Synthesis and Biological Evaluation of Pyridazinone Analogues as Potential Cardiac Positron Emission Tomography Tracers

Ajay Purohit,^{†,‡} Heike Radeke,^{*,†,‡} Michael Azure,[‡] Kelley Hanson,[‡] Richard Benetti,[§] Fran Su,[‡] Padmaja Yalamanchili,^{||} Ming Yu,[‡] Megan Hayes,[‡] Mary Guaraldi,[‡] Mikhail Kagan,[‡] Simon Robinson,[‡] and David Casebier[‡]

Research and Development, Bristol-Myers Squibb Medical Imaging, 331 Treble Cove Road, North Billerica, Massachusetts 01862, Boston University Medical School, 715 Albany Street, Boston, Massachusetts 02118, Lexicon Pharmaceuticals Inc., 350 Carter Road, Princeton, New York 08540

Received November 15, 2007

A series of fluorinated pyridazinone derivatives with IC_{50} values ranging from 8 to 4000 nM for the mitochondrial complex 1 (MC1) have been prepared. Structure–activity relationship (SAR) assessment indicated preference of the fluorine label to be incorporated on an alkyl side chain rather than directly on the pyridazinone moiety. Tissue distribution studies of a series of analogues ([¹⁸F] **22–28**) in Sprague–Dawley (SD) rats identified [¹⁸F]**27** as the most promising radiotracer with high uptake in cardiac tissue (3.41%ID/g; 30 min post injection) in addition to favorable heart to nontarget organ distribution ratios. MicroPET images of SD rats and nonhuman primates after [¹⁸F]**27** administration allowed easy assessment of the myocardium through 60 min with minimal lung or liver interference.

Introduction

Nuclear myocardial perfusion imaging agents $(MPIA)^{a}$ have been increasingly utilized in the assessment of coronary artery disease (CAD).¹ The most widely used MPIA are ²⁰¹Tl or cationic ^{99m}Tc complexes used with single-photon emission computed tomography (SPECT) in the determination of myocardial blood flow and viability in patients.^{2,3} However, SPECT imaging has inherent limitations such as accurate attenuation correction, spatial resolution, and the ability to quantify myocardial perfusion in absolute terms (milliliters per gram per minute) compared to positron emission tomography (PET) contrast agents.⁴⁻⁶ In addition, current SPECT tracers also exhibit shortcomings in their pharmacokinetic properties such as myocardial extraction, redistribution of the radiotracer to nontarget tissue over time, and linearity of uptake at elevated blood flow (the "roll-off" phenomenon).^{7–9} Therefore, PET imaging has become a clinically viable alternative in evaluating myocardial blood flow by use of positron-emitting radionuclides.¹⁰⁻¹⁴ The most widely used PET flow tracers in the evaluation of myocardial perfusion are: 82RbCl, 13NH3, and H2¹⁵O.¹⁵⁻¹⁹ Unfortunately, their usage is limited by a short physical half-life (<10 min) and, for ${}^{13}NH_3$ and $H_2{}^{15}O$, the requirement of local cyclotron production. New PET tracers should therefore have greater myocardial extraction and superior linearity of uptake versus flow to existing agents, retention within the myocardium for the desired imaging window, and a sufficient half-life that single-dose commercial distribution would be feasible.

Recent studies in the isolated rabbit heart with ¹²⁵I-iodorotenone (**2**, Figure 1) indicated a superior extraction and retention than ^{99m}Tc-sestamibi and ²⁰¹Tl.²⁰ Rotenone (**1**), a natural product, is widely used as an insecticide, acaricide, and miticide.^{21,22} Rotenone is a potent inhibitor of mitochondrial complex 1 (MC1), which is the first enzyme of four electron transport complexes embedded in the mitochondrial membrane.^{23,24} Because of the very high weight percentage of mitochondria present in cardiomyocytes, MC1 may represent a new target for the development of cardiac PET tracers.²⁵

Numerous classes of MC1 inhibitors have been reported in addition to $1.^{26-30}$ Our laboratories were particularly interested in compounds such as fenazaquin (3), *S*-chromone (4), tebufenpyrad (5), and pyridaben (6, Figure 2), which all share the same binding site of the MC1 enzyme as rotenone.³¹ In addition, MC1 inhibitors 3-6 are structurally similar as they all possess: (a) a hydrophobic heterocyclic "headpiece", for example a pyridazinone headpiece as 6, (b) a *p*-tert-butylphenyl moiety the "side chain", and (c) a heteroatom-containing linker, connecting (a) and (b).

Previous in vivo studies of $[^{18}F]$ labeled analogues 7 and 8 demonstrated rapid uptake of the radiotracer into the myocardium in rats (Figure 3).^{32,33} However, both radiotracers showed a significant amount of washout after 60 min post injection from the myocardium tissue. In this paper, we report our efforts toward the development of a PET tracer based on MC1 inhibitor **6**. Our goal is to incorporate PET radionuclide ¹⁸F into an analogue of **6**, maintain affinity for MC1, and achieve good uptake and retention in the myocardium.

Results and Discussion

Structure–Activity Relationships. Previous structure–activity relationship studies of pyridaben have shown a significant decrease in MC1 inhibitory activity when the *t*-butyl moiety was replaced with an ethyl or methyl group demonstrating the necessity of the *t*-butyl moiety in the pyridazinone headpiece.³⁴ Our initial efforts focused on replacement of the chlorine moiety in the pyridazinone headpiece with other halogens such as fluorine to yield analogue **9** (Table 1). MC1 inhibitory activity significantly declined from an IC₅₀ value of 8 nM of **6** to 279

^{*} Corresponding author. Phone: (978)671-8151. Fax: (978)436-7500. E-mail: heike.radeke@bms.com.

 $^{^{\}dagger}$ Authors contributed equally to this publication and are listed in alphabetical order.

^{*} Research and Development, Bristol-Myers Squibb Medical Imaging.

[§] Boston University Medical School.

[&]quot;Lexicon Pharmaceuticals Inc.

^{*a*} Abbreviations: MPIA, myocardial perfusion imaging agent; CAD, coronary artery disease; SPECT, single-photon emission computed tomography; PET, positron emission tomography; MC1, mitochondrial complex 1; TBDMS-Cl, *tert*-butyldimethylsilyl chloride; SMP, submitochondrial particles.

Pyridazinone Analogues as Cardiac PET Tracers

R=¹²⁵I, Iodorotenone (2)

Figure 1. Natural product rotenone, a known MC1 inhibitor.

Figure 3. [¹⁸F] labeled analogues of MC1 inhibitors fenazaquin (7) and *S*-chromone (8).

Table 1. Binding Affinity (IC₅₀, Determined in Vitro) of Known MC1 Inhibitors and Pyridaben Derivatives Exploring the Pyridazinone Headpiece

nM for **9**. Next, the chlorine moiety of **6** was replaced with a methyl group to yield compound **10**. The methyl substituent of **10** was used as an isostere for the chlorine atom of **6** but differed electronically. Here, we observed only a 3-fold decrease in activity yielding an IC₅₀ value of 21 nM for **10** versus 8 nM for **6**. Unfortunately, attempts to incorporate a fluorine atom into compound **10** to yield compound **11** resulted in a significant decrease in MC1 activity. Simultaneously, known MC1 inhibitors **1**, **3**, and **4** were screened for MC1 activity and found to be less potent than **6**, whereas analogues **7** and **8** were equivalent in potency compared to **6**.

Table 2. Binding Affinity (IC₅₀, Determined in Vitro) of Nonfluorinated

 Pyridaben Derivatives Exploring the Linker Region

Table 3. Binding Affinity (IC₅₀, Determined in Vitro) of Nonfluorinated Pyridaben Derivatives Exploring the Side Chain Region

	\sim R ₂		
Compound	R ₁	R_2	IC ₅₀ (nM)
15	-H	-H	850
16	-H	-CH ₂ CH ₂ CH ₂ CH ₂ CH	3 17
17	-H	-OCH ₂ CH ₂ CH ₂ CH	H _{3 27}
18	-H	\neg	31
19	-(C⊦	1)4-	60
20	-N(C	H) ₃ -	221

A series of analogues were prepared to investigate the heteroatom requirements in the linker as well as the optimal chain length of the linker (Table 2). When the sulfur atom in the linker of 6 was replaced with a nitrogen (12) or oxygen (13) atom, MC1 inhibitory activity decreased \sim 500 and 8 fold, respectively. Although sulfur as the linking atom imparts the greatest activity, the oxygen atom was preferred due to anticipated greater metabolic stability.35 Extending the chain of the linker of 13 by one carbon to generate analogue 14 was detrimental to MC1 inhibitory activity. Therefore, compound 13 was chosen to represent the optimal compromise between MC1 potency and metabolic stability. Further synthetic efforts were directed toward modification of the side chain of 13 for future fluorine incorporation (Table 3). Initially, removal of the *t*-butyl moiety to yield compound **15** resulted in a >10 fold decrease in MC1 inhibitory activity, indicating the requirement of a para -substituted alkyl moiety in order to maintain biological activity. Therefore, replacement of the t-butyl moiety in the side chain with a *n*-butyl moiety as previously reported in the preparation of fluorinated analogues of 7 and 8 generated compound 16 (IC₅₀ = 17 nM), which was 2-fold more potent than the parent analogue 13 (IC₅₀ = 64 nM). Insertion of an oxygen atom at the benzylic position in the four-atom linker of 16 to yield five-atom linker analogue 17 resulted in a decrease in MC1 activity (IC₅₀ = 27 nM). Interestingly, replacement of the alkyl moiety of the side chain in analogue 16 with an aryl substituent affording compound 18 resulted in a 2-fold decrease in MC1 binding activity ($IC_{50} = 31 \text{ nM}$). However, replacement

Table 4. Binding Affinity (IC₅₀, Determined in Vitro) of Fluorinated Pyridaben Derivatives

of the aryl moiety in **18** with a naphthyl or quinoline group to generate compounds **19** and **20** resulted in a 2- and 7-fold loss of MC1 activity, respectively. Last, replacement of the aryl moiety in the side chain of **6** with a *n*-decyl chain to yield compound **21** resulted in complete loss of biological activity, demonstrating the need of an aryl moiety in the side chain in order to maintain MC1 activity.³⁶

Next, fluorinated pyridaben analogues were prepared (Table 4) Analogue 22 possessed MC1 inhibition similar to nonfluorinated counterpart 16, whereas compound 23 exhibited \sim 3fold decrease in activity versus analogue 22. Further SAR studies of the most potent pyridaben analogue 22 were pursued. According to the literature, radiotracers containing primary ¹⁸F labels may be metabolically defluorinated in vivo at a faster rate than secondary or aromatic ¹⁸F.^{37,38} However, primary aliphatic ¹⁸F atoms, which are β to a heteroatom, e.g., [18F]FCH₂-CH₂O-R, have been reported to be metabolized at a slower rate. This has been termed the β -heteroatom effect.³⁹ In this regard, analogues 24-27 in Table 4 were prepared. Compound 24, which contained a secondary fluorine atom, exhibited equipotent MC1 inhibitory activity compared to that of the parent compound 16 with IC₅₀ values of 10 nM versus 17 nM, respectively. Introducing an oxygen atom in the side chain of compound 24 in order to take advantage of the β -heteroatom effect in addition to the secondary nature of the fluorine atom resulted in compound 26 (IC₅₀ = 8 nM). Compounds 25 and 27 also contain primary fluorine labels with an oxygen atom positioned appropriately for increased metabolic stability, exhibiting potent MC1 activities of 11 and 16 nM, respectively. Lastly, deuterium atoms were substituted onto the carbon center bearing the fluorine atom of compound 27 in an attempt to further reduce in vivo defluorination. Researchers have observed an increased metabolic stability of deuterated radiotracers due to the isotope effect of deuterium on metabolism.40 The resulting analogue 28 exhibited a \sim 2.5-fold decrease in MC1 activity compared to that of the parent compound 27. Because analogues 22-28 all exhibit good MC1 inhibitory activity, further evaluations in vivo were performed.

Chemistry. The synthesis for pyridaben analogues 9-11,⁴¹ which describe modifications of the pyridazinone headpiece, are shown in Scheme 1. Displacement of the chlorine atom in **6** using potassium fluoride and kryptofix222 at elevated temperature in DMSO afforded fluorinated analogue **9** in low yield. Analogues **10** and **11** were prepared from common pyridazinone headpiece **30**,⁴¹ which was obtained via methylation of 3,4-dichloropyridazinone (**29**)⁴² with methylmagnesium bromide in diethyl ether at 0 °C. Alkylation of **30** with commercially

Scheme 1. Alterations in the Pyridazinone Headpiece^a

a. Synthesis of known fluorinated pyridaben analog 9

b. Synthesis of known pyridaben analog 10 and fluorinated counterpart 11

^{*a*} Reagents: (a) KF, K222, DMSO, 120 °C; (b) MeMgBr, diethyl ether, 0 °C; (c) 4-*tert*-butylbenzyl mercaptan, Cs₂CO₃, DMF, 65 °C; (d) NBS, AIBN, CCl₄, reflux; (e) K₂CO₃, dioxane/water, 110 °C; (f) TBDMS-Cl, imidazole, DMF, r.t.; (g) TBAF, THF, 0 °C; (h) MsCl, TMPDA, ACN, 0 °C.

Scheme 2. Variations in Chain Length and Hetero Atoms within the Side Chain^a

^a Reagents: (a) **37**, **38**, or **39**, Cs₂CO₃, DMF, 55-80 °C.

available 4-tert-butylbenzyl mercaptan in the presence of cesium carbonate in DMF at 65 °C rendered final compound 10, whereas the synthesis of 11 required the introduction of a fluorine moiety in the pyridazinone headpiece. Bromination of 30 using N-bromosuccinimide in the presence of AIBN in carbon tetrachloride under reflux condition afforded headpiece **31**. Hydrolysis of the bromide moiety in **31** with potassium carbonate in a mixture of dioxane and water at 110 °C introduced the hydroxyl moiety in the headpiece, which was protected with TBDMS-Cl to afford intermediate 33 in good yield. Introduction of the side chain using standard alkylation conditions (4-tert-butylbenzyl mercaptan, Cs₂CO₃, DMF, 65 °C) yielded intermediate 34. Deprotection of the alcohol moiety in headpiece 34 followed by subsequent mesylation afforded fluorination precursor 36. Fluorination of 36 using TBAF in THF at 0 °C afforded final compound 11.

