/[FlH_2^{+\bullet}]_{\infty}$$
 (2)

tion time t and the final concentration of $FlH_2^{+\bullet}$, respectively. The kinetic formulation of Eq. 2 was confirmed by measuring the rate of formation of $FlH_2^{+\bullet}$ with use of a stopped-flow spectrophotometer. The k_{obsd} values were approximately constant with an increase in $[HClO_4]$ as reported for the acid-catalyzed reduction of Q by 10-methyl-9,10-dihydroacridine (Acr H_2), 12) since the increase in the reactivity of FlH_2 toward Q with an increase in $[HClO_4]$ may be canceled by the deactivation of FlH_2 due the protonation (Scheme 1). The k_{obsd} values for various quinones in the presence of $HClO_4$ are listed in Table 1, together with the k_{obsd} values in the absence of $HClO_4$. The k_{obsd} values in the absence of $HClO_4$ increase with an increase in the E^0_{red} values, E^0_{red} indicating the significant contribution of the electron transfer process from ElH_2 to Q in the rate-determining step for the overall two-electron reduction of ElH_2 . The ElH_2 values in the presence of ElH_2 values in the presence of ElH_2 values decreases with an increase in the ElH_2 value, since the ElH_2 values in the presence of ElH_2 values decreases with an increase in the ElH_2 value, since the ElH_2 values in the presence of ElH_2 values in the presence of ElH_2 values decreases with an increase in the ElH_2 value, since the ElH_2 values in the presence of ElH_2 values decreases with an increase in the ElH_2 value, since the ElH_2 values in the presence of ElH_2 values decreases with an increase in the ElH_2 value, since the ElH_2 values in the presence of ElH_2 values decreases with an increase in the ElH_2 value, since the ElH_2 values in the presence of ElH_2 va

In the presence of a base, tetramethylammonium hydroxide (Me₄NOH), in deaerated MeCN, the

Chemistry Letters, 1992

Table 1. Observed Second-Order Rate Constants kobsd for the Oxidation of FlH2 by Q in MeCN at 298 K and
the One-Electron Reduction Potentials (E_{red}^0) of Q in MeCN

Q	k _{obsd} / dm ³ mol ⁻¹ s ⁻¹ in the presence of			
	E ⁰ red V <i>vs</i> . SCE	Noneb)	HClO ₄ (9.7 x 10 ⁻⁴ mol dm ⁻³)	Me ₄ NOH (1.0 x 10 ⁻³ mol dm ⁻³)
Anthraquinone	-0.94	8.3 x 10 ⁻²	1.8×10^3	1.1 x 10 ³
Vitamin K ₁	-0.86	8.7 ^c)	3.4×10^4	6.3×10^4
Tetramethyl-p-benzoquinone	-0.84 ^{a)}	3.4	5.3×10^4	4.5×10^4
Trimethyl-p-benzoquinone	-0.75 ^{a)}	5.7 x 10	6.8×10^4	8.6×10^5
Methyl-p-benzoquinone	-0.58 ^{a)}	2.3×10^3	6.7×10^4	d)
p-Benzoquinone	-0.50 ^a)	1.1 x 10 ⁴	6.3×10^4	d)

a) Taken from Ref. 13. b) Taken from Ref. 8 unless otherwise noted. c) This study. d) Too fast to be determined accurately.

stoichiometry of Eq. 1 is reversed: the one-electron reduction of Q to semiquinone radical anions (Q[•]) occurs accompanied by the two-electron oxidation of FlH₂ to Fl. The spectral titration in the presence of equivalent amount of OH⁻ to FlH₂ revealed the stoichiometry as given by Eq. 3, where one-third of Q is reduced to QH₂. The spectral change according to the stoichiometry in Eq. 3 is shown in Fig. 2. The addition of equivalent

$$FlH_2 + (3/2)Q + OH \longrightarrow Fl + Q^{-\bullet} + (1/2)QH_2 + H_2O$$
 (3)

amount of OH⁻ to FlH₂ results in the facile deprotonation of FlH₂ to FlH⁻ as also shown in Fig. 2. When the ratio of OH⁻ to FlH₂ is larger than 2, only one-electron reduction of Q is observed (Eq. 4). Such a change in the stoichiometry depending on the amount of OH⁻ can be well explained by Scheme 2. The FlH⁻ formed by the deprotonation of FlH₂ with OH⁻ reacts with Q to yield Fl and Q²⁻ in the presence of excess OH⁻. The Q²⁻ is converted to Q⁻ by the comproportionation reaction with Q, resulting in the net one-electron reduction of Q. In the presence of equivalent amount of OH⁻ to FlH₂, no OH⁻ is left to deprotonate QH⁻ and the QH⁻ is converted to (1/2)QH₂ and Q⁻ by the reaction with Q.¹³)

