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Green's functions to 2-point simple type self-adjoint boundary value problems for bending
of a beam under relatively strong tension on an elastic foundation are studied. We have
9 different Green's functions. All are positive-valued and have a suitable hierarchical

structure.

Key words: beam deflection, Green's function, positivity, hierarchical structure

1. Introduction

We treat several boundary value problems (BVP's) for a 4th-order linear ordi-
nary differential equation (ODE) on a finite interval,

Gu-1u)- pu"+qu= f(x) (0<x<L)
BVP(mo, mi, nl, n2) :	 (1.1)

u (ß`` ) (0) = ais u(ni)(L) = ßi, (i = 0 , 1 )

where f (x) is a given function, ao, cal, ßo, 31 are given constants, and coefficients

p, q are positive constants. We can find the above equation, for example, in the

field of elastics [4], where u = u(x) represents deflection of a beam under tension
p > 0, which is supported by uniformly distributed springs with spring constant

q > 0 on a fixed floor, and f (x) is a density of a load.

m = (mo, ml) and n = (no, ni) take 6 different values (0,1), (0, 2), (0, 3), (1, 2),

(1, 3), (2, 3). Among them, we here treat only self-adjoint cases m, n = (0, 1), (0, 2),

(1, 3), which also have engineering importance and correspond to clumped, simply-
supported and sliding edges, respectively. Therefore, the following 9 kind of BVP's
can be considered.

(m, n) = (0, 1, 0,1), (0,1, 0, 2), (0,1,1, 3), (0, 2, 0, 1), (0, 2, 0, 2), (0, 2,1, 3),

(1, 3, 0, 1), (1, 3, 0, 2), (1, 3, 1, 3)

* Late Prof. M. Yamaguti gave to the first author profound influence on the directions of research
and taught him the importance of application of mathematics to the other field of science. He
continuously encouraged younger researchers. We all the authors express their hearty thanks to
him.



544	 Y. KAMETAKA, K. TAKEMURA, Y. SUZUKI and A. NAGAI

However, throughout this paper, we often focus our attention only on 6 BVP's
among them,

(m, n) = (0,1, 0,1), (0,1, 0, 2), (0,1,1, 3), (0, 2, 0, 2), (0, 2,1, 3), (1, 3,1, 3),

taking account of the symmetry.
Even though the above BVP's originate from the age of Euler and Bernoulli,

they include many unsolved problems. Since equation (1.1) is linear, its solution is
written as

1	 1 	IL

u(x) _ 	 n, L; x) +	 ß^B^ (m, n, L; x) + 	 g(m, n; L, x, y) f (y)dy,
j=o	 j=o

(1.2)

where Ao (m, n, L; x), AI (m, n, L; x), Bo (m, n, L; x), BI (m, n, L; x) are fundamental
solutions satisfying relations,

Ai"`' ) (m, n, L;
 0) = ój,, A^n' ) (m, n, L; L) = 0,

B(m31 (m, n, L; 0) = 0, B^^' i (m, n, L; L) = Si 	 (i, j = 0, 1),	 (1.3)

and g(m, n, L; x, y) is a Green's function. The purpose of the paper is to investigate
positivity and mutual relations of fundamental solutions and Green's functions of
the 9 different BVP's.

REMARK 1. Related eigenvalue problem

u (4)=Au (0<x<L)

	

u"(0) = u"(0) = u(L) = u'(L) = 0	
(1.4)

was treated by L. Euler. (See Ref. [1])

In this paper, we impose an inequality (p/2) 2 > q > 0, p> 0, in other words,
a tension is relatively much stronger than a spring force. Due to this inequality, we
see that the characteristic polynomial,

P(A) = A4 — p.\2 + q = 2 — a2)(í 2 — b2), p = a2 + b2, q = a2 b2 ,

has 4 roots A = ±a, ± b. (a > b> 0). Under the above assumptions, 4th-order
differential operator L is decomposed into a product of 2 formal positive operators,

£ = (
d )4	 ( d

)2 + q =
 \— (

d
)2 + a2) (— (

d
)2 + b2),	 (1.5)

which suggests positivity of Green's functions.
This paper is organized as follows. In Section 2, we derive fundamental solu-

tions and Green's functions. In Section 3, it is shown that fundamental solutions



Green's Functions of 2-Point Boundary Value Problems for Bending of a Beam 545

are positive- (or negative-)valued. Concrete forms of Green's functions are given in
Section 4. Section 5 is devoted to proving a hierarchical structure of Green's func-
tions g(0, 2, 0, 2, L; x, y), g(0, 2,1, 3, L; x, y), g(1, 3, 1, 3, L; x, y). In Section 6, we
prove the positivity of the Green's function g(0, 1, 0, 1, L; x, y), which is the most
difficult to prove. Section 7 presents the main theorem in this paper, which shows
a hierarchical structure of Green's functions.

Throughout this paper, we use the notations,

ch(x) = cosh(x), sh(x) = sinh(x). 	 (1.6)

For later convenience sake, we introduce the function Ko(x) defined by

Ko (x) = a2 1 b2 (a-1 sh(ax) - b -1 sh(bx)),	 (1.7)

which is a solution to the following Cauchy problem,

u (4> - (a 2 + b2 )u" + a2 b2u = 0	 (0 < x < oo),

u(0) = u'(0) = u"(0) = 0, u"'(0) = 1.
(1.8)

Employing the function Ko(x), we also put K(x) = Ko^ ) (x) and K^ = K(L)
(j=0,1,2,...).

2. Fundamental Solution and Green's Functions

We start with the uniqueness theorem of the solution to BVP(m o , ml ; no , n l ).

THEOREM 2.1 (Uniqueness). Let f(x) be a complex-valued continuous func-
tion on [0, L] and {co, al, ßo, ß} be 4 complex numbers. Then, for an arbitrary
set of data {f(x);  ao, al, ßo, /3i}, a 4 times continuously differentiable solution to
BVP(mo , m l ; no , n l ) is unique.