Next, the length of the linker and heteroatom preference within the linker of the side chain was investigated. In this regard, analogues **12–14** were prepared as shown in Scheme 2. Alkylation of headpiece **29** in the presence of cesium carbonate in DMF at temperatures ranging from 55 to 80 °C with the appropriate alcohol or amine (**37–39**) afforded the desired final compounds. Similar alkylation conditions were also utilized when preparing compounds **16**, **17**, and **19** (Scheme 3a) to investigate the substitution patterns of the phenyl moiety in the

Scheme 3. SAR Studies of the Side Chain Substitution Pattern^a

b. Synthesis of pyridaben analogs 15, 18, and 20

^{*a*} Reagents: (a) **40**, **41**, **42**, **43**, or **44**, Cs₂CO₃, DMF, 25-75 °C; (b) **45**, DIAD, PPh₃, THF, 0 °C.

Scheme 4. Synthesis of Fluorinated Pyridaben Analogues $22-27^{a}$

a. Synthesis of pyridaben analog 22

^{*a*} Reagents: (a) **46**, Cs₂CO₃, DMF, 68 °C; (b) **47**, **48**, **49**, **50**, or **51**, DIAD, PPh₃, THF; (c) TBAF, THF, r.t.; (d) TsCl, DMAP, DIEA, DCM; (e) KF, K222, ACN, 90 °C; (f) TsCl, pyridine, r.t.

side chain. Additional functionalized side chains were installed using pyridazinone headpiece 3-hydroxy-4-chloropyridazinone $(56)^{43}$ and functionalized benzyl bromides in the presence of cesium carbonate in DMF at 25 and 70 °C to afford analogues 15 and 18, respectively (Scheme 3b). Coupling of 56 with functionalized benzyl alcohols via Mitsunobu conditions could also be used to afford pyridaben analogues such as 20 and intermediates 57-61 for fluorinated pyridaben analogues 22-27 (Scheme 4). Reaction intermediates 57, 59, and 61 contained a protected hydroxyl moiety at various positions within the side chain. Deprotection of the alcohol moiety of these intermediates with TBAF in THF led to pyridazinone intermediates 63, 65, and 67. Formation of the toluenesulfonate ester of alcohols 58, 60, 63, 65, and 67 affords fluorination precursors 64, 66, 69, 71, and 73. Fluorination of these sulfonates at 90 °C in acetonitrile for time intervals ranging from 10 to 40 min rendered final pyridaben analogues 23-27. Final pyridaben analogue 22 in this series was the only analogue prepared using Scheme 5. Synthesis of Oxygen Containing Side Chains for Pyridaben Analogues 23, $25-28^a$

a. Synthesis of side chains 41, 47 and 49 from common intermediate 76.

^{*a*} Reagents: (a) 1-bromo-3-propanol, K₂CO₃, DMF, 50 °C; (b) TBDMS-Cl, imidazole, DMF, r.t.; (c) LAH, THF or ether, 0-25 °C; (d) 1-bromobutane, Cs₂CO₃, DMF, r.t.; (e) 1-*tert*-butyldimethylsilyloxy-2-hydroxybutane, DIAD, PPh₃, THF, 0 °C; (f) ethylene oxide, BF₃ etherate, ether, DCM, -10 °C.

alkylation conditions to couple the pyridazinone headpiece with the appropriate side chain (Scheme 4a).

When pyridaben analogues **17** and **22–27** were prepared according to the reaction sequences shown in Schemes 3 and 4, the required functionalized benzyl alcohols used as reaction partners in Mitsunobu reactions or alkylations had to be synthesized separately. Scheme 5 shows the preparation of side chain precursors **41**, **47**, **49**, and **51** required in the preparation of fluorinated pyridaben analogues **17**, **23**, **25**, and **27**.

Commercially available methyl-4-hydroxybenzoate (76) was used as a common intermediate to prepare side chain precursor 41, 47, and 49. Alkylation of 76 with 1-bromobutane in the presence of cesium carbonate in DMF at room temperature yielded alkylation product 75. Reduction of the ester moiety in 75 with LAH in ether at 0 °C afforded side chain precursor 41 in good yield. Side chain precursor 47 was prepared in a similar fashion. Modified alkylation conditions (K₂CO₃, DMF, 50 °C) using 1-bromo-3-propanol to afford alkylation product 81 followed by protection of the alcohol moiety with TBDMS-Cl and imidazole in DMF at room temperature yielded 82. Reduction of the ester moiety in 82 with LAH in ether at 0 °C afforded functionalized benzyl alcohol 47. Side chain 49 was prepared using Mitsunobu conditions to couple 76 with 1-tertbutyldimethylsiloxy-2-hydoxybutane followed by reduction of the ester moiety with LAH in ether at 0 °C to afford benzyl alcohol 49. Commercially available methyl 4-(hydoxymethyl) benzoate (70) was exposed to ethylene oxide in the presence of a Lewis acid to afford intermediate 72. Protection of the primary alcohol moiety in 72 with TBDMS-Cl and imidazole in DMF to yield 86 followed by reduction of the ester moiety in 86 with LAH in THF afforded final side chain precursor 51. The synthesis of the side chain precursor for the deuterated

Scheme 6. Synthesis of All Carbon Side Chains 46 and 48^{a}

b. Synthesis of side chain 46

^{*a*} Reagents: (a) butyryl chloride, DCM, r.t.; (b) i. oxalyl chloride, AlCl₃, DCM; ii. MeOH, 48 h. (c) TBDMS-Cl, imidazole, DMF, r.t.; (d) LAH, THF or diethyl ether, 0 °C; (e) 3-butene-2-ol, Pd(OAc)₂, PPh₃, TEA.

Table 5. Biodistribution of [18F]Pyridaben Analogues in Sprague-Dawley Rats^a

heart uptake		tissue ratios ^b				
compounds	30 min	120 min	heart:blood	heart:lung	heart:liver	heart:femur
22	2.94 ± 0.24	2.99 ± 0.99	60.67	14.93	1.45	6.84
23	1.31 ± 0.09	0.86 ± 0.43	9.27	5.40	0.77	2.00
24	2.25 ± 0.04	2.14 ± 0.26	20.76	12.49	1.78	1.98
25	1.05 ± 0.13	1.24 ± 0.06	6.05	1.37	1.11	0.89
26	1.15 ± 0.36	1.14 ± 0.17	13.17	11.41	2.62	0.40
27	3.41 ± 0.27	3.47 ± 0.37	30.02	16.05	2.74	7.51
28	1.09 ± 0.06	1.60 ± 0.24	12.74	7.33	1.70	4.60

^a Data are expressed as the %ID/g \pm SD with three animals per data point. ^b Ratios are taken from 30 min post injection data points.

analogue **28** was prepared in an analogous fashion. The alcohol **70** was exposed to deuterated ethylene oxide in the presence of a Lewis acid to afford intermediate **87**. Subsequent protection of the alcohol **87** (TBDMS-Cl, imidazole, DMF) yielded **88**. Reduction of the ester moiety in **88** with LAD in THF afforded deuterated side chain precursor **52**.

The preparation of side chain precursors **46** and **48**, which were used to prepare analogues **22** and **24**, are shown in Scheme 6. Commercially available alcohol **77** was esterified using butyryl chloride in DCM to afford intermediate **78**. Introduction of the benzyl ester moiety in **78** was accomplished via a two-step procedure to afford intermediate **79** in good yield. Protection of the primary alcohol moiety in **79** with TBDMS-Cl and imidazole in DMF and subsequent reduction of the benzyl ester moiety with LAH in ether at 0 °C afforded side chain precursor **46**, which was coupled with **29** to yield final analogue **22**. Side chain precursor **48** was obtained from 4-bromomethylbenzoate **83** via a Heck coupling with 2-butene-2-ol, Pd(OAc)₂, PPh₃ in TEA to afford intermediate **84**, followed by reduction of the ketone moiety of **84** with LAH in THF.

In Vitro Experiments. The inhibitory activities of compounds **1**, **3**, **4**, and **6–28** for the MC1 enzyme were determined by measuring the rate of NADH oxidation in the presence of decyl ubiquinone at 340 nm with a UV–vis spectrophotometer over 120 s.⁴⁴ Submitochondrial particles (SMP) were isolated from bovine heart mitochondria according to Lester and Matsuno-Yagi et al.^{45,46} The SMP were used as a suspension, and rotenone was run as a reference standard versus each compound.

Radiosynthesis. Compounds **22–28** within this series were radiolabeled with the PET isotope ¹⁸F. Nucleophilic radiofluorination methods require activated leaving groups such as sulfonates (e.g., tosylates, mesylate) in order to generate alkylfluoride containing radioligands.³⁵ Primary sulfonates are often the preferred leaving group because of their ease of

Table 6. Radiochemical and Reaction Yield for the Synthesis of $[^{18}F]22-28$

compounds	RCP (%)	yield (%)
22	100	12.3
23	100	10.2
24	91.5	8.2
25	100	13.4
26	100	17.6
27	100	35
28	100	18.2

Scheme 7. Radiosynthesis of [¹⁸F]22^a

^{*a*} (a) K¹⁸F/K222, ACN, 90 °C, 30 min. Analogues [18 F]**23–28** were prepared in an analogous fashion from the appropriate sulfonate precursor.

displacement with nucleophilic ¹⁸F, compared with secondary sulfonate leaving groups, which often eliminate under fluorination conditions to yield olefinic byproducts. With this in mind, the [¹⁸F]**22–28** were prepared with chemical yields ranging from 8.2 to 35% (Table 6) by the reaction of their corresponding tosylate precursors with kryptofix222/K¹⁸F complex and potassium carbonate in acetonitrile at 90 °C for 30 min followed by preparative HPLC separation of the reaction mixture (Scheme 7). The appropriate fractions were concentrated and analyzed for radiochemical yield and purity. The radioactivity of the final product was ~25 mCi with radiochemical purity >99% when prepared with 500 mCi [¹⁸F]fluoride, with a total time of synthesis of 90 min. The specific activity of the material ranged from 750 to 2000 Ci/mmol depending upon the quantity of ¹⁹F present in the system.

tissue distribution ^a				
compounds	lung	liver	femur	blood
22	0.01 ± 0.18^b	2.03 ± 0.11^{b}	0.43 ± 0.06^{b}	0.11 ± 0.01^{b}
	0.18 ± 0.03^{c}	0.62 ± 0.08^{c}	1.16 ± 0.12^{c}	0.04 ± 0.01^{c}
28	0.24 ± 0.03^{b}	1.70 ± 0.31^{b}	0.65 ± 0.09^{b}	0.15 ± 0.00^{b}
	0.08 ± 0.00^c	0.55 ± 0.05^{c}	$0.76 \pm 0.71^{\circ}$	$0.07 \pm 0.01^{\circ}$
27	0.18 ± 0.02^{b}	1.27 ± 0.10^{b}	1.14 ± 0.13^{b}	1.15 ± 0.36^{b}
	0.14 ± 0.08^c	0.63 ± 0.16^{c}	2.38 ± 0.28^{c}	3.41 ± 0.27^{c}
26	0.79 ± 0.33^{b}	0.98 ± 0.10^{b}	1.23 ± 0.23^{b}	0.18 ± 0.03^{b}
	0.22 ± 0.02^{c}	$0.39 \pm 0.01^{\circ}$	$3.00 \pm 0.43^{\circ}$	0.06 ± 0.00^{c}
25	0.10 ± 0.00^{b}	0.44 ± 0.07^{b}	2.91 ± 0.56^{b}	0.09 ± 0.01^{b}
	0.06 ± 0.01^{c}	$0.40 \pm 0.04^{\circ}$	$3.91 \pm 0.78^{\circ}$	0.04 ± 0.00^{c}
24	0.21 ± 0.03^{b}	1.25 ± 0.17^{b}	0.45 ± 0.04^{b}	0.11 ± 0.01^{b}
	0.28 ± 0.04^{c}	0.55 ± 0.12^{c}	0.75 ± 0.08^{c}	0.19 ± 0.01^{c}
23	0.15 ± 0.00^{b}	0.64 ± 0.07^{b}	0.23 ± 0.03^{b}	0.08 ± 0.00^{b}
	0.13 ± 0.01^c	0.44 ± 0.04^c	0.78 ± 0.07^c	0.10 ± 0.01^c

^{*a*} Data are expressed as the $\text{MD/g} \pm \text{SD}$ with three animals per data point. ^{*b*} Percent ID/g determined after 30 min post injection. ^{*c*} Percent ID/g determined after 120 min post injection.

In Vivo Studies. Biodistribution Study of [¹⁸F]Pyridaben-Analogues 22–28 in Sprague–Dawley (SD) Rats. Biodistribution studies were performed with [¹⁸F]pyridazinone derivatives [¹⁸F]22–28 in SD rats (see Table 5).

High uptake of radiotracers [¹⁸F]**22**, [¹⁸F]**24**, and [¹⁸F]**27** from the blood pool into the myocardium was observed at 30 min post injection (>2.0%ID/g; >20:1 heart:blood pool ratio). The concentration of radiotracers [¹⁸F]**22** and [¹⁸F]**27** residing in the heart remained constant from 30 to 120 min post injection, and [¹⁸F]**24** exhibited minimal wash-out at 120 min post injection, at which point approximately 95% of the activity present at 30 min post injection was still present.

The uptake of radiotracers [¹⁸F]**22–28** in nontarget tissues was measured as well. At 30 min post injection, radiotracers [¹⁸F]22, [¹⁸F]24, and [¹⁸F]27 exhibited heart:lung tissue ratios with >10 fold selectivity while maintaining high uptake in myocardium tissue (>2.0%ID/g). However, $[^{18}F]27$ exhibited the best heart to lung ratio (16.05) while exhibiting the highest uptake in myocardium tissue (3.41%ID/g) compared to [¹⁸F]22 (heart:lung ratio 14.93, 2.94%ID/g) and [¹⁸F]24 (heart:lung ratio 12.49, 2.25%ID/g) at 30 min post injection. Low uptake of the radiotracer in lung tissue suggests an excellent signal-to-noise ratio for future imaging studies with [¹⁸F]27. When measuring the ratio of radiotracer in heart:liver tissue, $[^{18}F]$ 27 showed a selectivity of 2.74 fold for the myocardium, which is more selective than [¹⁸F]**22** (heart:liver ratio 1.45) and [¹⁸F]**24** (heart: liver ratio 1.78). Interestingly, the heart:liver ratio of $[^{18}F]$ 26 was measured to be 2.62, which is comparable to $[^{18}F]$ 27. However the heart uptake of $[^{18}F]$ **26** is only 1.15%ID/g at 30 min post injection.