The rate of formation of Fl was determined under the experimental conditions that $[Q]_0$, $[OH^-]_0$ >> $[FlH_2]_0$ (3.3 x 10^{-5} mol dm⁻³) with use of a

Fig. 2. Electronic spectra observed before and after the addition of p-benzoquinone (7.5 x 10^{-4} mol dm⁻³) to FlH₂ (5.0 x 10^{-4} mol dm⁻³) in the presence of Me₄NOH (5.0 x 10^{-4} mol dm⁻³) in MeCN at 298 K.

$$F1H_2 + 2Q + 2OH \longrightarrow F1 + 2Q^{\bullet} + 2H_2O$$
 (4)

Scheme 2.

stopped-flow spectrophotometer, obeying the first-order dependence on [FlH₂] and [Q]. The observed second-order rate constants (k_{obsd}) were approximately constant with an increase in [Me₄NOH], and the k_{obsd} values are also listed in Table 1. The k_{obsd} value in the presence of Me₄NOH increases with an increase in the E^0_{red} value in parallel with that in its absence. The approximately 10^4 times larger k_{obsd} values in the presence of Me₄NOH than those in its absence (Table 1) may be ascribed to the stronger electron-donating ability of FlH⁻ as compared to FlH₂ (the one-electron oxidation potentials of FlH₂ and FlH⁻ are -0.21 V and -0.36 V vs. NHE in H₂O, respectively). ¹⁰)

In conclusion, acid and base catalyze efficiently the redox reactions of FlH₂ and quinones in MeCN, and control the one- and two-electron redox switch.

References

- 1) C. Walsh, Acc. Chem. Res., 13, 148 (1980); T. C. Bruice, ibid., 13, 256 (1980).
- 2) S. Fukuzumi and T. Tanaka, "Photoinduced Electron Transfer," ed by M. A. Fox and M. Chanon, Elsevier, Amsterdam (1988), Part C, Chap. 11; P. F. Heelis, *Chem. Soc. Rev.*, 11, 15 (1982).
- 3) S. Fukuzumi, "Advances in Electron Transfer Chemistry," ed by P. S. Mariano, JAI Press, Greenwich (1992), Vol. 2, pp. 67-175.
- 4) T. C. Bruice and Y. Yano, J. Am. Chem. Soc., 97, 5263 (1975); R. F. Williams and T. C. Bruice, ibid., 98, 7752 (1976); T. C. Bruice and J. P. Taulane, ibid., 98, 7769 (1976); R. F. Williams, S. Shinkai, and T. C. Bruice, ibid., 99, 921 (1977).
- 5) G. Dryhurst, K. M. Kadish, F. Scheller, and R. Renneberg, "Biological Electrochemistry," Academic Press, New York (1982), Vol. 1.
- 6) C. Eberlein and T. C. Bruice, J. Am. Chem. Soc., 105, 6685 (1983).
- 7) M. J. Gibian and A. L. Baumstark, *J. Org. Chem.*, **36**, 1389 (1971); Y. Yano, T. Sakaguchi, and M. Nakazato, *J. Chem. Soc.*, *Perkin Trans.* **2**, **1984**, 595.
- 8) M. Ishikawa, K. Yamamoto, and S. Fukuzumi, J. Chem. Soc., Chem. Commun., 1992, 1008.
- 9) C. G. van Schagen and F. Müller, Helv. Chim. Acta, 61, 3139 (1978).
- 10) O. S. Ksenzhek and S. A. Petrova, Bioelectrochem. Bioenerg., 11, 105 (1983).
- 11) K. Ishikawa, S. Fukuzumi, T. Goto, and T. Tanaka, J. Am. Chem. Soc., 112, 1577 (1990).
- 12) M. Ishikawa and S. Fukuzumi, J. Chem. Soc., Faraday Trans., 86, 3531 (1990).
- 13) S. Fukuzumi, N. Nishizawa, and T. Tanaka, J. Org. Chem., 49, 3571 (1984).
- 14) S. Fukuzumi, K. Ishikawa, K. Hironaka, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1987, 751. (Received July 27, 1992)