Proof. It is enough to show a classical solution u(x), if it exists, is expressed
as (1.2). By putting u2(x) - u() (x) (0 < i < 3), f3(x) - f(x), (1.1) is rewritten as
follows;

U' (x) = Au(x) + f (x)
	

(2.1)

u„„ (0) = a 2 , u„ ; (L) = 13 (i = 0,1),	 (2.2)

where

0 1 0 0

u(x) = t (u0, ul, u2 u3)(x), f(x) = t (0 , 0 , 0 , f3(x)), A =	
0 0 1 0
0 0 0 1
-q 0 p 0
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A solution to (2.1) is written as follows;

u(x) = E(x)u(0) + fox E(x - y)f (y)dy.	 (2.3)

The fundamental solution E(x) to the initial value problem is expressed as follows;

	E(x) = K(x)K(0) -1 ,	 (2.4)

where

0 0 0 1

0
K(x) _ (Ki+j (x) ) , K(0) = 0 0 1 	 (2.5)

1 0 p 0

Substitution of (2.4) into (2.3) gives

ui (x) = (... K^+j(x) ...)K(0) - 'u(p) + f
ox

Ki(x - y)f3(y)dy,

(0 < i < 3)	 (2.6)

From the boundary conditions (2.2), we have

	K mo+j(0) ...\	

(

al 	... K„,+j(0) ... K(0) _ 'u(0)+ o	

K 0 ( 
0	 f3(y)dy•

^

00) ... K„o+^ (L) ... Jo L - y)

ßI •• K 1 +(L) ... Kni(L — y)
(2.7)

Since we have

K1 — K0 K2 (m, n) _ (0,1, 0,1),
K1 KJ— Ko K3 (m, n) _ (0, 1, 0, 2),
K2 K3 — K1K4 (m, n) _ (0 , 1 , 1 , 3),

K„,+j (0)	 ... —(K1K2 — KoK3) (m, n) _ (0 , 2 , 0 , 1 ),
det	 K„„+j (0)	 ...

...	
Kn,>+^ (L)	 ...

_
—(K2 — KoK4 ) (m, n) _ (0 , 2 , 0, 2 ),
—(K3 — KIK5) (m, n) _ (0 , 2 , 1 , 3),
—(K2 K3 — KIK4) (m, n) _ ( 1 , 3 , 0 , 1 ),
—(K3 —K,K5) (m, n) = ( 1 , 3 , 0 , 2 ),
—(K4 — K2K6) (m, n) = ( 1 , 3 , 1 , 3),

which will be shown to be nonzero in Lemma 3.1, the above matrix possesses an
inverse matrix for any choice of self-adjoint boundary condition (m, n). Eliminating
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K(0) - 'u(0) from (2.6) and (2.7), we obtain the solution,

Km0 +j (0) ..

	uo (x) _ (...	 Kj(x) ...)	 Kin,+j(0) .. .
Kno+^(L) ...
K, (L) ...

{ Iao)

10

	In
^0(Lo 	K_y)13(y)dy + f Ko(x - y)ƒ3(y)dy. (2.8)

- 

	01 	(
K„, (L - y )

Introducing fundamental solutions defined by

(Ao(m, n, L; x), A 1 (m, n, L; x),1

( ... KK(x) ... )

3o(m, n, L; x), B l (m, n, L; x))
_1

Kmo+j(0) .

Kmi+j(0) ...1 	 (2.9)
Kno+j(L) ...

Kn, +j(L) ...

we have

u0(x) = (Ao(m, n, L; x),Al (m n, L; x), BO (m n, L; x), B1(fi, n, L; x))

	ao 	0
	cj 	

0
	 L

ßo 

IL

 Kro
 (L - y) f3(y)dy + j Y(x - y)Ko(x - y)f3(y)dy,

0
pl (K„ (L—y)

(2.10)

where Y(x) = 1 (x >_ 0), 0 (x < 0) is the Heaviside step function. We now obtained

the solution formula,

	1 	 1	 L

u0 (x) = E aj Aj (m , n, L; x) + ^ Nj Bj (m, n, L; x) +	 g(m, n, L; x, y)faly)dy,
j=0 	j=0	

0

(2.11)

g(m, n, L; x, y) = Y(x - y)Ko(x - y) - E B j (m, n, L; x)K.„ (L - y). (2.12)
j =0

By putting uo(x), f3(x) as u(x), f (x) again, it is concluded that a classical solution

u(x) to BVP(m, n), if it exists, is expressed as

	1 	 1	 L

u(x) -	 a^Aj (m n, L; x) +	 QJ BS (m n, L; x) +	 g(m n, L; x, y)f(y)dy .

(2.13)
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Since the right hand side of the above equation depends only on a set of data
{ f (x); ao, cal, ßo, ßl }, it is obvious that a classical solution is unique. 	 •

On the other hand, a straightforward caluculation shows that u(x) defined by
(2.13) gives a classical solution to BVP(m, n).

THEOREM 2.2 (Existence of solution). Under the same assumption as The-
orem 2.1, u(x) defined by (1.2) is a classical solution to BVP(mo, m l ; no , n l ) for
an arbitrary set of data If (x); cao, al, ßo, al}.

3. Fundamental Solutions and Their Positivity

The purpose of this section is to prove that the fundamental solutions obtained
in the previous section are positive- or negative-valued. To this end, we first expand
them by means of KK (x) (0 < i < 3). For later convenience sake, given an arbitrary
function u(x), let us rewrite its boundary data of type (m, n) = (mo, m l , no , n l ) as

BD(m, n, L; u(x)) = (u(m0) (0) , u (m1) (0) u(no) (L), U(72) (L))

If u(x) solves a homogeneous ODE, u (4) — pu" + qu = 0, one can find from the
uniqueness theorem that it is expanded as

u(x) =	 u (mj ) (0)Aj (m, n, L; x) +	 u (^`j ) (L)Bj (m, n, L; x).	 (3.1)
	j=0	 j=0

Since u(x) = KK(x) solves the same ODE, we have

BD(m, n, L; Ki(x)) = (Ki+mo ( 0), Ki+mi (0 ), Ká+-no (L), Ká+ni (L)),

or, in other words,

	1 	 1
K(x) =	 Ki+m (0)Aj (m, n; L, x) +	 Ki+„, Bj (m, n; L, x).	 (3.2)

	j=0	 j=0

Note that Kj = Kj (L). It should be noted that the relations,

Km:+m; (0) = Kn ; +n; (0) =0 (0 < i, j c 1 ) ,

hold under the assumption m, n = (0, 1), (0, 2), (1, 3). Putting i = mo , mI in (3.2),
we obtain

CKm„ (x)
	( Kmi+nj

Bo(m, n; L, x)	
( )

Kmi (x) 	 (Bi
) 	 (m n L x)l	 3.3

Taking the same procedures with respect to the solution u(x) = K,, (L — x),

(Kno (L
K„L—x) l = (K„+mj ) 1 (-1) m^ISZj

)
(Al

(m,n;L,x) l	 (3.4)
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Therefore, we have reached the following theorem.

THEOREM 3.1.

	Ao m, n; L, x	 1 (Kn,, L — x(	 ) _ ((
—

l)m'6jj)	 nl+mi)	

K^1(L — x)	
(3.5)

	A1(m, n; L, x)	 J \	 l

	Bo(m,n;L,x)	
(Kmi+nj

Kno(x)	
( )	 3.6

Bl (m,n;L,x)	 Kom i (x)

It should be noted that the determinants of the above matrices are nonzero,
as will be shown in Lemma 3.1. Let us rewrite fundamental solutions under 6

boundary conditions in terms of K^ (x). In the rest of this section, we simply

rewrite A i (m, n, L; x), B ti (m, n, L; x) as Ai (x), Bi (x) as far as it is unmistakable.