Addressing the previous concerns regarding in vivo defluorination and subsequent accumulation of the free fluoride in bone, compounds [18F]22, [18F]27, and [18F]28 exhibited femural uptake of less than 0.5% ID/g after 30 min post injection (Table 7). Introduction of an oxygen atom in the side chain of $[^{18}F]22$ to generate the β -heteroatom effect did not reduce in vivo defluorination (0.43%ID/g for $[^{18}F]$ 22 vs 0.45%ID/g for $[^{18}F]$ **27**) as previously suggested. On the other hand, introduction of deuterium labels in [18F]27 to yield [18F]28 did result in a 2-fold decrease of in vivo defluorination at 30 min post injection. When the fluorine label was secondary as in $[^{18}F]$ 24, femur uptake of the radiotracer at 30 min post injection was measured to be 1.13%ID/g. Compounds $[^{18}F]$ 25 and $[^{18}F]$ 26, which also contain a secondary fluorine label in addition to the β -heteroatom, exhibited even higher uptake of free fluoride in femur than $[^{18}F]$ **24**. Compounds $[^{18}F]$ **22** and $[^{18}F]$ **27** were identified as the radiotracers with high uptake in heart tissue (>2%ID/g) in addition to exhibiting low in vivo defluorination (<0.5%ID/ g). Heart:femur ratios of compounds [¹⁸F]**22** and [¹⁸F]**27** possessed the highest selectivity with ratios of 6.84 and 7.51, respectively (Table 7) within this series of fluorinated pyridaben analogues. Although [¹⁸F]**28** exhibited a 2-fold decrease of in vivo defluorination compared to [¹⁸F]**27**, the heart uptake was only 1.09%ID/g, resulting in a heart:femur ratio of 4.60. Analogously, [¹⁸F]**24** exhibited high heart uptake (2.25%ID/g) but also exhibited high femural uptake (1.13%ID/g), resulting in a heart:femur ratio of 1.98. Stability toward in vivo defluorination of [¹⁸F]**27** did not improve with the introduction of deuterium atoms on the fluorine bearing carbon (heart:femur ratio 4.60).

These results suggest that although there is literature precedence on strategies for minimization of in vivo defluorination of radiotracers in general, our compound series does not follow these literature observations. This suggests that the phenomena of in vivo defluorination is highly substrate dependent as only few records in the literature successfully address reducing in vivo defluorination using the above-mentioned strategies.⁴⁷ In addition, the metabolism of any compound may be species dependent and therefore in vivo defluorination may occur to a more significant extent in one species than the other.48 Nevertheless, this series does demonstrate that the alkyl portion of the side chain can tolerate structural variation such as incorporation of heteroatoms and alternative placement of the fluorine label without profoundly affecting the MC1 activity. Tables 3 and 4 show that five out of the seven analogues synthesized exhibit an MC1 inhibitory activity of less than 20 nM. However, biodistribution studies of these compounds demonstrated significant differences in uptake of the individual radiotracers in various tissues. Thus [¹⁸F]27 was chosen as the lead structure in this series because it exhibited the highest uptake in the heart at 30 min post injection (3.41%ID/g) with essentially no washout over 120 min and superior target-to-background tissue ratios compared to other compounds within this series. Comparison studies with 99mTc-Sestamibi demonstrated [18F]27 to be superior in heart uptake, myocardium retention, and target-tobackground tissue ratios.^{49,50} Overall, these results suggest ¹⁸F]**27** to be a suitable agent for pursuing PET imaging studies.

Imaging Studies of [¹⁸F]27 in SD Rats and Nonhuman Primates. Dynamic PET Imaging studies were carried out on SD rats and nonhuman primates. The PET images obtained on SD rats complemented the results obtained in the above tissue distribution study. [¹⁸F]27 accumulated within minutes after the

Figure 4. Images of a rat and nonhuman primate (NHP) heart at two different time points using $[^{18}F]$ 27.

injection of the rat in cardiac and liver tissue as is depicted in Figure 4. Significant uptake of the radiotracer is visible in the images of the rat heart, which was maintained over a 120 min imaging period with minimal loss of signal intensity. Sufficient clearance of compound [¹⁸F]**27** from the liver was observed by 35–45 min post injection to obtain good myocardial images and was complete by 55–60 min post injection. No interference from lung uptake of the radiotracer was detected, as demonstrated by the high quality images obtained from this study. However, some in vivo bone uptake of [¹⁸F] could be detected in images after 30 min post injection.

Observations made in the PET imaging studies of nonhuman primates were similar to the PET imaging studies of rats. Rapid accumulation of the radiotracer in cardiac tissue was observed within minutes after the injection of the animal. Uptake of [¹⁸F]**27** in liver tissue was seen as well, although to a much lesser extent than that in the PET images of rats. Direct comparison among disparate species is possible via scaling to quantified external activity sources placed beside the subject animals in each study; normalization to these reference sources gives comparable uptake values. Uptake levels of [¹⁸F]27 in the myocardium allowed clear visualization of the right and left ventricle walls. This signal intensity was maintained over a 120 min imaging period. At 35-45 min post injection, clearance of the radiotracer from liver tissue was complete. As was observed in the PET imaging studies of the rat, no interference from lung uptake of [¹⁸F]27 was detected. However, unlike in the rat imaging studies, no in vivo bone uptake of [¹⁸F]could be detected in nonhuman primate images up to 120 min post injection, confirming a more favorable metabolic profile in higher species.

Conclusion

A series of fluorinated pyridaben derivatives with high affinity for MC1 have been prepared. SAR studies were focused on addressing metabolic stability of the linker region of **6** as well as the optimal location of the fluorine label. Combined SAR studies of **6** and **13** have shown that incorporation of a fluorine label in the pyridaben alkyl side chain such as compounds **22–28** exhibit more potent binding affinities for the MC1 complex (IC₅₀ < 50 nM) than attachment of a fluorine label directly onto the pyridazinone ring (compounds **9** and **11**, IC₅₀ > 200 nM). Introduction of an oxygen atom in the alkyl side chain or changing the location of the fluorine label within the alkyl side chain did not disrupt MC1 inhibition (IC₅₀ = 8–47 nM).

Biodistribution studies of $[^{18}F]$ **22–28** in rats identified $[^{18}F]$ **27** as the radiotracer with the highest absolute heart uptake at 30 min post injection (3.41%ID/g) in addition to the largest uptake ratios of heart to nontarget organs such as liver, lung, femur,

and blood. No washout of the radiotracer was observed in the myocardium at 120 min post injection.

Imaging studies of rats and nonhuman primates demonstrated a high initial uptake of [¹⁸F]**27** in the liver (more uptake was seen in PET images with rats compared to nonhuman primates), which cleared by 25 min post injection sufficiently to afford high quality images of the heart. While some in vivo bone uptake of [¹⁸F] was observed in rat images 30 min after [¹⁸F]**27** administration, no in vivo [¹⁸F] bone accumulation was observed in nonhuman primate PET images up to 120 min. This observation strongly suggests that the in vivo defluorination observed in biodistribution and imaging studies of compounds [¹⁸F]**22–28** is a highly species-dependent phenomenon. Future studies will therefore be directed toward examining the metabolic profile and potential utility of these compounds in other animal species.

Experimental Section

General Methods and Materials. All reagents used in synthesis were commercial products and were used without further purification unless otherwise indicated. All solvents used were ACS or HPLC grade. ¹H NMR spectra were obtained in a Bruker DRX 600 MHz FTNMR spectrometer in CDCl₃ unless otherwise indicated. Chemical shifts are reported as δ values (parts per million) relative to solvent peak. Coupling constants are reported in Hz. The multiplicity is defined by a s (singlet), d (doublet), t (triplet), br (broad), or m (multiplet).

High-performance-liquid chromatography (HPLC) analysis and purification were performed on a Varian/PrepStar model SD-1 at 220 and 254 nm. The instrument was equipped with the ProStar/ Dynamax.24 software program on a Dell/Optiplex GX 1 computer system. Water used in the preparation of the mobile phases was purified using a Millipore/Milli-Q Gradient A10 system. Flash chromatography was conducted using silica gel 230-400 mesh (60 Å), Merck. LCMS and TOF analysis were carried out on an Agilent LC/MSD instrument (model G1969A), which is connected to an 1100 Series HPLC system. For radiolabeling studies, F-18 was obtained from PETNET Pharmaceutical Services, Cummings Park, Woburn, MA, and the synthesis was carried out in Wheaton vials using a customized robotic synthesis platform. Biodistribution studies were measured in an autogamma counter (Wallac Wizard 1480), while cardiac imaging was carried out using a microPET camera (Focus220, CTI Molecular Imaging, Inc. Knoxville, TN). All study protocols were approved by the Institutional Animal Care and Use Committee.

Synthesis of 2-tert-Butyl-4-fluoro-5-(4-tert-butylbenzyl)mercapto-3-(2H)-pyridazinone (9).⁴¹ To a solution of KF (23.8 mg, 0.41 mmol) and kryptofix222 (154 mg, 0.41 mmol) in DMSO (4.0 mL) was added pyridaben (6, 150 mg, 0.41 mmol). The reaction mixture was heated at 120 °C. After 2.5 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (10 mL). The organic layer was separated, washed with water (40 mL), brine (40 mL), dried over Mg₂SO₄, filtered, and concentrated. The crude brown oil was purified by HPLC (Phenomenex Luna C18(2) column 10 μ , 21.2 mm \times 250 mm; gradient: 0–90% B over 30 min at 20 mL/min; Mobile phase A = water with 0.1% TFA modifier and B = 90% acetonitrile in water with 0.1% TFA modifier) to obtain compound 9 (37 mg, 25% yield) as a fluffy white solid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.57 (d, 1H, J = 7.5Hz), 7.34 (d, 2H, J = 8.3 Hz), 7.27 (d, 2H, J = 8.3 Hz), 4.23 (s, 2H), 1.61 (s, 9H), 1.29 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ: 155.2, 154.3, 153.4, 151.1, 133.4, 132.3, 128.4, 125.8, 65.9, 36.0, 34.5, 31.2, 27.7; ¹⁹F (CDCl₃, 564 MHz) δ: -119.69 (m, 1F).

Synthesis of 2-*tert*-Butyl-4-methyl-5-chloro-3-(2*H*)-pyridazinone (30).⁴¹ To a cooled (0 °C) solution of MeMgBr (6.02 mL of 3.0 M solution in ether, 18.1 mmol) was added dropwise a solution of 29 (2.0 g, 2.27 mmol)⁴² dissolved in Et₂O (10 mL). The resulting dark-red solution was stirred at 0 °C for 2 h and then quenched by the dropwise addition of 5 N HCl (aq) (5 mL). The resulting yellow solution was poured into a separatory funnel to separate the layers. The aqueous layer was extracted with ethyl acetate (2 × 15 mL), and the combined organic layers were washed with water (10 mL), brine (10 mL), dried over Mg₂SO₄, filtered, and concentrated. The crude oil was purified by silica gel chromatography (hexanes:ether gradient, 99:1 to 97:3) to obtain compound **30** (0.55 g, 31% yield) as a thick oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.52 (s, 1H), 2.21 (s, 3H), 1.60 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 157.4, 137.9, 135.4, 66.1, 27.7, 16.7.

Synthesis of 2-*tert*-Butyl-4-methyl-5-(4-*tert*-butylbenzyl)mercapto-3-(2*H*)-pyridazinone (10).⁴¹ A suspension of compound 30 (64 mg, 0.32 mmol), 4-*tert*-butylbenzyl mercaptan (180.3 mg, 0.64 mmol), Cs₂CO₃ (207.8 mg, 0.64 mmol) in DMF (1.5 mL) was heated at 65 °C. After 2.5 h, the reaction mixture was diluted with water (1 mL) and ethyl acetate (3 mL). The organic layer was separated and washed with water (4 × 4 mL), brine (4 mL), dried over Mg₂SO₄, filtered, and concentrated. The crude oil was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 98:2 to 96:4) to obtain compound 10 as a white solid (60 mg, 55% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 7.63 (s, 1H), 7.35 (d, 2H, *J* = 8.4 Hz), 7.27 (d, 2H, *J* = 8.4 Hz), 4.16 (s, 2H), 2.13 (s, 3H), 1.61 (s, 9H), 1.30 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 160.2, 150.9, 138.8, 135.6, 132.5, 132.0, 128.4, 125.8, 64.8, 36.1, 34.5, 31.2, 27.9, 13.4.

Synthesis of 2-*tert*-Butyl-4-bromomethyl-5-chloro-3-(2*H*)-pyridazinone (31). A solution of compound 30 (0.4 g, 1.99 mmol), *N*-bromosuccinimide (1.42 g, 7.99 mmol), and azobisisobutyronitrile (AIBN, 16.40 mg, 0.1 mmol) in CCl₄ (55 mL) was refluxed for 16 h. The reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated in vacuo to obtain a crude oil, which was dissolved in ethyl acetate (50 mL) and washed with water (2×15 mL), brine (15 mL), and dried over Mg₂SO₄. A white crystalline solid (0.48 g, 86% yield) was obtained upon concentration of the organic layer and was used in the next step without further purification; mp 99 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.70 (s, 1H), 4.47 (s, 2H), 1.62 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 158.8, 137.4, 135.7, 134.3, 66.6, 28.0, 22.8; HRMS-TOF (*m*/z): [M + H]⁺ calcd for C₉H₁₂BrClN₂O, 278.9894; found, 278.9891.

Synthesis of 2-*tert*-Butyl-4-hydroxymethyl-5-chloro-3-(2*H*)pyridazinone (32). A suspension of compound 31 (0.48 g, 1.73 mmol), K₂CO₃ (1.20 g, 8.7 mmol) in dioxane (3.2 mL), and water (3.2 mL) was heated at 110 °C. After 4.5 h, the reaction mixture was cooled to room temperature and diluted with DCM (20 mL). The organic layer was separated and washed with water (10 mL), brine (10 mL), and dried over Mg₂SO₄. Concentration of the organic layer in vacuo afforded 32 (0.3 g, 80% yield) as a pale-yellow solid, which was used in the next step without further purification. ¹H NMR (CD₃OD, 400 MHz) δ : 8.04 (s, 1H), 4.65 (s, 2H), 1.67 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 159.0, 143.4, 135.0, 67.8, 59.7, 28.0; HRMS-TOF (*m*/*z*): [M + H]⁺ calcd for C₉H₁₃ClN₂O₂, 217.0734; found 217.0734.

Synthesis of 2-*tert*-Butyl-4-(*tert*-butyldimethylsilyloxy)methyl-5-chloro-3-(2*H*)-pyridazinone (33). A solution of compound 32 (0.3 g, 1.38 mmol), *tert*-butyldimethylsilyl chloride (0.42 g, 2.76 mmol) and imidazole (0.19 g, 2.76 mmol) dissolved in DMF stirred for 16 h. The reaction mixture was diluted with ethyl acetate (15 mL). The organic layer was separated, washed with water (5 × 20 mL), brine (20 mL), dried over Mg₂SO₄, filtered, and concentrated. The crude oil was purified by silica gel chromatography (hexanes: diethyl ether gradient, 99:1 to 95:5) to obtain compound **33** (0.36 g, 80% yield) as a white solid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.64 (s, 1H), 4.72 (s, 2H), 1.61 (s, 9H), 0.88 (s, 9H), 0.10 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.7, 137.7, 137.1, 134.6, 65.7, 56.9, 27.7, 25.8, 18.4, -5.3; HRMS-TOF (*m*/*z*): [M + H]⁺ calcd for C₁₅H₂₇ClN₂O₂Si, 331.1603; found, 331.1602.

Synthesis of 2-*tert*-Butyl-4-(*tert*-butyldimethylsilyloxy)methyl-5-(4-*tert*-butylbenzyl)mercapto-3-(2H)-pyridazinone (34). 4-*tert*-Butylbenzylmercaptan (0.4 g, 2.26 mmol) and Cs₂CO₃ (0.74 g, 2.26 mmol) were added to a solution of compound 33 (0.25 g, 0.76 mmol) and dissolved in DMF (9 mL). The reaction mixture was stirred for 1.5 h at 65 °C before being filtered at room temperature. The filtrate was diluted with ethyl acetate (20 mL), washed with water (5 × 20 mL) and brine (20 mL), and then dried over Mg₂SO₄. The crude oil obtained upon concentration in vacuo was purified by silica gel chromatography (hexanes:diether gradient, 100 to 95: 5) to obtain **34** (280 mg, 78% yield). ¹H NMR (CDCl₃, 400 MHz) δ : 7.84 (s, 1H), 7.23 (d, 2H, *J* = 8.4 Hz), 7.13 (d, 2H, *J* = 8.4 Hz), 4.52 (s, 2H), 4.34 (s, 2H), 1.69 (s, 9H), 1.27 (s, 9H), 0.9 (s, 9H), 0.02 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ : 159.4, 149.9, 145.7, 135.2, 132.6, 132.3, 128.5, 125.2, 65.5, 60.8, 35.7, 34.4, 31.2, 27.9, 25.8, -5.5; HRMS-TOF (*m/z*): [M + H]⁺ calcd for C₂₆H₄₂N₂O₂SSi, 475.2809; found, 475.2813.

Synthesis of 2-*tert*-Butyl-4-hydroxymethyl-5-(4-*tert*-butylbenzyl)mercapto-3-(2*H*)-pyridazinone (35). To a cooled (0 °C) solution of compound 34 (0.12 g, 0.25 mmol) in THF (0.25 mL) was added TBAF (0.5 mL of 1.0 M solution in THF, 0.5 mmol) dropwise. After completion of addition the reaction mixture stirred for 3 h followed by concentration in vacuo to obtain a crude oil. Purification by silica gel chromatography (hexanes:ethyl acetate gradient, 100 to 92:8) of the crude material afforded compound 35 (73 mg, 80% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.71 (s, 1H), 7.35 (d, 2H, J = 8.4 Hz), 7.26 (d, 2H, J = 8.4 Hz), 4.64 (d, 2H, J = 6 Hz), 4.36 (t, 1H, J = 6 Hz), 4.17 (s, 2H), 1.61 (s, 9H), 1.30 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 160.4, 151.1, 139.2, 136.0, 133.1, 132.1, 128.4, 125.8, 65.4, 59.3, 36.5, 34.5, 31.2, 27.8; HRMS-TOF (*m*/*z*): [M + H]⁺ calcd for C₂₀H₂₈N₂O₂S, 361.1944; found, 361.1942.

Synthesis of 2-tert-Butyl-4-(methanesulfonyloxy)methyl-5-(4tert-butylbenzyl)mercapto-3-(2H)-pyridazinone (36). To a cooled (0 °C) solution of compound 35 (11 mg, 0.03 mmol) in ACN (0.2 mL) and tetramethylenepropylenediamine (TMPDA, 5.96 mg, 0.045 mmol) was added MsCl (5.24 mg, $3.56 \,\mu$ L, 0.045 mmol). After 5 min, the reaction mixture was diluted with ethyl acetate (1 mL) and water (0.5 mL). The organic layer was separated and washed with water (0.5 mL) and brine (0.5 mL), dried over Mg_2SO_4 , filtered, and then concentrated. Compound 36 was obtained as a crude oil (14 mg, 100% yield), which was used in the next step without further purification. ¹H NMR (CDCl₃, 400 MHz) δ : 7.70 (s, 1H), 7.24 (d, 2H, J = 8.2 Hz), 7.12 (d, 2H, J = 8.2 Hz), 5.06 (s, 2H), 4.39 (s, 2H), 2.93 (s, 3H), 1.68 (s, 9H), 1.26 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 158.7, 149.9, 137.6, 136.6, 134.2, 131.9, 128.1, 125.0, 65.7, 64.9, 59.9, 35.7, 34.0, 30.8, 27.4; HRMS-TOF (m/z): $[M + H]^+$ calcd for C₂₁H₃₀N₂O₄S₂, 439.1719; found, 439.1721.

Synthesis of 2-*tert*-Butyl-4-(fluoromethyl)-5-(4-*tert*-butylbenzyl)mercapto-3-(2*H*)-pyridazinone (11). To a cooled (0 °C) solution of compound 36 (14 mg, 0.03 mmol) dissolved in THF (0.2 mL) was added TBAF (95.8 μ L of 1.0 M solution in THF, 0.10 mmol) dropwise. After completion of addition the reaction mixture was stirred for 40 min. Concentration of the reaction mixture in vacuo afforded a crude oil, which was purified by preparative silica gel chromatography (hexanes:ethyl acetate, 9:1) to obtain analogue 11 (7 mg, 50% yield) in moderated yield. ¹H NMR (CD₃OD, 400 MHz) δ : 7.76 (s, 1H), 7.25 (d, 2H, *J* = 8.4 Hz), 7.10 (m, 2H), 5.22 (d, 2H, *J* = 47.2 Hz), 4.26 (s, 2H), 1.68 (s, 9H), 1.26 (s, 9H); ¹³C NMR (CD₃OD, 100 MHz) δ : 161.1, 151.5, 144.0, 136.1, 133.4, 129.6, 126.3, 81.3 (79.7), 67.2, 36.9, 35.3, 31.6, 28.1; HRMS-TOF (*m*/*z*): [M + H]⁺ calcd for C₂₀H₂₇FN₂OS, 363.1900; found, 363.1906.

Synthesis of 2-*tert*-Butyl-4-chloro-5-(4-*tert*-butylbenzyl)amino-3-(2*H*)-pyridazinone (12). A suspension of compound 29 (0.1 g, 0.45 mmol), 4-*tert*-butylbenzylamine (37, 0.15 g, 0.91 mmol), and Cs₂CO₃ (0.44 g, 1.36 mmol) in DMF (3 mL) was heated at 80 °C. After 16 h, the reaction mixture was cooled to room temperature and filtered. The filtrate was diluted with ethyl acetate (10 mL), washed with water (2×5 mL) and brine (5 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude material was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 100 to 80:20) to obtain analogue 12 (78 mg, 50% yield) in moderate yield. ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 7.67 (s, 1H), 7.35 (d, 2H, *J* = 8 Hz), 7.25 (d, 2H, *J* = 8 Hz), 4.48 (d, 2H, *J* = 6.4 Hz), 3.30 (br, 1H), 1.49 (s, 9H), 1.24 (s, 9H); 13 C NMR (DMSO-*d*₆, 100 MHz) δ : 157.4, 149.9, 144.1, 136.6, 127.0, 125.8, 125.0, 64.6, 45.1, 34.6, 31.5, 28.2; HRMS-TOF (*m*/*z*): [M + H]⁺ calcd for C₁₉H₂₆ClN₃O, 348.1837; found, 348.1843.

Synthesis of 2-*tert*-Butyl-4-chloro-5-(4-*tert*-butylbenzyl)oxy-3-(2*H*)-pyridazinone (13).⁴¹ A suspension of compound 29 (0.1 g, 0.45 mmol), 4-*tert*-butylbenzylalcohol (38, 0.15 g, 0.91 mmol), and cesium carbonate (0.29 g, 0.9 mmol) dissolved in DMF (3 mL) was heated at 75 °C. After 16 h, the reaction mixture was cooled to room temperature and filtered. The filtrate was diluted with ethyl acetate (10 mL) and washed with water (2 × 5 mL) and brine (5 mL). The organic layer was dried over Mg₂SO₄ and concentrated in vacuo to obtain an oil. The crude material was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 100 to 94:6) to obtain analogue 13 (143 mg, 63% yield) in moderate yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.73 (s, 1H), 7.42 (d, 2H, *J* = 8.4 Hz), 7.33 (d, 2H, *J* = 8.4 Hz), 5.27 (s, 2H), 1.62 (s, 9H), 1.31 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.0, 153.8, 151.9, 131.8, 126.9, 125.8, 125.1, 118.2, 71.8, 66.3, 34.6, 31.2, 27.8.

Synthesis of 2-tert-Butyl-4-chloro-5-(2-(4-tert-butylphenyl)ethyl)oxy-3-(2H)-pyridazinone (14). A suspension of compound **29** (0.08 g, 0.34 mmol), 2-(4-*tert*-butylphenyl) ethyl alcohol (**39**, 90 mg, 0.51 mmol), and Cs₂CO₃ (166 mg, 0.51 mmol) in DMF (3 mL) was heated at 55 °C. After 16 h, the reaction mixture was cooled to room temperature and filtered. The filtrate was diluted with ethyl acetate (10 mL) and washed with water (2 \times 5 mL) and brine (5 mL). The organic layer was dried over Mg₂SO₄ and concentrated in vacuo to obtain an oil. The crude material was purified by silica gel chromatography (hexanes:ethyl acetate, 90: 10) to obtain analogue 14 (28 mg, 23% yield) in moderate yield. ¹H NMR (CDCl₃, 400 MHz) δ : 8.16 (s, 1H), 7.31 (d, 2H, J = 8Hz), 7.24 (d, 2H, J = 8 Hz), 4.1 (t, 2H, J = 4 Hz), 3.0 (t, 2H, J = 44 Hz), 1.56 (s, 9H), 1.25 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 158.2, 154.4, 149.3, 134.7, 129.2, 126.4, 125.5, 115.5, 71.3, 65.7, 34.9, 34.5, 31.6, 27.9; HRMS-TOF (m/z): $[M + H]^+$ calcd for C₂₀-H₂₇ClN₂O₂, 363.1833; found, 363.1836.

Synthesis of 2-tert-Butyl-4-chloro-5-benzyloxy-3-(2H)-pyridazinone (15).⁴¹ A suspension of compound 56 (0.03 g, 0.15 mmol), benzyl bromide (43, 22.9 mg, 15.87 µL, 0.13 mmol), and Cs₂CO₃ (48.3 mg, 0.14 mmol) in DMF (1 mL) was stirred at room temperature. After 2 h, the reaction mixture was concentrated in vacuo to obtain a crude material, which was redissolved in a mixture of ethyl acetate (5 mL) and water (2 mL). The organic layer was separated and washed with water $(2 \times 2 \text{ mL})$, brine (2 mL), dried over Mg₂SO₄, filtered, and concentrated. The crude material was purified by preparative silica gel chromatography (hexanes:ethyl acetate, 4:1) to obtain analogue 15 (19 mg, 44% yield) as a viscous oil. ¹H NMR (CDCl₃, 600 MHz) δ: 7.71 (s, 1H), 7.37 (m, 5H), 5.30 (s, 2H), 1.61 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.0, 153.6, 134.8, 128.9, 128.7, 127.0, 125.1, 118.2, 71.8, 66.3, 27.8; HRMS-TOF (m/z): $[M + H]^+$ calcd for C₁₅H₁₇ClN₂O₂, 292.0979; found, 315.0874 $[M + Na]^+$

Synthesis of 2-tert-Butyl-4-chloro-5-(4-butylbenzyl)oxy-3-(2H)-pyridazinone (16). A suspension of compound 29 (0.1 g, 0.45) mmol), 4-butylbenzyl alcohol (40, 0.14 g, 0.90 mmol), and Cs₂CO₃ (0.29 g, 0.99 mmol) in DMF (2.0 mL) was stirred at 65 °C. After 16 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (10 mL). The organic layer was washed with water $(2 \times 10 \text{ mL})$ and brine (10 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude oil was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 100 to 96:4) to obtain analogue 16 (118 mg, 75% yield) as a viscous oil. ¹H NMR (CDCl₃ 600 MHz) δ : 7.71 (s, 1H), 7.30 (d, 2H, J = 8.4Hz), 7.2 (d, 2H, J = 8.4 Hz), 5.20 (s, 2H), 2.61 (t, 2H, J = 7.6, 7.8 Hz), 1.62 (s, 9H), 1.59 (m, 2H), 1.34 (m, 2H), 0.91 (m, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.2, 154, 143.8, 132.2, 129.1, 127.4, 125.4, 118.4, 72.2, 66.5, 35.5, 33.8, 28, 22.5, 14.1; HRMS-TOF (m/z): $[M + H]^+$ for C₁₉H₂₅ClN₂O₂, 349.1677; found, 349.1674.