1). (m, n) = (0,1, 0,1)

D = D(0,1,0,1;L) =Ki — KoK2 ,

Ao (x) = 1 [K1 K1 (L — x) — K2 Ko (L — x)] ,

A 1 (x) = 1 [KoK1 (L — x) — K1 Ko(L — x)] ,

Bo(x) = Ao (L — x), —B i (x) = A 1 (L — x).

2). (m, n) = (0, 1, 0, 2)

D=D(0,1,0,2;L)= K1K2—KoK3,

Ao (x) = 1 [K1 K2(L — x) — K3Ko(L — x)] ,

A i (x) = 1 [KoK2(L — x) — K2Ko (L — x)] ,

Bo(x) = D [K2 K1(x) — K3Ko(x)] , —B i (x) = 1 [KoKi(x) — KiKo(x)]

3). (m, n) = (0, 1, 1, 3)

D = D(0,1,1,3;L) =K2 K3 —K1 K4 i

Ao (x) = 1 [K2 K3 (L — x) — K4K1 (L — x)] ,

A i (x) = 1 [K1 K3(L — x) — K3 K1 (L — x)]

Bo(x) =	 [K3Ki(x) — K4Ko(x)] , —Bi(x) =	 [KiK1(x) — K2Ko(x)]DD

4). (m, n) = (0, 2, 0, 2)

D = D(0, 2, 0, 2; L) =K2 — KOK4,
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Ao(x) = 1 [K2K2(L - x) - K4 K0 (L - x)] ,

-A I (x) = 1 [KoK2 (L - x) - K2 K0 (L - x)] ,

Bo(x) = Ao (L - x), -B I (x) = -A 1 (L - x).

5). (m, n) = (0, 2,1, 3)

D = D(0,2,1,3;L) =K3 -K1 K5i

Ao(x) = 1 [K3 K3 (L - x) - K5 K1 (L - x)] ,

-A 1 (x) = 1 [KI K3(L - x) - K3 K1 (L - x)] ,

Bo(x) =	 [K3K2(x) - K5Ko(x)] , -Bi(x) =	 [K1K2(x) - K3K0(x)]D D

6). (m, n) = (1, 3,1, 3)

D = D(1,3,1,3;L) =K4 -K2 K6i

-Ao (x) = 1 [K4K3(L - x) - K6K1 (L - x)] ,

A l (x) _ 1 [K2 K3 (L - x) - K4 K1 (L - x)],

Bo(x) = -Ao(L - x), -B i (x) = A l (L - x).

We next prove the following theorem, which ensures a definite sign of each
fundamental solution.

THEOREM 3.2. On an interval 0 <x < L, the following inequalities hold;

Ao(0,1, 0,1, L; x) > 0, A l (0,1, 0,1, L; x) > 0, Bo (0,1, 0,1, L; x) > 0,

Bl (0,1, 0,1, L; x) < 0, (3.7)

Ao (0,1, 0, 2, L; x) > 0, A l (0,1, 0, 2, L; x) > 0, Bo (0,1, 0, 2, L; x) > 0,

BI (0,1, 0, 2, L; x) < 0, (3.8)

Ao (0,1,1, 3, L; x) > 0, A I (0,1,1, 3, L; x) > 0, Bo (0,1,1, 3, L; x) > 0,

Bl (0,1,1, 3, L; x) < 0, (3.9)

Ao(0, 2, 0, 2, L; x) > 0, A I (0, 2, 0, 2, L; x) < 0, Bo (0, 2, 0, 2, L; x) > 0,

Bi (0,2,0,2,L;x) <0, (3.10)

Ao(0, 2,1, 3, L; x) > 0, A I (0, 2,1, 3, L; x) < 0, Bo (0, 2,1, 3, L; x) > 0,

B l (0, 2,1, 3, L; x) < 0, (3.11)

Ao (1, 3,1, 3, L; x) < 0, A l (1, 3,1, 3, L; x) > 0, Bo (1, 3,1, 3, L; x) > 0,

BI (1, 3,1, 3, L; x) < 0. (3.12)
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Let us start with the following two lemmas;

LEMMA 3.1. We have D (m, n; L) > 0, in the cases (m, n) = (0, 1, 0, 1),
(0, 1, 0, 2), (0,1,1, 3), (0, 2, 0, 2),  (0, 1, 1, 3), (1, 3, 1, 3).

LEMMA 3.2. If x> 0, the following inequalities hold;

	

( Ki(x) l '  	 Ki (x) - Ko(x)K2(x) < 0,	 ( 3.13 )

	

Ko(x))	 KK(x)
1 . 

2 . ( K2(x) 1 , __ _ Kl(x)K2(x) - Ko(x)K3(x) < 0	 (3.14
)

	

Ko(x)/	 Kó(x)

3 . ( K3(x) l , __ _ K2(x)K3(x) - Ki(x)K4(x) <0.	 ( 3.15 )

	

\ Ki (x) /	 K? (x)

Proof of Lemma 3.1. It is through simple calculations.

D(0,1, 0,1; L) = Ki - K°K2 =
tab

1	 [ ch((( +b)))  - 1 - ch«a	 b))2 - 1 1 > 0,

J (3.16)

D(0,1,0,2;L) =K1 K2 -K°K3
1 [ sh«a  + b)L) 	sh((a - b)L) 1

>0'
=tab a+b	 a.-b	 J

(3.17)

D(0 ' 1,1, 3; L) K2 K3 - K,K4
1

= 2 [ sh«aa
+ sh((a - b )L) ]+ b )L) > 0, (3.18)

D(0, 2,0, 2; L) = K2 - KoK4 = [ch((a + b)L) - ch((a - b)L)] > 0, (3.19)
2ab

D(0, 2,1, 3; L) = K3 - K1 K5 = 2 [ch((a + b)L) + ch((a - b)L)] > 0, (3.20)

D(1, 3,1, 3; L) = K4 - K2 K6 =
ab

 [ch((a + b)L) - ch((a - b)L)] > 0. (3.21)

n

Proof of Lemma 3.2. Replacing L in (3.16), (3.17) and (3.18) with x, we come

to a conclusion given by inequalities (3.13)-(3.15). 	 n

Employing the above 2 lemmas, we finally prove the Theorem 3.2.