Synthesis of Methyl-4-butoxybenzoate (75). A suspension of methyl-4-hydroxybenzoate (76, 1.0 g, 6.57 mmol), 1-bromobutane (0.9 g, 6.57 mmol), and Cs_2CO_3 in DMF (15 mL) was stirred at

room temperature. After 16 h, the reaction mixture was diluted with ethyl acetate (30 mL) and water (30 mL). The organic layer was separated and washed with water (4 × 30 mL), 1 M NaOH (aq) (10 mL), and brine (30 mL), dried over Mg₂SO₄, filtered, and then concentrated. Compound **75** was obtained as a crude oil (1.20 g, 87% yield), which was used in the next step without further purification. ¹H NMR (CDCl₃, 600 MHz) δ : 7.98 (d, 2H, J = 9 Hz), 6.90 (d, 2H, J = 9 Hz), 4.02 (t, 2H, J = 6.6 Hz), 3.90 (s, 3H), 1.79 (m, 2H), 1.50 (m, 2H), 0.99 (t, 3H, J = 7.2 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 166.3, 163.0, 131.6, 122.1, 114.8, 67.9, 52.1, 31.0, 19.1, 14.0.

Synthesis of (4-Butoxyphenyl)-methanol (41). To a solution of compound 75 (15 mg, 0.59 mmol) in ether at 0 °C was added LAH (45 mg, 1.18 mmol). The resulting suspension was stirred for 3 h before water (45 μ L), 15% NaOH (aq) (45 μ L), and water (3 × 45 μ L) were added sequentially. After completion of all the additions, the reaction mixture stirred for an additional 15 min before being filtered and concentrated to obtain compound 41 (110 mg, 85% yield) as an oil. 41 was used in the next step without further purification. ¹H NMR (CDCl₃, 600 MHz) δ : 7.25 (d, 2H, *J* = 7.8 Hz), 6.87 (d, 2H, *J* = 7.8 Hz), 4.59 (s, 2H), 3.95 (t, 2H, *J* = 7.8 Hz), 1.76 (m, 2H), 1.49 (m, 2H), 0.96 (t, 3H, *J* = 7.8 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ : 158.8, 132.9, 128.6, 114.5, 67.1, 65.1, 31.3, 19.2, 13.8.

Synthesis of 2-tert-Butyl-4-chloro-5-(4-butoxy-benzyloxy)-3(2H)-pyridazinone (17). A suspension of compound 29 (100 mg, 0.45 mmol), compound **41** (51 mg, 0.28 mmol), and Cs₂CO₃ (110 mg, 0.34 mmol) in DMF (5 mL) was heated at 75 °C. After 16 h, an additional portion of compound 29 (0.05 g, 0.225 mmol) and Cs₂CO₃ (0.05 g, 0.17 mmol) was added. The reaction mixture stirred at 75 °C for another 3 h before being diluted with water (10 mL). The aqueous layer was separated and extracted with DCM $(2 \times 10 \text{ mL})$. All of the combined organic layers were washed with water $(4 \times 10 \text{ mL})$ and brine (10 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude oil obtained was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 99:1 to 9:1) to afford analogue 17 (28 mg, 25% yield) in moderate yield. ¹H NMR (DMSO- d_6 , 400 MHz) δ : 8.26 (s, 1H), 7.37 (d, 2H, J = 8.4 Hz), 6.95 (d, 2H, J = 8.4 Hz), 5.35 (s, 2H), 3.95 (t, 2H, J = 7.8 Hz), 1.67 (m, 2H), 1.55 (s, 9H), 1.41 (m, 2H), 0.92 (t, 3H, J = 7.8 Hz); ¹³C (DMSO- d_6 , 100 MHz) δ : 159.4, 158.3, 154.3, 130.2, 127.5, 126.7, 116.0, 115.0, 71.8, 67.6, 65.8, 31.1, 27.9, 19.1, 14.2; HRMS-TOF (*m/z*): [M + H]⁺ C₁₉H₂₅ClN₂O₃: 364.1554, found $387.1446 [M + Na]^+$.

Synthesis of 2-tert-Butyl-4-chloro-5-(4-biphenylmethyl)oxy-3-(2H)-pyridazinone (18). A suspension of compound 56 (0.20 g, 1.01 mmol), 4-bromomethyl biphenyl (44, 0.25 g, 1.01 mmol), and Cs_2CO_3 (0.39 g, 1.2 mmol) in DMF (20 mL) was heated at 70 °C. After 2 h, the reaction mixture was concentrated to obtain a crude oil, which was redissolved in ethyl acetate (50 mL) and water (20 mL). The organic layer was separated and washed with water (2 \times 20 mL) and brine (20 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude material obtained was purified by preparative silica gel chromatography (hexanes:ethyl acetate, 4:1) to obtain analogue 18 (0.11 g, 30% yield) as a thick oil. ¹H NMR (DMSO d_6 , 400 MHz) δ : 8.20 (s, 1H), 7.70 (m, 4H), 7.47 (m, 5H), 5.50 (s, 2H), 1.57 (s, 9H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 158.3, 154.3, 140.8, 140.0, 135.0, 129.4, 128.9, 128.1, 127.4, 127.1, 126.7, 117.0, 71.6, 65.8, 27.9; HRMS-TOF (m/z): $[M + H]^+$ for $C_{21}H_{21}ClN_2O_2$, 368.1292; found, 391.1178 [M + Na]⁺.

Synthesis of 2-*tert*-Butyl-4-chloro-5-(2-naphthylmethyl)oxy-3-(2*H*)-pyridazinone (19). A suspension of compound 29 (100 mg, 0.50 mmol), 2-naphthyl methanol (42, 118 mg. 0.75 mmol), and Cs_2CO_3 (240 mg, 0.75 mmol) in DMF (2 mL) was heated at 65 °C. After 16 h, the reaction mixture was concentrated to obtain a crude oil, which was redissolved in ethyl acetate (10 mL). The organic layer was washed with water (2 × 5 mL) and brine (5 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude oil was purified by silica gel chromatography (hexanes:ethyl acetate, 100 to 80:20) to obtain analogue 19 (35 mg, 25% yield) in moderate yield. ¹H NMR (DMSO- d_6 , 400 MHz) δ : 8.30 (s, 1H), 7.96 (m, 4H), 7.55 (m, 3H), 5.60 (s, 2H), 1.56 (s, 9H); 13 C NMR (DMSOd₆, 100 MHz) δ : 157.9, 153.9, 133.0, 132.7, 128.5, 128.0, 127.7, 126.8, 126.6, 126.3, 125.5, 71.6, 65.4, 27.5; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₉H₁₉ClN₂O₂, 342.1135; found, 365.1031 [M + Na]⁺.

Synthesis of 2-tert-Butyl-4-chloro-5-(6-quinolinylmethyl)oxy-3-(2H)-pyridazinone (20). To a cooled (0 °C) solution of compound 56 (49 mg, 0.24 mmol) in THF (2 mL) was added 6-quinolinyl methanol (45, 25 mg, 0.15 mmol), PPh₃ (61 mg, 0.23 mmol), and diisopropylazodicarboxylate (DIAD, 48 mg, 0.23 mmol). After completion of addition, the reaction mixture was stirred at 0 °C for 2 h and then concentrated to afford a yellow oil, which was purified by preparative thin layer chromatography (silica gel, hexanes:ethyl acetate, 1:1) to obtain analogue 20 (18 mg, 43% yield) as a white crystalline solid. ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 8.90 (s, 1H), 8.40 (d, 1H, J = 8 Hz), 8.30 (s, 1H), 8.08 (d, 1H, J = 7.8 Hz), 8.07 (s, 1H), 7.82 (m, 1H), 7.56 (m, 1H), 5.60 (s, 2H), 1.56 (s, 9H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 158.3, 154.3, 151.5, 147.9, 136.6, 134.1, 130.0, 129.4, 128.0, 127.3, 126.7, 122.4, 116.2, 71.6, 65.9, 27.9; HRMS-TOF (m/z): $[M + H]^+$ for $C_{18}H_{18}ClN_3O_2$, 358.1846; found, 344.1160 [M + Na]⁺.

Synthesis of 2-tert-Butyl-4-chloro-5-decylsulfanyl-3-(2H)-pyridazinone (21). A suspension of compound 29 (100 mg, 0.45 mmol), decanethiol (158 mg, 0.90 mmol), and Cs₂CO₃ (290 mg, 0.90 mmol) in DMF (1.5 mL) was stirred at room temperature for 3 h. The reaction mixture was diluted with water (1 mL) and ethyl acetate (2 mL). The organic layer was separated and washed with water $(3 \times 5 \text{ mL})$ and brine (5 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude oil was purified by silica gel chromatography (hexanes:diethyl ether gradient, 100 to 96:4) to obtain analogue **21** as a viscous oil (140 mg, 86% yield). ¹H NMR $(\text{CDCl}_3, 600 \text{ MHz}) \delta$: 7.58 (s, 1H), 2.99 (t, 2H, J = 7.2 Hz), 1.72 (m, 2H), 1.63 (s, 9H), 1.44 (m, 2H), 1.25 (br m, 12H), 0.8 (t, 3H, J = 7.8 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 156.0, 141.4, 129.9, 129.6, 66.1, 31.8, 31.1, 29.4, 29.3, 29.2, 29.1, 29.0, 28.6, 27.8, 22.6, 14.0; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₈H₃₁ClN₂OS, 358.1846; found, 381.1741 [M + Na]⁺.

Synthesis of 4-Phenylbutyl Butyrate (78). To a solution of 4-phenyl-1-butanol (77, 7.0 g, 47 mmol) dissolved in DCM (20 mL) was added a solution of butyryl chloride (4.79 g, 45 mmol) in DCM (20 mL) dropwise. After completion of addition, the reaction mixture stirred for 36 h. The reaction mixture was then concentrated in vacuo to yield a crude oil, which was purified by silica gel chromatography (hexanes:ethyl acetate, 3:1) to afford compound **78** (9.8 g, 94% yield) as a clear viscous liquid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.27 (m, 2H), 7.17 (m, 3H), 4.08 (t, 2H, J = 7.2 Hz), 2.64 (t, 2H, J = 7.2 Hz), 2.27 (t, 2H, J = 7.8 Hz), 1.65 (m, 6H), 0.94 (t, 3H, J = 7.8 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 173.7, 142.0, 128.3, 125.6, 64.0, 36.2, 35.4, 28.2, 27.7, 18.1, 13.6; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₄H₂₀O₂, 220.1463; found, 243.1353 [M + Na]⁺.

Synthesis of Methyl-4-(4-hydroxybutylbenzoate) (79). To a cooled (0 °C) solution of AlCl₃ (6.70 g, 0.05 mol) in DCM (100 mL) was added oxalyl chloride (6.4 g, 0.05 mol) dropwise. After completion of addition, the mixture was stirred for 5 min before the dropwise addition of a solution of compound 78 (9.80 g, 44 mmol) in DCM (50 mL). After completion of addition, the reaction mixture was stirred at 0 °C for 4 h. The reaction mixture was poured into a separatory funnel containing ice and brine. The organic layer was separated and washed with brine (100 mL), dried over Mg₂SO₄, filtered, and then concentrated. Then 9.0 g of the resulting yellow oil was suspended in methanol and stirred for 48 h. The reaction mixture was concentrated in vacuo, and the resulting crude material was purified by silica gel chromatography (hexanes:ethyl acetate, 2.5:1) to provide compound 79 (2.80 g, 31% yield) as a clear viscous liquid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.93 (d, 2H, J =7.8 Hz), 7.23 (d, 2H, J = 7.8 Hz), 3.88 (s, 3H), 3.64 (t, 2H, J = 7.2 Hz), 2.67 (t, 2H, J = 7.2 Hz), 1.66 (m, 2H), 1.56–1.61 (m, 2 H); ¹³C NMR (CDCl₃, 150 MHz) δ : 167.3, 148.0, 129.8, 128.6, 62.8, 52.1, 35.8, 32.4, 27.6.

Synthesis of Methyl-4-[4-(*tert*-butyldimethylsilyloxy)butyl]benzoate (80). A solution of compound **79** (1.0 g, 4.8 mmol), imidazole (0.5 g, 7.2 mmol), and *tert*-butyldimethylsilyl chloride (1.08 g, 7.3 mmol) dissolved in DMF (10 mL) was stirred at room temperature. After 2 h, the reaction mixture was diluted with ethyl acetate and washed with water (5 × 20 mL) and saturated NaHCO₃ (aq) (2 × 20 mL). The organic layer was dried over Mg₂SO₄, filtered, and concentrated to give compound **80** as an oil (1.17 g, 75% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 0.05 (s, 6H), 0.90 (s, 9H), 1.49–1.74 (m, 4H), 2.65–2.70 (t, 2H, *J* = 7.2 Hz), 3.59–3.64 (t, 2H, *J* = 7.2 Hz), 3.89 (s, 3 H), 7.22–7.25 (m, 2 H), 7.93–7.96 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ : 167.1, 148.1, 129.6, 128.4, 127.7, 62.8, 51.9, 35.6, 32.3, 27.4, 25.9, 18.3, –5.3; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₈H₃₀O₃Si, 322.1964; found, 345.1865 [M + Na]⁺.

Synthesis of (4-(4-(tert-Butyldimethylsilyloxy)butyl)phenyl)methanol (46). To a cooled (0 °C) solution of compound 80 (1.17 g, 3.6 mmol) in Et₂O (14 mL) was added portionwise solid LAH (0.28 g, 7.2 mmol). After completion of addition, the reaction mixture was stirred for 1 h. Sequential addition of water (0.28 mL), 15% NaOH (aq) (0.28 mL), and water (0.84 mL) resulted in a cloudy solution, which stirred for an additional 15 min. The white solid was removed via filtration, and the filtrate was dried over Mg₂SO₄, filtered, and concentrated. The crude material was purified by silica gel chromatography (hexanes:ethyl acetate, 4:1) to afford compound 46 (1.02 g, 96% yield) as a clear viscous liquid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.27 (d, 2H, J = 6 Hz), 7.17 (d, 2H, J = 6 Hz), 4.60 (s, 2H), 3.60 (t, 2H, J = 6 Hz), 2.60 (t, 2H. J = 66 Hz), 1.61 (m, 4H), 0.89 (s, 9H), 0.03 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ: 142.2, 138.2, 128.6, 127.1, 65.8, 65.3, 62.9, 35.3, 32.3, 27.6, 25.7, 18.3, -5.2.