Proof of Theorem 3.2.
1). (m, n) = (0, 1, 0,1)

Ao (x) _ 1 1K1 Kl (L - x) - KZ = k >° '
\, A0(0 ) =	 1 	> 0

Ko (L - x) D Ko(L - x) xlo	 Ko

A l (x) _ 1 1	 Kl (L

KÓKo(L
- x)

-Kl
Al (0) 

=0.o Ko
Ko(L-x) D -x)
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2). (m, n) = (0, 1, 0, 2)

Ao(x) _ 1 Kl K2(L — x) — K3] \ Ao(0) = 1 > 0
Ko (L — x) D Ko(L — x) zlo 	Ko 	K0	 '

A l (x) — 1 1	 K2 (L — x)
—

A1(0)
 =

K°(L — x) D KO Ko(L — x)
K2J

0,lo Ko

Bo (x) __ 1 FK2 Kl (x) — K3 1 \, Bo(L) = 1 > 0
Ko(x) D L	 Ko(x) J XIL Ko 	Ko

Bi (x) __ 1 1K 0 Ki(x) —Kll \ _Bo(L) =0.
Ko(x) D L	 Ko(x) J x L Ko

3). (m, n) = (0,1,1, 3)

Ao(x) 	_ ii K3 (L — x) 1 A0(0) _	 1
>0Kl (L—x) D LK2 Kl (L—x) —K4J i Kl 	Kl

A1(x)	 __ 1 1 	K3(L — x)
— 1 A1(0) — 0,Kl (L — x) D LKI Kl (L — x)

K3j o Kl

Bo(x) __ 1 Kl(x)[K3 Bo(L) = K1 K3 — K0K4
> 0,Ko(x) D Ko(x) — K4j X? Ko 	K0D

_ Bi (x) __ 1 fKl Ki (x) — K2 1 \ _ BI (L) _ Ki — K0K2
 > 0.

Ko(x) D L	 Ko(x) J xIL Ko	K°D

4).	 (m, n) = (0, 2, 0, 2)

Ao(x) _ 1 K2(L —
KZ

x) — K4j
Ao(0) _	 1

\ 	 > 0,K0 
Ko(L — x) D Ko(L — x)

Al (x) _ 1 K2 (L — x) A1(0) _—0.
Ko (L — x) D KOKo(L — x) —K2J

io	 Ko

5).	 (m, n) = (0, 2, 1, 3)

Ao(x) 	__ 1 1 	K3(L — x)
—K5J

1
\ 

Ao(0) _	 1
>0Kl (L — x) D LK3 Kl (L—x) Kl 	Kl

_ 	Al (x) 	__ 1 [Kl K3(L — x) — 1 _ Al

  
(0) _— 0,Kl (L—x) D  KI (L — x)

K3J i	 Kl

Bo(x)__ 1 K2(x)
—K5 ]

Bo(L) _ K2 K3 — K°K5

Ko(x) D K3 Ko (x) xIL >0'K° 	K°D

_Bi (x) __ 1 K1 K2(x) _ K3 l \ _B 1 (L) _ K1K2—K0K3
 >0.

Ko(x) D L	 Ko(x) J xi Ko	 K°D

6). (m, n) = (1, 3,1, 3)

Ao(x) __ 1 1 K3 (L — x)	 j	 Ao(0) K3 K4 — K1 K6

Kl (L—x) D LK4K1(L—x) —K6J 1 — 
KI =	 K1D	 >0,
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A i (x) _ 1 K2 K3 (L — x)
 — K4] \ A1(0) — K2K3 — K1K4

 > 0.
Kl(L—x) D	 K1(L—x)	 j x10 K1 	K1D

n

4. Green's Functions to BVP(mo , m l ; no , n l )

We start with the theorem with respect to expression of Green's functions
given by (2.12).

THEOREM 4.1. If 0 < x, y < L, Green's functions are expressed as in the

following five ways;

g (m, n, L; x, y)

1

= Y(x — y)Ko (x — y) — E Bj (m, n, L; x)Kn, (L — y)	 (4.1)
j=0

=	 Aj(m, n, L; x)( -1 ) mi+1 Km, (y) — Y(y — x)Ko(x — y).	 (4.2)
j=0

1

=	 Aj(m, n, L; x V y)(-1) mi + 1 Kmj (x A y)	 (4.3)
j=0

1

=—EKn,(L—xVy)Bj (m,n,L;xAy)	 (4.4)
j=0

_ — (Kno (L — x V y) K„ (L — x V y)) (Kmi+ni 1 —1 Kmo (x n y) ' (4.5)
/	 Km,(xny)

where

x V y = max(x, y), x A y = min(x, y).

Moreover, each Green's function is symmetric with respect to x and y,

g(m, n, L; x, y) = g(m, n, L; y, x). 	 (4.6)

Proof. For each fixed y as a function of x, Ko (x — y) has the boundary data,

BD(m, n; Ko (x — y))

= (Kmo ( — y), Km i (—y), K 0 (L — y), Kn, (L — y))
= ((-1)mo+1Kmo (y), (-1)"+1Km1(y), Kno(L — y), Kn1(L — y)), 	 (4.7)

Applying formula (1.2) to Ko(x — y), we have

1

Ko(x — y) = E (Aj (m, n, L; x)( -1 ) m' + 1 Kmi (y) + Bj (m, n, L; x)Kn j (L — y)) ,
j=0

(4.8)
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substitution of which into (4.1) gives (4.2). Combining (4.1) and (4.2), we have

1

g(m, n, L; x, y) =Y(x — y) E Aj (m, n, L; x)( -1 ) m' +1 K„
„ (y)

j=0

1

— Y(y — x)	 Bj (m,n,L;x)K^ j (L—y)	 (4.9)
j=o

On the other hand from (3.5), (3.6), we have

1	 1

—	 Bj (m, n, L; x)Knj (L — y) = E Aj (m, n, L; y) (-1)m' +1 Km., (x)	 (4.10)

j=0	 j=0

Combining (4.9) and (4.10), we have

1

g(m, n, L; x, y) = Y(x — y) 	 Aj(m,n,L;x)(-1) m3+1 K
m,(y)

j=0

1

+ Y(y — x)	 Aj(m, n, L; y) (-1)m'+1 Km„ (x)
j=o

1

=E Aj(m,n,L;xV y)(- 1 ) m' +1
Krn;(x Ay)

j=o

which proves (4.3). Equations (4.4) and (4.5) are shown in the same way. The
symmetry of Green's functions (4.6) follows from (4.3) because x V y and x A y are

both symmetric functions with respect to x and y. •

Let us illustrate concrete forms of Green's functions under 6 boundary condi-

tions.

g(0,1, 0,1, L; x, y)

=A 1 (0,1,0,1,L;xVy)K1(xAy)—Ao(0,1,0,1,L;xVy)Ko(xAy)

=K1(L—xVy)(—Bí(0,1,0,1,L;xAy))—Ko(L—xVy)Bo(0,1,0,1,L;x Ay)

=	 1	 K2 —Kl(Ko(L — xVy) Kl(L — xVy»	 KD(0,1,0 ,1, L) 	( —Kl Ko ) ( o(x^y )Kl (x A y)J
(4.11)

g(0, 1, 0, 2, L; x, y)

= A 1 (0,1,0,2,L;xV y)Ki (xAy) —Ao (0,1,0,2,L;xV y)Ko (xAy)