Synthesis of 2-tert-Butyl-4-chloro-5-[4-(4-hydroxybutyl)benzyloxy]-3-(2H)-pyridazinone (54). A suspension of compound 46 (0.41 g, 1.4 mmol), compound $\mathbf{29}$ (0.93 g, 4.2 mmol), and Cs_2CO_3 (1.37 g, 4.2 mmol) in DMF (11 mL) was heated at 68 °C. After 12 h, the reaction mixture was cooled down to room temperature and filtered. The filtrate was diluted with ethyl acetate (20 mL) and washed with water (5 \times 25 mL) and brine (25 mL). The organic layer was dried over Mg₂SO₄, filtered, and concentrated. The crude material was purified using silica gel chromatography (hexanes: ethyl acetate, 9:1) to afford compound 53 (594 mg, 89% yield) as an oil. ¹H NMR (CDCl₃, 600 MHz) δ: 7.74 (s, 1 H), 7.33 (d, 2H, J = 8.4 Hz), 7.23 (d, 2H, J = 8.4 Hz), 5.23 (s, 2H), 3.64 (t, 2H, J = 6.6 Hz), 2.65 (t, 2H, J = 6.6 Hz), 1.64 (s, 9H), 0.90 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.3, 154.0, 143.7, 132.3, 129.2, 127.4, 125.4, 118.4, 72.1, 66.5, 63.1, 35.6, 32.5, 28.0, 27.7, 26.1, 18.5.

To a solution of compound **53** (594 mg, 1.45 mmol) dissolved in THF (3 mL) was added a solution of TBAF (2.9 mL of 1 M solution in THF, 2.9 mmol). After 1 h, the reaction mixture was concentrated under reduced pressure. The resulting crude material was purified using silica gel chromatography (pentane:ethyl acetate, 1.8:1) to afford compound **54** (410 mg, 77% yield) in good yield. ¹H (CDCl₃, 600 MHz) δ : 1.61–1.64 (m, 11H), 1.67–1.74 (m, 2H), 2.68 (t, 2H, J = 6.6 Hz), 3.68 (t, 2H, J = 6.6 Hz), 5.23 (s, 2H), 7.23 (d, 2H, J = 7.8 Hz), 7.33 (d, 2H, J = 7.8 Hz), 7.74 (s, 1H); ¹³C (CDCl₃, 150 MHz) δ : 159.0, 153.7, 143.1, 132.2, 128.9, 127.2, 125.1, 118.2, 71.8, 66.3, 62.7, 35.3, 32.5, 27.8, 27.4; HRMS-TOF (m/z): [M + H]⁺ for C₁₉H₂₅ClN₂O₃, 364.1554; found, 387.1449 [M + Na]⁺.

Synthesis of 2-*tert*-Butyl-4-chloro-5-(4-(4-*p*-toluenesulfonyloxy butyl)benzyloxy]-3-(2*H*)-pyridazinone (55). A solution of compound 54 (200 mg, 0.55 mmol), TsCl (125 mg, 0.66 mmol), DMAP (80 mg, 0.66 mmol), and DIEA (85 mg, 0.66 mmol) in DCM (2 mL) was stirred at room temperature. After 2 h, the reaction mixture was diluted with ethyl acetate (10 mL) and washed with 0.1 N HCl (aq) (3 mL) and brine (3 mL). The organic layer was dried over Mg₂SO₄, filtered, and concentrated. The resulting crude oil was purified by silica gel chromatography (pentane:ethyl acetate, 3:1) to provide compound 55 (197 mg, 69% yield). ¹H (CDCl₃, 600 MHz) δ : 1.62–1.70 (m, 13H), 2.43 (s, 3H), 2.58 (t, 2H, J = 7.2 Hz), 4.03 (t, 2H, J = 6.0 Hz), 7.15 (d, 2H, J = 7.4 Hz), 7.29–7.33 (m, 4H), 7.72 (s, 1H), 7.77 (d, 2H, J = 6.6 Hz); ¹³C (CDCl₃, 150 MHz) δ : 159.0, 153.7, 144.7, 142.4, 133.1, 132.4, 129.8, 128.9, 127.8, 127.3, 125.1, 118.2, 71.8, 70.2, 66.3, 34.8, 28.3, 27.8, 26.9, 21.6; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₈H₃₀O₃Si, 518.1642; found, 541.1529 [M + Na]⁺.

Synthesis of 2-tert-Butyl-4-chloro-5-(4-(4-fluorobutyl)benzyl)oxy-3-(2H)-pyridazinone (22). Compound 55 (57 mg, 0.10 mmol) dissolved in ACN (1 mL) was added to a mixture of KFkryptofix222 (1:1; 0.164 mmol) in ACN (1 mL). After completion of addition, the reaction mixture was heated at 90 °C for 15 min. The reaction mixture was concentrated in vacuo, and the resulting crude oil was purified by silica gel chromatography (hexanes:ethyl acetate, 4:1) to afford analogue 22 (28 mg, 70% yield) as an oil that solidified upon standing. ¹H NMR (CDCl₃, 600 MHz) δ : 7.71 (s, 1H), 7.30 (d, 2H, J = 8.4 Hz), 7.20 (d, 2H, J = 8.4 Hz), 5.20 (s, 2H), 4.44 (dt, 2H, J = 47.4, 6 Hz), 2.60 (t, 2H, J = 7.2 Hz), 1.70 (m, 4H), 1.60 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.0, 153.0, 142.8, 132.3, 128.9, 127.2, 125.1, 118.2, 84.3 (83.3), 71.8, 66.3, 35.1, 29.9 (29.8), 27.8, 26.8; ¹⁹F (CDCl₃, 564 MHz) δ: -18.6 (m, 1F); HRMS-TOF (m/z): $[M + H]^+$ for C₁₉H₂₄ClFN₂O₂, 367.1583; found, 367.1587.

Synthesis of Methyl-4-(3-hydroxy-propoxy)benzoate (81). A suspension of 4-hydroxy methyl benzoate (76, 3.0 g, 0.02 mol), 3-bromo-1-propanol (4.17 g, 0.03 mol), and K₂CO₃ (4.15 g, 0.03 mol) in DMF (40 mL) was heated at 50 °C. After 12 h, the reaction mixture was diluted with ethyl acetate (50 mL) and washed with 0.1N HCl (aq) (2 × 15 mL), water (8 × 50 mL), and brine (50 mL). The organic layer was dried over Mg₂SO₄, filtered, and then concentrated to yield a crude oil, which was purified by silica gel chromatography (hexanes:ethyl acetate, 1.68:1) to afford compound **81** (1.25 g, 30% yield) as a white powder. ¹H NMR (CDCl₃, 600 MHz) δ : 7.98 (m, 2 H), 6.91 (m, 2H), 4.17 (t, 2H, *J* = 6.0 Hz), 3.87 (m, 5H), 2.04–2.08 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ : 166.8, 162.6, 11.5, 122.6, 114.0, 65.5, 59.8, 51.8, 31.8; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₁H₁₄O₄, 210.0892; found, 233.0785 [M + Na]⁺.

Synthesis of Methyl-4-(3-(tert-butyldimethylsilyloxy)propoxy)benzoate (82). A solution of compound 81 (300 mg, 1.4 mmol), tert-butyldimethylsilyl chloride (317 mg, 2.1 mmol), and imidazole (146 mg, 2.1 mmol) in DMF (4 mL) was stirred at room temperature. After 2 h, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with 0.1 N HCl (aq) (2 \times 5 mL), water (4 \times 10 mL), and brine (10 mL) and then dried over Mg₂SO₄, filtered, and concentrated. The resulting crude material was purified using silica gel chromatography (hexanes:ethyl acetate, 9.5:1) to afford compound 82 (413 mg, 91% yield) in high yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.97 (d, 2H, J = 8.4 Hz), 6.90 (d, 2H, J = 9.0 Hz), 4.11 (t, 2H, J = 6.0 Hz), 3.87 (s, 3H), 3.79 (t, 2H, J = 6.0 Hz), 1.97–2.01 (m, 2H), 0.87 (s, 9H), 0.03 (s, 6H); $^{13}\mathrm{C}$ NMR (CDCl₃, 150 MHz) δ: 166.9, 162.9, 131.5, 122.4, 114.0, 64.6, 59.2, 51.7, 32.3, 25.8, 18.3; HRMS-TOF (m/z): $[M + H]^+$ for C₁₇- $H_{28}O_4Si$, 324.1757; found, 347.1651 [M + Na]⁺.

Synthesis of (4-(3-(*tert*-Butyldimethylsilyloxy)propoxy) benzyl alcohol (47). To a cooled (0 °C) solution of compound 82 (396 mg, 1.22 mmol) in Et₂O (10 mL) was added portionwise solid LAH (93 mg, 2.44 mmol). After completion of addition, the reaction mixture was stirred for 2 h. Sequential addition of water (0.093 mL), 15% NaOH (aq) (0.093 mL), and water (0.28 mL) resulted in a cloudy solution. The white solid was removed by filtration, and the filtrate was dried over Mg₂SO₄, filtered, and concentrated to yield compound 47 (291 mg, 80% yield). 47 was used in the next step without further purification. ¹H NMR (CDCl₃, 600 MHz) δ : 7.26 (m, 2H), 6.88 (m, 2H), 4.60 (s, 2H), 4.05 (t, 2H, *J* = 6.6 Hz), 3.79 (t, 2H, *J* = 6.6 Hz), 1.97 (m, 2H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 158.7, 132.9, 128.6, 114.5, 65.1, 64.5, 59.5, 32.4, 25.9, 18.3; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₆H₂₈O₃Si, 297.1880; found, 297.1884.

Synthesis of 2-*tert*-Butyl-4-chloro-5-(4-(3-(*tert*-butyl-dimethylsilyloxy)propoxy)benzyloxy)-3-(2H)-pyridazinone (57). To a cooled (0 °C) solution of compound 47 (211 mg, 0.71 mmol) in THF (3 mL) was added PPh₃ (187 mg, 0.71 mmol), compound **56** (142 mg, 0.71 mmol), and DIAD (144 mg, 0.71 mmol). The reaction mixture was stirred at 0 °C for 1 h and was then diluted with diethyl ether (6 mL). The organic solution was washed with water (3 mL) and brine (3 mL), dried over Mg₂SO₄, filtered, and then concentrated. Silica gel chromatography (hexanes:ethyl acetate, 9:1) of the crude material afforded compound **57** (106 mg, 31% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 7.72 (s, 1H), 7.30 (d, 2H, *J* = 6.6 Hz), 6.91 (d, 2H, *J* = 6.6 Hz), 5.23 (s, 2 H), 4.06 (t, 2H, *J* = 6.6 Hz), 3.79 (t, 2H, *J* = 6.0 Hz), 1.97 (m, 2H), 1.62 (s, 9H), 0.87 (s, 9H), 0.03 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.5, 159.0, 153.7, 128.9, 125.3, 118.3, 114.9, 71.8, 66.0, 64.6, 59.4, 32.3, 27.8, 25.9, 18.2; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₂₄H₃₇Cl N₂O₄Si, 481.2283; found, 481.2287.

Synthesis of 2-*tert*-Butyl-4-chloro-5-[4-(3-hydroxypropoxy)benzyloxy]-3-(2*H*)-pyridazinone (63). A solution of compound 57 (100 mg, 0.21 mmol) and TBAF (0.42 mL of 1 M solution in THF, 0.42 mmol) dissolved in THF (2 mL) was stirred at room temperature. After 2 h, the reaction mixture was concentrated in vacuo to yield a crude oil, which was purified by preparative thin layer chromatography (silica gel, hexanes:ethyl acetate, 1:1) to afford compound 63 (57.8 mg, 76% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.71 (s, 1H), 7.31 (d, 2H, J = 9.0 Hz), 6.92 (d, 2H, J = 9.0 Hz), 5.30 (s, 2H), 4.13 (t, 2H, J = 6.0 Hz), 3.86 (t, 2H, J = 6.0 Hz), 2.04 (m, 2H), 1.62 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.2, 159.0, 153.7, 128.9, 127.0, 125.3, 118.3, 114.9, 71.8, 66.3, 65.5, 60.2, 31.9, 27.8; HRMS-TOF (m/z): [M + H]⁺ for C₁₈H₂₃Cl N₂O₄, 367.1419; found, 367.1422.

Synthesis of 2-tert-Butyl-4-chloro-5-[4-(3-(p-toluenesulfonyloxy)propoxy)benzyloxy]-3-(2H)-pyridazinone (69). A solution of compound 63 (40 mg, 0.11 mmol), TsCl (31 mg, 0.16 mmol), DMAP (20 mg, 0.16 mmol), and DIEA (16.6 mg, 0.16 mmol) dissolved in DCM (0.6 mL) was stirred at room temperature. After 1 h, the reaction mixture was concentrated in vacuo and the resulting crude material was purified by preparatory thin layer chromatography (silica gel, pentane:ethyl acetate, 3:2) to provide compound 69 (18.6 mg, 33% yield) in moderate yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.73–7.75 (m, 3H), 7.29 (d, 2H, J = 8.4 Hz), 7.23 (d, 2H, J = 8.4 Hz), 6.78 (d, 2H, J = 9.0 Hz), 5.22 (s, 2H), 4.23 (t, 2H, J = 6.0 Hz), 3.95 (t, 2H, J = 6.0 Hz), 2.37 (s, 3H), 2.11 (m, 2H), 1.62 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.0, 158.9, 153.7, 144.8, 132.7, 129.8, 128.9, 127.8, 127.1, 125.1, 118.2, 114.7, 71.7, 66.8, 66.3, 63.1, 28.8, 27.8, 21.6; HRMS-TOF (m/z): [M + H]⁺ for C₂₅H₂₉Cl N₂O₆S, 520.1435; found, 543.1319 [M + Na]⁺.