=K2 (L—xVy)(—Bi (0,1,0,2,L;xAy))—Ko(L—xVy)Bo(0,1,0,2,L;xAy)

=	 1	 (Ko(L — x V y) K2(L — x V y)) K3 _K2) Ko(x A y)
D(0,1,0 , 2, L)	 —Kl Ko (Ki (xAy))

(4.12)
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g(0, 1, 1, 3, L; x, y)

= A 1 (0,1,1, 3, L; x V y)K l (x A y) - Ao (0,1,1, 3, L; x v y)Ko (x A y)

=K3 (L-xVy)(-B 1 (0,1,1,3,L;xAy))-Kl(L-xvy)Bo(0,1,1,3,L;xny)

=	 1	 (Ki(L-xvy) K3(L-xVy» 
(-K2K4-K3 II Ko(xny) iD(0,1,1,3,L) 	Kl 1 lKl (x n y) ijj

(4.13)

g(0, 2, 0, 2, L; x, y)

= (-A 1 (0, 2,0, 2, L; x V y))K2(xAy) - Ao(0, 2,0,2, L; x V y)Ko (x A y)

=K2 (L-xVy)(-Bl(0,2,0,2,L;xAy))-Ko(L-xVy)Bo(0,2,0,2,L;xAy)

1 	Ka -Ka Ko(x n y)

= D(0 2, 0, 2 
L) (Ko(L - x V y) K2(L - x V y)) 

(-K2 Ko	 KZ(x A y)

(4.14)

g(0, 2, 1, 3, L; x, y)

(-A l (0, 2,1, 3, L; x v y))K2 (x A y) - Ao(0, 2,1, 3, L; x V y)Ko (x A y)

=K3 (L-xVy)(-Bl(0,2,1,3,L;xAy))-Kl(L-xVy)Bo^0,2,1,3,L;XAy)

1 	K5 -Ks  (
Ko(x A y)

- D(0 2 1 3 L) (Kl (L - x v y) K3(L - x V y)) (-K
3 Ki	 K2(x A y)

(4.15)

g(1, 3, 1, 3, L; x, y)

= A l (1,3,1,3,L;x V y)K3(x A y) - (-A o (1,3,1,3,L;xV y))Kl(x A y)

=K3 (L-xVy)(-Bl(1,3,1,3,L;xAy))-Kl(L-xVy)Bo(1,3,1,3,L;xAy)

=	 1	 K6 -K4l(Kl (L - x V y) K3(L - x V y)) 
(-K4 KZ^D(1, 3,1, 3, L) (Kl (x 	A y)K3 (x n y)

(4.16)

5. Green's Functions without Clumped Edge Condition

In this section, we investigate Green's functions to BVP(0, 2, 0, 2),
BVP(0, 2, 1, 3), and BVP(1, 3, 1, 3). For this purpose, we clarify their relation with
Green's functions in a whole line and under periodic boundary condition.

First of all, let us consider a BVP in a whole line,

r u (4)  Pu" + 4u = f (x) (-oo < x < oo),	
(5.1)BVP(-oo, oo) Sl u(zl (x) : bdd.	 (0 < i < 3).
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One can easily confirm the following theorem;

THEOREM 5.1. Let f (x) be a continuous function on (—oo, oo) which satisfies

	J 	 e —b l x l l f (x)^dx < oo. 	 (5.2)

Then BVP(—oo, oo) possesses a unique 4 times continously differentiable solution

(a classical solution), which is expressed as

u(x) = f^ g(x — y)f(y)dy, 	 (5.3)

where g(x) is defined by

g(x) = G(l xl ), G(x) = 	12(a2 b2 )
(b—

i e— bx — a —l e —ax ).	 (5.4)
— 

In the second place, we consider a BVP under a periodic boundary condition,

BVP (P) : 
u() — pu" + qu = f (x) (—oo <x < oo),

(5.5 )
u(x + 2L) = u(x).

We also assume that f (x) be a function with a period 2L. Then the next theorem
holds.

THEOREM 5.2. Let f (x) be a continuous function. Then BVP(P) has a
unique classical solution, which has the form,

r2L	u(x) = 	
gr(2L;x — y)f(y)dy.	 (5.6)Jo

Green's functions gp(2L; x) is given by

00

gp (2L; x) = E g(x + 2jL)
j=-oo

—	 1

 b2 )

(ch(b(IxI — L)) — ch(a(lxl — L)) 1	
(Ixl < 2L)	 (5.7)

2(a
2

 — b)	 b sh(bL)	 a sh(aL) )

and satisfies

2(a2 — b2 ) d gp (2L; x)

/ sh(b(Ix) — L)) — sh(a(lx_ — L)) 1 <0  (0 < x < L),
= sgn(x) I	

sh(bL)	 sh(aL)	 ) = 0 (x 	 = L),	 (5.8)
\	 > 0 (L < x < 2L),

sgn(x) = —1 (x < 0), 0 (x = 0), 1 (0 < x),
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and

min g(2L; x) = gp (2L; L) > 0.	 (5.9)
IxL<2L

REMARK 2. (5.8) is shown by making use of the inequality,

d 

( ŝh—(—bx)
h(ax) 1

dx	
1 >, (a > b > o, x>0), 	 (5.10)

which also plays an important role in the next section.

The following theorem states that Green's functions to BVP(m, n), where m, n
are not equal to (0, 1), are expressed by means of those under a periodic boundary

condition.

THEOREM 5.3.

g(0, 2,0, 2, L; x, y) = gP(2L; x — y) — gP( 2L; x + y)	 (5.11)

= gg (4L; x — y) + gp (4L; x — y — 2L) — gp (4L; x + y) — gp (4L; x + y — 2L)
(5.12)

g(1,3,1,3,L;x,y)=gp (2L;x—y)+gg (2L;x+y)	 (5.13)

= gg (4L; x — y) + gg (4L; x — y — 2L) + gp (4L; x + y) + gp (4L; x + y — 2L)
(5.14)

g(0, 2,1, 3, L; x, y) = gg (4L; x — y) — gg (4L; x — y — 2L)

— gp (4L; x + y) + gp (4L; x + y — 2L)	 (5.15)

Making use of the above theorem, we finally give the main theorem in this

section,

THEOREM 5.4. If 0 < x, y < L, we have the following inequalities;

0 <g(0,2,0,2,L;x,y) <g(0,2,1,3,L;x,y) <g(1,3,1,3,L;x,y). 	 (5.16)

Proof. Let us first prove 0< g(0, 2, 0, 2, L; x, y). From (5.11), it is enough to

show

gp(2L; x — y) — gp (2L; x + y) > 0	 (0 < x, y < L).	 (5.17)

Considering the symmetry, we may suppose x > y. If x + y < L, the positivity

is obvious due to the monotone decreasing property of gp (2L; x) in 0 < x < L. If

x+y>L,wehave0<2L—x—y<Land

gp (2L;x+y) =gp (2L;2L—x—y) =gp (2L;x—y+2(L—x)) <gp (2L;x—y)

(5.18)
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due to the symmetry of gr,(2L; x) with respect to x = L.
The second inequality g(0, 2, 0, 2, L; x, y) < g(0, 2,1, 3, L; x, y), is shown as

follows;

((5.15) — (5.12))/2 = gp (4L; x + y — 2L) — gp (4L; x — y — 2L)

=g(4L;2L—x— y)— gp (4L;2L —x+y)

= gp (4L; 2L — x — y) — gp (4L; 2L — I x — yl) > 0.	 (5.19)

The third inequality g (0, 2,1, 3, L; x, y) < g(1, 3, 1, 3, L; x, y) follows directly from
(5.14), (5.15).	 n

6. Positivity of Green's Functions to BVP(0,1,0, 1)

In this and next section, we put L = 1 without loss of generality and rewrite
g(m, n; L, x, y) as g(m, n; x, y) for simplicity.

THEOREM 6.1 (Integral representation of g(0, 1, 0, 1; x, y)). In the domain
0<x,y<1,

1). Green's function g(0, 1, 0, 1; x, y) possesses the following integral represen-
tation;

(a + b) 2 (a — b) 2 [ (a + b) 2 ch(a + b) — (a — b) 2ch(a — b) ] g(0, 1,0,1; x, y)
YIL [(ch(a(2 — IX — tYj)) — ch(aIX — YD)(ch(X — tYl) — ch(IX — EI))

— (ch(aIX — tYI) — ch(aI X — YI))(ch(ß(2 — IX — tYI )) — ch(31X — YD) ]dt,

(6.1)

X=X(x,y)=(xVy)A((1—x)V(1—y)),

Y=Y(x,y) = x A(1—x)AyA(1—y),	 (6.2)

a = (a + b) /2, ß = (a — b) /2.	 (6.3)

2). Green's function g(0, 1, 0, 1; x, y) is positive-valued.

The following table illustrates concrete forms and domains of functions X, Y.

X (x, y) Y(x, y)

x y 0<y<xA(1—x)

1—y 1—x 0<1—x<y/\(1—y)

1—x 1—y 0<1—y<xA(1—x)

y x 0<x<yn(1 —y)

The functions X, Y satisfy inequalities,

0< Y(x, y) < X (x, y) n (1 — X (x, y)).	 (6.4)
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Proof. Due to the symmetry of g(0, 1, 0, 1; x, y) with respect to the lines y = x
and y = 1 — x we may suppose 0 < y <x A (1 — x). Then (x, y) is parametrized by

means of 0 < r, < < 1 as (1 — ,) and Green's function is rewritten as

8 (a2 — ß2)aß((ß sh(a)) 2 — (a sh(ß))2)g(0,1,0,1; 1— ^ 2 77 ' ^ 2 7 )

	_ [(a 2 — ß2){a ch(a(1 — ))sh(ß(1 — 	 — ß sh(a(1 — )) ch(ß(1 — ^))}
+ a ch(a(1 — )) sh(ß(1 + )) + ca2ß sh(a(1 — )) ch(ß(1 + ))

+ aß2 ch(a(1 + ))sh(ß(1 — )) + ß 3 sh(a(1 + ))ch(ß(1 —

— (a2 — ß2 ) [c ch(a(1 — e)){sh(ß(1 + ii)) + sh(ß(1 — r^))}

— ß ch(/3(1 — )){sh(a(1 + r/)) + sh(a(1 — r^))} ]

— aß [ a{sh(a(1 + r/)) ch(ß(1 — ii)) + sh(a(1 — ii)) ch(ß(1 + i7))}

+ ß{ch(a(1 + r7)) sh(ß(1 
— n)) + ch(a(1 —i')) sh(13(1 + r/))} ]	 (6.5)

through straightforward calculations. Differentiating both sides with respect to 77,
we obtain

- a _ I8((ß sh(a)) 2 — (a sh(ß))2)g(0, 1,0,1; 1 — ^ 2 77 ,
 ^-'-

)]

r/

= (ch(a(1 + ii)) — ch(a(1 — )))(ch(ß(1 — r7)) — ch(ß(1 —,h)))

— (ch(a(1 — rl)) — ch(a(1 — )))(ch(ß(1 + r/)) — ch(ß(1 — ^)))

(0<17<e<l).	 (6.6)

Substitution of r = ^ in (6.5) gives 0. Combining this fact with (6.6) and integrating
both sides of the above equation with i, we obtain the integral formula (6.1).

Finally we prove that the integrand given by (6.6) is positive-valued, which
guarantees 2) in the above Theorem. By putting, (x, y, z) = (1 + i, 1 — 77,1 —
which satisfy inequality 0 < z <y < x, right-hand side of (6.6) is rewritten as

_ (ch(ax) — ch(az))(ch(ßy) — ch(ßz)) — (ch(ay) — ch(az))(ch(ßx) — ch(ßz))

U^ x 	r

y	

fz
y

	fzx
= aß	 sh(acp)dcp J sh(ß&)dz/^—	 sh(aco)dcp	 sh(/3)d}z/^
 z  

= aß ( ƒv - sh(acp)dcp fy sh(ß7p)d^i — J y sh(acp)d cp fyx

sh(ß%)do }
l 	z	 z 	 JJ1
(

 fvx
y 	fy rx

aß { 
	

sh(acp)dcp fz sh(ß0)do	 z/^)do J sh(ßcp)dcp
I  	 z	 y

= aß	 dcp fy d^ish(ßcp)sh(ß)	
ac  — sh(a)

 > 0.
Jy ( sh@p)	sh(ß o)	 sh(ß^i)

Last inequality is shown by means of the inequality (5.10). 	 n



560	 Y. KAMETAKA, K. TAKEMURA, Y. SUZUKI and A. NAGAI

7. Positivity and Hierarchical Structure of Green's Functions

In this section, we propose the main theorem in this paper.

THEOREM 7.1 (Main Theorem). If 0 < x, y < 1, Green's functions consti-

tute a hierarchical structure shown in Figure 1, in which "g(m, n; x, y) --
g(m', n'; x, y) " represents that g(m', n'; x, y) is greater than g(m, n; x, y) at every

point (x, y) E (0, 1) x (0,1).

g(1,3,1,3;x,Y)

g(0,2,1 ,3;x,Y) I	 I g(1,3,O,2;x,Y)

g(0,1,1,3;x,Y) I	 I g(O,2,O,2;x,Y) I	 I g(1,3,O,1;x,Y)

g(0,1,0,2;x,Y) I	 I g(O,2,O,1 ;x,Y)

g(0,1,O,1;x,y)

0

Fig. 1. Hierarchical structures of Green's functions to 9 BVP's.