Synthesis of 2-tert-Butyl-4-chloro-5-[4-(3-fluoropropoxy)benzyloxy]-3-(2H)-pyridazinone (23). To a solution of compound 69 $(4.5 \text{ mg}, 8.64 \times 10^{-3} \text{ mmol})$ dissolved in ACN (0.25 mL) was added a solution of KF (1.6 mg, 4.07×10^{-2} mmol) and kryptofix222 (15.0 mg, 4.07×10^{-2} mmol) in ACN (0.25 mL). After completion of addition, the reaction vial was capped and partially immersed in a 90 °C oil bath. The reaction mixture was stirred for 40 min and was then concentrated under reduced pressure to yield a crude oil. Purification of the crude material by preparative thin layer chromatography (silica gel, pentane:ethyl acetate, 3:2) provided analogue 23 (0.8 mg, 25% yield) in moderate yield. ¹H NMR (CDCl₃, 400 MHz) δ : 8.20 (s, 1H), 7.39 (d, 2H, J = 8.4Hz), 6.98 (d, 2H, J = 8.4 Hz), 5.36 (s, 2H), 4.59 (m, 2H), 4.07 (t, 2H, J = 6.4 Hz), 4.09–4.11 (m, 2H), 2.09 (m, 2H, J = 25.6 Hz), 1.59 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 158.7, 157.9, 153.9, 129.9, 127.4, 126.3, 114.6, 81.6 (80.0), 71.4, 65.4, 63.6, 63.5, 29.7, 27.5; ¹⁹F NMR (CDCl₃, 564.6 MHz) δ: -222.66 (m, 1F); HRMS-TOF (m/z): $[M + H]^+$ for C₁₈H₂₂ClFN₂O₃, 387.1481; found, $387.1486 [M + NH_4]^+$

Synthesis of Methyl-4-(3-oxobutyl)benzoate (84). To a solution of methyl-4-bromobenzoate (**83**, 1.0 g, 4.65 mmol) in TEA (13 mL) was added 3-buten-2-ol (1 mL, 11.63 mmol), Pd(OAc)₂ (104 mg, 0.465 mmol), and PPh₃ (244 mg, 0.93 mmol). The reaction mixture was stirred at 75 °C overnight. The reaction mixture was cooled to room temperature and concentrated in vacuo to yield a crude oil. The crude material was partitioned between water (20 mL) and ethyl acetate (20 mL). The organic layer was separated

and washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered, and then concentrated. The crude product was purified by silica gel chromatography (hexane:ethyl acetate gradient, 5:1 to 3:1) to obtain compound **84** (250 mg, 26% yield) in moderate yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.95 (d, 2H, J = 8.4 Hz), 7.25 (d, 2H, J = 8.4 Hz), 3.90 (s, 3H), 2.95 (t, 2H, J = 7.5 Hz), 2.77 (t, 2H, J = 7.7 Hz), 2.14 (s, 3H).

Synthesis of 2-*tert*-Butyl-4-chloro-5-[4-(3-hydroxybutyl)benzyloxy]-3-(2*H*)-pyridazinone (58). To a solution of compound 84 (505 mg, 2.45 mmol) in THF (19 mL) at 0 °C was added LAH (12.2 mL of 1 M THF solution, 12.24 mmol) dropwise. After completion of addition the reaction mixture was stirred at room temperature. After 1 h, water (183 μ L), 15% NaOH (aq) (183 μ L), and water (548 μ L) was added sequentially. The reaction mixture was stirred for an additional 15 min before being filtered. The filtrate was concentrated under reduced pressure to obtain compound 48 (314 mg, 71% yield), which was used in the next step without further purification.

To a solution of compound **56** (234 mg, 1.16 mmol) in THF (45 mL) was added compound **48** (312 mg, 1.73 mmol), PPh₃ (454 mg, 1.73 mmol), and DIAD (335 μ L, 1.73 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated in vacuo, and the crude material was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 4:1 to 100% ethyl acetate) to obtain compound **58** (200 mg, 48% yield) as a clear oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.73 (s, 1H), 7.32 (d, 2H, J = 8.0 Hz), 7.24 (d, 2H, J = 8.0 Hz), 5.30 (s, 1H), 5.27 (s, 2H), 3.83 (m, 1H), 2.80–2.76 (m, 1H), 2.71–2.66 (m, 1H), 1.63 (s, 9H), 1.23 (d, 3H, J = 6.2 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.3, 153.9, 143.2, 132.5, 129.2, 127.6, 125.4, 118.5, 73.4, 67.6, 66.6, 40.9, 32.0, 28.1, 23.9; HRMS calcd for C₉H₂₅ClN₂O₃, 365.1626; found, 365.1624.

Synthesis of 2-tert-Butyl-4-chloro-5-[4-(3-fluorobutyl)benzyloxy]-3-(2H)-pyridazinone (24). To a solution of compound 58 (200 mg, 0.55 mmol) in pyridine (10 mL) was added TsCl (209 mg, 1.10 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was diluted with ethyl acetate (30 mL) and washed repeatedly with 5% CuSO₄ (200 mL) until a light-blue aqueous solution was maintained. The organic layer was then dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by silica gel chromatography (hexanes: ethyl acetate gradient, 3:1 to 100% ethyl acetate) to recover the unreacted starting material (90 mg) and compound 64 as a clear oil (74 mg, 47% yield based on recovered starting material). ¹H NMR (CDCl₃, 600 MHz) δ : 7.80 (d, 2H, J = 8.3 Hz), 7.72 (s, 1H), 7.33 (d, 2H, J = 8.0 Hz), 7.30 (d, 2H, J = 8.1 Hz), 7.13 (d, 2H, J = 8.1 Hz, 5.27 (s, 2H), 4.66 (m, 1H), 2.65 (m, 1H), 2.54 (m, 1H), 2.45 (s, 3H), 1.94 (m, 1H), 1.81 (m, 1H), 1.63 (s, 9H), 1.26 (s, 3H).

To a solution of compound **64** (18.2 mg, 0.035 mmol) in ACN (400 μ L) was KF (4.1 mg, 0.070 mmol) and kryptofix222 (26.4 mg, 0.070 mmol). The reaction mixture was stirred at 90 °C. After 20 min, the reaction was cooled to room temperature and concentrated under reduced pressure. The crude material was purified by preparative thin layer chromatography (silica gel, hexanes:ethyl acetate, 4:1) to obtain analogue **24** (5 mg, 39% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 7.70 (s, 1H), 7.34 (d, 2H, J = 7.9 Hz), 7.24 (d, 2H, J = 8.0 Hz), 5.28 (s, 2H), 4.71–4.60 (m, 2H), 2.84–2.80 (m, 1H), 2.73–2.69 (m, 1H), 2.02–1.93 (m, 1H), 1.87–1.77 (m, 1H), 1.63 (s, 9H), 1.35 (m, 3H, J = 6.2, 23.9 Hz);¹³C NMR (CDCl₃, 150 MHz) δ : 159.1, 153.8, 142.4, 132.5, 129.0, 127.4, 125.2, 118.3, 90.4 (89.3), 71.9, 66.3, 38.5 (38.4), 31.1 (31.0), 27.9, 21.1 (21.0);¹⁹F NMR (CDCl₃, 564 MHz) δ : –174.7 (1F, m); HRMS-TOF (m/z): [M + H]⁺for C₁₉H₂₃CIFN₂O₂, 367.1583; found, 367.1582.

Synthesis of Methyl-4-(1-*tert*-butyldimethylsilyloxy-but-2-oxy)benzoate (85). To a solution of 1,2-butanediol (1 g, 11.09 mmol) in DMF (8 mL) was added TBDMS-Cl (2.5 g, 16.64 mmol) and imidazole (1.88 g, 27.7 mmol). The reaction mixture was stirred for 10 h before being diluted with DCM (20 mL). The organic layer was washed with water (4 \times 20 mL) and brine (20 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude oil was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 100:0 to 94:6) to obtain 1-*tert*-butyldimethylsilyloxy-2-hydroxybutane (1 g, 45% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 3.60 (m, 1H), 3.50 (m, 1H), 3.40 (m, 1H), 2.40 (s, 1H), 1.44 (m, 2H), 0.99 (m, 3H), 0.90 (s, 9H), 0.06 (s, 6H).

A solution of methyl-4-hydroxybenzoate (**76**, 1.10 g, 7.34 mmol), 1-*tert*-butyldimethylsilyloxy-2-hydroxybutane (0.75 g, 3.67 mmol), and PPh₃ (1.97 g, 7.34 mmol) dissolved in THF (8 mL) was cooled to 0 °C. DIAD (1.49 g, 7.34 mmol) was added dropwise The reaction mixture was stirred for 2 h before being concentrated in vacuo. The crude material was purified using silica gel chromatography (hexanes:diethyl ether gradient, 100 to 99:1) to obtain compound **85** (1.0 g, 83% yield) as a viscous oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.90 (m, 2H), 6.90 (m, 2H), 4.30 (m, 1H), 3.90 (s, 3H), 3.70 (2H), 1.78 (m, 1H), 1.70 (m, 1H), 0.90 (t, 3H, *J* = 7.8 Hz), 0.89 (s, 9H), 0.05 (s, 3H), 0.01 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ : 166.8, 162.8, 131.5, 122.3, 115.2, 80.0, 64.5, 51.7, 25.8, 24.1, 18.2, 9.5, -5.3.

Synthesis of 4-(1-tert-Butyldimethylsilyloxy-but-2-oxy) benzyl alcohol (49). To a solution of compound 76 (1 g, 2.95 mmol) in ether (15 mL) at 0 °C was added LAH (336 mg, 8.8 mmol). After completion of addition, the reaction mixture was stirred for 1.5 h. Addition of water (0.336 mL), 15% NaOH (aq) (0.336 mL), and water (1.00 mL) in succession quenched the reaction mixture. The resulting cloudy mixture was stirred for an additional 20 min before being filtered. The filtrate was dried over Mg₂SO₄, filtered, and concentrated to yield compound 49 (0.50 g, 54% yield) as a white solid. ¹H NMR (CDCl₃, 600 MHz) δ : 7.24 (d, 2H, J = 8.4Hz), 6.92 (d, 2H, J = 8.4 Hz), 4.60 (d, 2H, J = 5.4 Hz), 4.20 (m, 1H), 3.76 (dd, 1H, J = 5.4, 10.8 Hz), 3.66 (dd, 1H, J = 5.4, 10.8 Hz), 1.74 (m, 1H), 1.65 (m, 1H), 1.50 (t, 1H, J = 5.4 Hz), 0.90 (t, 3H, J = 7.8 Hz, 0.89 (s, 9H), 0.04 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ: 158.5, 133.0, 128.4, 116.1, 80.1, 65.0, 64.5, 25.8, 24.1, 18.2, 9.5, -5.3; HRMS-TOF (m/z): $[M + H]^+$ for $C_{17}H_{30}O_3Si$, 310.1964; found 333.1867 $[M + Na]^+$.

Synthesis of 2-tert-Butyl-4-chloro-5-(4-(1-hydroxy-but-2-oxy)benzyl)oxy-3-(2H)-pyridazinone (65). To a cooled (0 °C) solution of compound 56 (0.48 g, 2.42 mmol) dissolved in THF (40 mL) was added compound 49 (500 mg, 1.61 mmol), PPh₃ (633 mg, 2.42 mmol), and DIAD (488 mg, 2.42 mmol). After completion of addition, the reaction mixture was stirred for 2 h and then concentrated in vacuo to obtain a crude oil. Purification of the crude material by silica gel chromatography (hexanes:ethyl acetate gradient, 100 to 94:6) afforded compound 59 (330 mg, 41% yield) as an oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.72 (s, 1H), 7.20 (d, 2H, J = 9 Hz), 6.90 (d, 2H, J = 8.4 Hz), 5.20 (s, 2H), 4.20 (m, 1H, J = 5.4 Hz), 3.75 (dd, 1H, J = 6 Hz), 3.68 (dd, 1H, J = 6 Hz), 1.75 (m, 1H), 1.65 (m, 1H), 1.60 (s, 9H), 0.99 (m, 3H), 0.85 (s, 9H), 0.02 (s, 3H), -0.01 (s, 3H); ¹³C NMR (CDCl₃, 600 MHz) δ: 159.6, 159.3, 154.0, 129.0, 126.9, 125.0, 118.5, 116.5, 80.3, 72.1, 66.5, 64.8, 28.1, 26.0, 24.4, 18.4, 9.6, -5.3.

To a solution of compound **59** (0.3 g, 0.6 mmol) in THF (2 mL) was added TBAF (1.8 mL of 1.0 M solution in THF, 1.8 mmol) dropwise. After completion of addition, the reaction mixture was stirred for 1.5 h before being concentrated in vacuo. The crude oil was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 100 to 4:1) to obtain compound **65** (185 mg, 80% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.74 (s, 1H), 7.30 (d, 2H, J = 8.4 Hz), 6.90 (d, 2H, J = 8.4 Hz), 5.20 (s, 2H), 4.30 (m, 1H), 3.81–3.77 (br m, 2H), 1.84 (br m, 1H), 1.72 (m, 2H), 1.64 (s, 9H), 0.98 (m, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.2, 158.9, 153.9, 129.2, 127.5, 125.4, 116.6, 80.4, 71.9, 66.5, 64.2, 28.0, 23.5, 9.7; HRMS-TOF (m/z): [M + H]⁺ for C₁₉H₂₅ClN₂O₄, 380.1503; found, 403.1394 [M + Na]⁺.