Considering the symmetry g(m, n, L; x, y) = g(n, m, L; L - x, L - y), we have
only to prove the left half of the Figure 1, that is,

0< g(0, 1, 0,1; x, y) < g(0,1, 0, 2; x, y) < r g(0, 1, 1,3;x,y) 1
{ g(0 , 2 , 0, 2;x , y) }

< g(0, 2,1, 3; x, y) < g(1, 3, 1, 3; x, y). 	 (7.1)

Among them, we have already shown inequalities 0 < g(0, 2,0,2; x, y) <

g(0, 2,1, 3; x, y) < g(1, 3,1, 3; x, y) and 0 < g(0,1, 0,1; x, y) in Theorem 5.4 and
6.1, respectively. Inequalities which remain unproved are as follows;

g(0, 1, 0,1; x, y) < g(0,1, 0, 2; x, y), g(0, 1, 0, 2; x, y) < g(0, 2, 0, 2; x, y),

g (0,1,1, 3; x, y) < g(0, 2,1, 3; x, y), g (0,1, 0, 2; x, y) < g(0,1, 1, 3; x, y).

THEOREM 7.2.

g(0,1, 0, 2; x, y) - g(0,1, 0,1; x, y) = (-B1(0,1, 0,1;x)) (-B1(0,1, 0, 2; y)) >0

(7.2)

Proof. We may assume 0 < y < x < 1. Subtracting (4.11) from (4.12), we
have
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g(0,1, 0, 2; x, y) - g(0,1, 0,1; x, y) = (A l (0,1, 0, 2; x)) - A l (0, 1, 0,1; x))K 1 (y)

- (A0 (0, 1,0,2; x) - Ao(0,1, 0,1; x))Ko(y).

(7.3)

Let us prove the following lemma;

LEMMA 7.1.

Ao (0,1, 0, 2; x) - Ao (0,1, 0,1;x) _ -	 Kl 	Bl (0,1, 0,1; x)	 (7.4)
D(0,1, 0, 2)

A l (0,1, 0, 2; x) - A l (0,1, 0,1;x) _ - D(0 K00 2) B
l (0,1, 0,1; x)	 (7.5)

Proof. Since the boundary data of fundamental solutions are calculated as

BD (0,1, 0,1; Ao(0, 1,0,2;x))

= {Ao(0,1, 0, 2; 0), Aó(0,1, 0, 2; 0), A o (0,1, 0, 2; 1), Aó(0,1, 0, 2; 1)}

= {1,0,0,A(0,1,0,2;1)},

BD(0, 1, 0, 1; Ao(0, 1, 0, l; x))

= {Ao (0,1, 0,1; 0), Aó(0,1, 0,1; 0), Ao(0,1, 0,1;1), A' (0,1, 0,1;1)}

= {1, 0, 0, 0},

we have

BD(0,1, 0, 1; Ao(0, 1,0,2; x) - Ao(0,1, 0, 1; x)) = {0, 0, 0, Aó(0,1,0,2; 1)}.

Noticing that

A(0,1,0,2;1) = D(0 1 0 2) (K
1 ( K3 (0)) -K3(---K1(0))) = 

- D(0K1 0 2)

we obtain (7.4) from the uniqueness theorem.
Taking the same procedures, we have

BD(0,1, 0,1; A l (0,1, 0, 2; x) - A l (0,1, 0,1;x))

= {0,1,0,A(0,1,0,2;1)} - {0, 1, 0, 0}

= {0,O,O,A1(0,1,0,2;1)} = {0,0,0,-D(0100,2)},

from which we obatin (7.5).	 •

By utilizing the Lemma 7.1, (7.3) gives

g(0,1,0, 2; x, y) - g(0, 1,0, l; x, y)

1
_ (-B1 (0,1, 0, 1; x)) D(0 1 0 2) (KoK1(y) - KlKo(y))
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= ( -Bi (0 , 1 , 0 , 1 ;x)) (-Bi (0 , 1 , 0 , 2 ; y)) > 0.	 (7.6)

n

THEOREM 7.3.

g(0, 2, 0, 2; x, y) - g(0, 1,0,2;x,y) = (-A 1 (0, 2, 0, 2; x))A1(0,1, 0, 2; y) >0 (7.7)

Proof. We assume 0 < y <x < 1. Subtraction of (4.12) from (4.14) gives

g(0, 2, 0, 2; x, y) - g(0,1, 0, 2; x, y)

= K2(1 - x){(-Bl (0, 2,0,2; y)) - (-B 1 (0, 1,0,2; y)}

- Ko (1-x)(Bo (0,2,0,2;y)-Bo (0,1,0,2;y)).	 (7.8)

We first prepare the following lemma;

LEMMA 7.2.

Bo (0, 2, 0, 2; x) - Bo (0,1, 0, 2; x) - D(0 22 0, 2) A,(0,1, 0, 2; x), 	 (7.9)

(-B1 (0, 2,0,2; x)) - (-B 1 (0,1,0,2; x)) = D(0 2, 0, 2) A, (0, 1,0,2; x). 	 (7.10)

Proof. Calculation of boundary data gives

BD(0, 1,0,2; Bo (0, 2,0,2; x) - Bo(0, 1, 	x))

= BD(0,1, 0, 2; Bo(0, 2, 0, 2; x)) - BD(0,1, 0, 2; Bo (0,1, 0, 2; x))

= {0,B(0, 2,0,2;0), 1, 0} - {0, 0, 1, 0}

= {0,Bá(0,2,0,2;0),0,0} = {0, D(0,2,0,2)00}.

Together with the uniqueness theorem, we obtain (7.9). Similarly, simple calcula-
tion shows

BD(0, 1,0,2; (-B 1 (0, 2,0,2; x)) - (-B í (0,1,0,2; x)))

= {0,-Bí(0,2,0,2;0),0,0} = {0, D(0,2,0,2)'0,0}'

from which we obtain (7.10).	 n

From Lemma 7.2, we have

g(0, 2,0,2; x, y) - g(0, 1,0,2; x, y)

=	 1D(0, 2, 0, 2) (K0K2(
1 - x) - K2K0(1 - x))A i (0, 1,0,2; y)

= (-Al (0, 2, 0, 2; x))A l (0,1, 0, 2; y) > 0,	 (7.11)
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which completes the proof of Theorem 7.3.	 n

THEOREM 7.4.

g(0,2, l, 3; x, y) - g(0, 1, 1,3;x,y) _ (-A1(0,2, l, 3; x))A1(0, 1,1, 3; y) > 0 (7.12)

Proof. We suppose 0 < y < x < 1. Subtracting (4.13) from (4.15), we have

g(0, 2,1, 3; x, y) - g(0, 1,1, 3; x, y)

= K3(1 - x){(-Bí(0, 2,1,3; y)) - (-Bí(0,1,1, 3; y))}

-K1 (1 - x)(Bo(0, 2,1, 3; y) - Bo (0,1,1, 3; y)).	 (7.13)

We first prove the following lemma;

LEMMA 7.3.

B0 (0, 2,1,3; x) - B0 (0, 1, 1, 3; x) = D(0, 231, 3)Aí (0,1,1, 3; x) 	 (7.14)

(-B1(0, 2, 1, 3; x)) - (-B1 (0,1,1, 3; x)) = D(0 2,1, 3) A1(0, 1, 1, 3; x) 	 (7.15)

Proof. Through simple calculations, we have

BD(0,1,1, 3; Bo(0, 2,1, 3; x) - B l (0, 1,1, 3; x))

K3
={0,B(0,2,1,3;0),0,0}=  {

Together with the uniqueness theorem, we obtain (7.14). In the same way, making
use of the boundary data,

K1
BD(0,1,1, 3; (-B 1 (0, 2, 1,3; x)) - (-B1 (0, 1,1,3; x))) = {0,

 D(0, 2,1,3)' 0,

we obtain (7.15).	 n

Owing to Lemma (7.3), we have

g(0, 2,1, 3; x, y) - g(0,1,1, 3; x, y)

=	 1	 (K1K3(1 - x) - K3K1 (1 - x))A1(0,1,1,3; y)
D(0, 2,1, 3)

_ (-Aí(0, 2,1, 3; x))A 1 (0, 1,1, 3; y) >0	 (7.16)

which completes the proof of Theorem 7.4.	 n

The final theorem is the most difficult to prove.
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THEOREM 7.5.

g(0, 1, 1, 3; x, y) - g(0,1, 0, 2; x, y)

= Bo(0,1,1, 3; x)(-BI(0,1,0,2; y))

- (-B1(0, 1,1, 3; x)) [p( -BI (0, 1,0,2; y)) - B0(0, 1,0,2; y)] > 0 	 (7.17)

Proof. Let 0 < y < x < 1. Subtraction of (4.12) from (4.13) gives

g(0, 1,1, 3; x, y) - g(0,1, 0, 2; x, y) _ [ Al (0, 1,1, 3; x) - Al (0,1, 0, 2; x) ]KI (y)

- [ Ao(0 , 1 , 1 , 3; x) - Ao(0,1, 0, 2; x) ]Ko(y)

(7.18)

We first prepare the following lemma.

LEMMA 7.4.

Áo(0,1,1,3;x) - Ao(0,1,0,2;x)

- KIB0(0 , 1 , 1 , 3; x) - (pKI - K3)(-B 1 (0, 1, 1 , 3 ; x))	 (7.19)
D(0,1,0,2)

Al(0,1,1,3;x)-A l (0,1,0,2;x)

= K0B0(0 , 1 , 1 , 3; x) - (pKo - K2)(-Bí(0 , 1 , 1 , 3 ; x))	 (7.20)
D(0,1,0,2)

Proof. Straightforward calculations give

BD(0, 1, 1,3; A o (0, 1, 1,3; x) - Ao (0, 1,0,2; x))

= {0, 0, -Aó(0,1, 0, 2; 1), Ao'(0,1, 0, 2; 1)}

=	 1
D(0,1, 0, 2) {

0 , 0,KI,pKI - K3},

which proves (7.19). Similarly, we have

BD(0,1,1, 3; A I (0,1,1, 3; x) - A I (0,1, 0, 2; x))

= {0, 0, -Aí(0,1,0,2; 1), -Aï'(0, 1,0,2; 1)}
1

D(0,1, 0, 2) {0, 0, 
Ko , pKo - K2 } ,

which proves (7.20).	 •

Employing Lemma 7.4, we have

g(0, 1,1, 3; x, y) - g(0,1, 0, 2; x, y)
1

= D(0 1, 0 2) [{K0Bo(0,1, 1, 3; x) - (pKo - K2)(-B 1 (0, 1,1,3; x))} Kl (y)
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— {K1Bo(0 , 1 , 1 , 3 ; x) — (pKi — K3)( — B1(0 , 1 , 1 , 3; x))} Ko(y)]

= Bo(0 , 1 , 1 , 3 ; x) D(0,1 0 2) (KoK1(y) — K,Ko(y))

— ( — B1(0 , 1 , 1 , 3; x))	 1D(0,1,0,2)

{p(KoKl(y) — KlKo(y)) — (K2Kl(y) — K3Ko(y))}
= Bo(0,1,1, 3; x)(—B í (0,1,0,2; y))

— (— Bí (0,1,1, 3; x))(p(—B í (0,1, 0, 2; y)) — BO (0,1, 0, 2; y))	 (7.21)

Finally, we prove that the right hand side of (7.17) is positive. Dividing its

both sides by a positive function (— Bí (0,1,1, 3; x))(—B i (0, 1,0,2; y)), we have

g(0, 1,1, 3; x, y) — g(0,1, 0, 2; x, y) _ BO (0,1,1, 3; x)	 BO (0,1, 0, 2; y)

(—B 1 (0, 1,1, 3; x))(—B1 (0,1, 0, 2; y))	 —Bi (0,1,1, 3; x) + —B, (0,1, 0, 2; y) — p

(7.22)

Since a differential of the first term of the right hand side of (7.22) gives

d 	Bo(0 , 1 , 1 , 3; x) __ (K2K3 — K1K4)(Ki (x) — Ko(x)K2(x))
dx ( — B, (0, 1,1, 3; x))	 (Kl Kl (x) — K2Ko(x))2	

> 0, (7.23)

we have
B0(0, 1, 1, 3; x) _ K3 K1 (x) — K4 Ko (x) 	K3 

— B,(0 , 1 , 1 , 3 ;x) K1Kl(x) —.K2Ko(x) ló Kl 
(7.24)

The limit value K3 /K1 is obtained applying twice L'Hospital's theorem. This is
the most delicate point of our proof. In the same way, a differential of the second
term gives

d 	01,0,2; x) __ (K1K2 — KoK3)(Ki (x) — Ko(x)K2(x))
dx ( —B1 (0,1,0,2; x))	 (KoK1(x) — K 1 Ko (x))2	

> 0, (7.25)

from which one can find

B0(0,1,0,2;x) __ K2K1(x) — K3Ko(x)	 K2

—Bi (0 , 1 , 0 , 2 ; x) KoK1(x) — K1Ko (x)	
7.26

lo Ko

Here L'Hospital's theorem is used twice again. Hence, we have from (7.22)

g(0 , 1 , 1 , 3; x, y) — g( 0 , 1 , 0 , 2 ; x, y) 	 K3 + K2
— p(—B 1 (0, 1,1, 3; x))(—B í (0,1, 0, 2; y))	 Kl 	Ko

1 0 1 ( sh(2a) — sh(2b)
) > 0,

2(a2 — b2 )K K	 a	 b 

(7.27)

which completes the proof of Theorem 7.5.	 n
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