Synthesis of 2-tert-Butyl-4-chloro-5-(4-(1-tosyloxy-but-2-oxy)benzyl)oxy-3-(2H)-pyridazinone (71). A solution of compound 65 (50 mg, 0.13 mmol), TsCl (75 mg, 0.39 mmol), DMAP (48 mg, 0.39 mmol), and DIEA (50 mg, 0.39 mmol) in DCM (2 mL) was stirred at room temperature. After 35 min, the reaction mixture was diluted with water (1 mL). The organic layer was separated and washed with water (1 mL) and brine (1 mL), dried over Mg₂SO₄, filtered, and then concentrated. The crude oil was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 90:10 to 70: 30) to obtain compound **71** (54 mg, 77% yield) as a viscous colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.75 (s, 1H), 7.74 (s, 2H), 7.30 (m, 4H), 6.84 (d, 2H, J = 9 Hz), 5.20 (s, 2H), 4.38 (m, 1H), 4.15 (m, 2H), 2.44 (s, 3H), 1.72 (m, 2H), 1.60 (s, 9H), 0.95 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.2, 158.5, 153.9, 145.1, 133.0, 130.0, 129.0, 128.1, 127.2, 125.4, 118.5, 116.5, 71.9, 70.2, 66.6, 28.1, 24.2, 21.8, 9.4; HRMS-TOF (m/z): [M + H]⁺ for C₂₆H₃₁ClN₂O₆S, 534.1591; found, 557.1490 [M + Na]⁺.

Synthesis of 2-tert-Butyl-4-chloro-5-(4-(1-fluoro-but-2-oxy)benzyl)oxy-3-(2H)-pyridazinone (25). To a solution of compound 71(28 mg, 52.4 μ mol) dissolved in ACN (0.5 mL) was added a solution of KF (4.5 mg, 78.6 µmol) and kryptofix222 (29.6 mg, 78.6 μ mol) in 0.5 mL ACN. The flask was fitted with a reflux condenser, and the solution was then immersed in an oil bath preheated at 90 °C. The reaction mixture was stirred for 90 min, after which all the volatiles were removed under reduced pressure. The crude oil was purified by preparative thin layer chromatography (silica gel, hexanes:ethyl acetate, 7:3) to obtain compound 25 (13 mg, 65% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.72 (s, 1H), 7.30 (m, 2H), 6.90 (m, 2H), 5.23 (s, 2H), 4.54 (dd, 2H, J = 4.8, 46.2 Hz), 4.40 (m, 1H), 1.74 (m, 2H), 1.60 (s, 9H), 1.0 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.0, 158.7, 153.7, 129.0, 127.5, 125.2, 118.3, 116.4, 83.9 (82.7), 78.0, 71.1, 66.3, 27.8, 23.2, 9.5. ¹⁹F NMR (CDCl₃, 564 MHz) δ: -228 (1F, m); HRMS-TOF (m/z): $[M + H]^+$ for C₁₉H₂₄ClFN₂O₃, 382.1459; found, 405.1350 $[M + Na]^+$

Synthesis of Toluene-4-sulfonic acid-2-[4-(1-tert-butyl-5chloro-6-oxo-1,6-dihydro-pyridazin-4-yloxymethyl)-phenoxy]-1methyl-ethyl ester (66). To a solution of compound 50³³ (269 mg, 1.48 mmol) and compound 56 (250 mg, 1.23 mmol) dissolved in anhydrous THF (18.5 mL) was added PPh₃ (485 mg, 1.85 mmol) and DIAD (0.358 mL, 1.85 mmol). After completion of addition, the reaction mixture stirred for 20 h before being diluted with water. The aqueous layer was separated and extracted with ethyl acetate $(3 \times 50 \text{ mL})$. All combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 1:1) to provide compound 60 (234 mg, 51% yield) in moderate yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.71 (s, 1H), 7.33 (d, 2H, J = 8.7Hz), 6.94 (d, 2H, J = 8.7 Hz), 5.24 (s, 2H), 4.19 (m, 1H), 3.95 (dd, 1H, J = 9.2, 3.1 Hz), 3.81 (dd, 1H, J = 9.2, 7.7 Hz), 1.62 (s, 9H) 1.29 (d, 3H, J = 6.4 Hz).

To a solution of compound 60 (200 mg, 0.55 mmol) dissolved in DCM (6.0 mL) was added TsCl (125 mg, 0.66 mmol), DMAP (100 mg, 0.82 mmol), and TEA (0.0914 mL, 0.66 mmol). The reaction mixture stirred for 22 h, before being diluted with water. The aqueous layer was separated and extracted with ethyl acetate $(3 \times 20 \text{ mL})$. All combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 70: 30) to provide compound 66 (166 mg, 58% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.80 (d, 2H, J = 8.3 Hz), 7.72 (s, 1H), 7.32 (d, 2H, J = 7.9 Hz), 7.29 (d, 2H, J = 8.7 Hz), 6.74 (d, 2H, J = 8.7 Hz), 5.22 (s, 2H), 4.19 (m, 1H), 4.02 (dd, 1H, J =10.4, 6.0 Hz), 3.93 (dd, 1H, J = 10.4, 4.5 Hz), 2.44 (s, 3H), 1.63 (s, 9H) 1.42 (d, 3H, J = 6.5 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 158.9, 158.3, 153.6, 144.6, 133.8, 129.6, 128.8, 127.8, 127.4, 125.1, 118.0, 114.7, 76.8, 71.5, 69.7, 66.2, 27.7, 21.5, 17.6; HRMS-TOF (m/z): $[M + H]^+$ for C₂₅H₂₉ClN₂O₆S, 521.1507; found, 521.1505.

Synthesis of 2-*tert*-Butyl-4-chloro-5-[4-(2-fluoropropoxy)benzyloy]-3-(2*H*)-pyridazinone (26). To a solution of compound 66 (50 mg, 0.10 mmol) in ACN (1.0 mL) was added KF (11.2 mg, 0.19 mmol) and kryptofix222 (72.4 mg, 0.19 mmol). After completion of addition, the reaction mixture was heated at 90 °C. After 40 min, the reaction mixture was cooled to room temperature and diluted with water (1.0 mL). The aqueous layer was separated and extracted with ethyl acetate (3×5 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using a preparative silica gel thin layer chromatography plate (pentane:ethyl acetate, 4:1) to isolate unreacted starting material (5.8 mg, 0.011 mmol) in addition to analogue **26** (12.5 mg, 41% yield based on recovered starting material). ¹H NMR (CDCl₃600 MHz) δ : 7.73 (s, 1H) 7.34 (d, 2H, J = 8.6 Hz), 6.95 (d, 2H, J = 8.6 Hz), 5.25 (s, 2H), 5.06–4.96 (m, 1H), 4.06 (2H, m), 1.63 (s, 9H) 1.47 (dd, 3H, J = 6.4, 23.6 Hz); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 158.4, 157.8, 153.9, 129.8, 127.6, 126.2, 115.5, 114.6, 89.0 (88.0), 71.2, 70.4 (70.3), 65.3, 27.4, 16.9 (16.8); ¹⁹F(DMSO- d_6 , 564 MHz) δ : –178.20 (1F, m); HRMS-TOF (m/z): [M + H]⁺ C₁₈H₂₂CIFN₂O₃, 369.1375; found, 369.1370.

Synthesis of Methyl-4-(2-hydroxyethoxymethyl)benzoate (72). A solution of methyl 4-hydroxymethylbenzoate (70, 2.50 g, 0.015 mol) in DCM (30 mL) was charged into a two-neck round-bottom flask that was equipped with a Dewar condenser and cooled at -10 °C in a salt/ice bath. Ethylene oxide (1.10 mL) was added to the cooled stirring solution dropwise, followed by the addition of boron trifluoride etherate (0.51 mL). The reaction mixture was stirred for 45 min and then warmed to room temperature for 30 min to distill out any excess of ethylene oxide in the reaction mixture. The reaction mixture was then diluted with brine (50 mL). The aqueous layer was extracted with dichloromethane $(3 \times 50 \text{ mL})$. The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 4:1) to provide compound **72** (537 mg, 17% yield) in low yield. ¹H NMR (CDCl₃, 600 MHz) δ : 8.36 (d, 2H, J = 8.4 Hz), 7.41 (d, 2H, J = 8.5 Hz), 4.62 (s, 3H), 3.92 (s, 2H), 3.78 (m, 2H), 3.63 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) &: 167.1, 143.5, 130.0, 129.8, 127.5, 72.9, 72.0 62.1, 52.3.

Synthesis of 4-[2-(*tert*-Butyldimethylsilanyloxy)ethoxymethyl]benzoic acid methyl ester (86). To a solution of the compound 72 (544.5 mg, 2.59 mmol) in DMF (26 mL) was added imidazole (264 mg, 3.89 mmol) and TBDMS-Cl (586 mg, 3.89 mmol). The reaction mixture was stirred at room temperature overnight, then quenched with water. The aqueous layer was extracted with ethyl acetate (3 × 100 mL). All combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 4:1) to provide compound **86** (677.5 mg, 84% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 8.01 (d, 2H, *J* = 8.3 Hz), 7.42 (d, 2H, *J* = 8.4 Hz), 4.63 (s, 2H), 3.91 (s, 2H), 3.82 (t, 2H, *J* = 5.0 Hz), 3.58 (t, 2H, *J* = 5.1 Hz), 0.91 (s, 9H), 0.07 (s, 6H); ¹³C NMR (CDCl₃,150 MHz) δ : 166.5, 143.5, 129.2, 128.8, 126.5, 72.1, 71.6, 62.3, 51.5, 25.4, 17.9, –5.8.

Synthesisof{4-[2-(*tert*-Butyldimethylsilanyloxy)ethoxymethyl]phenyl}methanol (51). To a solution of compound 86 (670 mg, 2.18 mmol) dissolved in THF (22 mL) was added LAH (2.18 mL of 1.0 M solution in THF, 2.18 mmol) dropwise. After completion of addition the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with water, and the aqueous layer was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide compound **51** as an oil (587 mg, 91% yield), which was used in the next step without any further purification. ¹H NMR (CDCl₃, 600 MHz) δ : 7.34 (s, 4H), 4.68 (s, 2H), 4.57 (s, 2H), 3.80 (t, 2H, J = 5.2 Hz), 3.56 (t, 2H, J = 5.3 Hz), 1.69 (br, s, 1H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 140.4, 138.3, 128.0, 127.2, 73.2, 71.9, 65.4, 63.0, 26.2, 18.6, -5.0.

Synthesis of 2-*tert*-Butyl-5-{4-[2-(*tert*-butyldimethylsilanyloxy)ethoxymethyl]benzyloxy}-4-chloro-3-(2*H*)-pyridazinone (61). To a solution of compound 51 (437 mg, 1.48 mmol) and compound 56 (250 mg, 1.23 mmol) dissolved in THF (12 mL) was added PPh₃ (485 mg, 1.85 mmol) and DIAD (0.358 mL, 1.85 mmol). After completion of addition, the reaction mixture was stirred at room temperature for 20 h and then diluted with water (20 mL). The aqueous layer was separated and extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 4:1) to provide compound **61** (528 mg, 89% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.70 (s, 1H), 7.38 (m, 4H), 5.30 (s, 2H), 4.58 (s, 2H), 3.80 (t, 2H, J = 5.4 Hz), 3.57 (t, 2H, J = 5.4 Hz), 1.63 (br s, 9H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.0, 153.7, 138.8, 134.4, 128.3, 127.3, 125.1, 118.5, 72.8, 71.7, 71.6, 66.4, 61.9, 29.7, 27.9, 25.6, -5.1; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₂₄H₃₇ClN₂O₄Si, 481.2283; found, 481.2282.

Synthesis of 2-tert-Butyl-4-chloro-5-[4-(2-hydroxyethoxymethvl)benzvloxvl-3-(2H)-pvridazinone (67). To a solution of compound 61 (528 mg, 1.09 mmol) dissolved in THF (11 mL) was added a solution of TBAF (1.65 mL of 1.0 M solution in THF, 1.65 mmol) dropwise. After completion of addition, the reaction was stirred at room temperature for 1 h and then quenched with water (10 mL). The aqueous layer was separated and extracted with ethyl acetate (3 \times 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (hexanes: ethyl acetate, 4:1) to provide compound 67 (311 mg, 78% yield). ¹H NMR (CDCl₃, 600 MHz) δ: 7.70 (s, 1H), 7.38 (m, 4H), 5.30 (s, 2H), 4.56 (s, 2H), 3.76 (t, 2H, J = 4.9 Hz), 3.60 (t, 2H, J = 4.8 Hz), 2.00 (br s, 1H), 1.61 (br s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.0, 153.6 138.8, 134.4, 128.2, 127.2, 125.1, 118.3, 72.8, 71.6, 71.6, 66.4, 61.9, 27.8; HRMS-TOF (m/z): $[M + H]^+$ for C₁₈-H₂₃ClN₂O₄, 367.1419; found, 367.1419.

Synthesis of Toluene-4-sulfonic acid-2-[4-(1-tert-butyl-5chloro-6-oxo-1,6-dihydro-pyridazin-4-yloxymethyl)-benzyloxy]ethyl ester (73). To a solution of compound 67 (200 mg, 0.55 mmol) dissolved in DCM (5.50 mL) was added TsCl (125 mg, 0.66 mmol), DMAP (100 mg, 0.82 mmol), and TEA (0.091 mL, 0.66 mmol). The reaction mixture was stirred at room temperature for 22 h and then was diluted with water (10 mL). The aqueous layer was separated and extracted with ethyl acetate (3×20 mL). All combined organic layers were dried over Na₂SO₄, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 3:2) to provide compound **73** (232 mg, 82% yield) in good yield. ¹H NMR (CDCl₃, 600 MHz) δ : 7.79 (d, 2H, J = 8.3 Hz), 7.71 (s, 1H), 7.38 (d, 2H, J = 8.2 Hz), 7.32 (m, 4H), 5.30 (s, 2H), 4.50 (s, 2H), 4.21 (m, 2H), 3.69 (m, 2H), 2.43 (s, 3H), 1.63 (br s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ: 159.0, 153.7, 144.8, 138.8, 134.4, 133.1, 129.8, 128.1, 128.0, 127.2, 125.1, 118.4, 72.8, 71.7, 69.2, 67.8, 66.4, 27.9, 21.6; HRMS-TOF (m/z): $[M + H]^+$ for C₂₅H₂₉ClN₂O₆, 521.1507; found, 521.1503.

Synthesis of 2-tert-Butyl-4-chloro-5-[4-(2-fluoro-ethoxymethyl)benzyloxy]-3-(2H) -pyridazinone (27). To a solution of compound 73 (50 mg, 0.10 mmol) in ACN (1.0 mL) was added KF (11.2 mg, 0.19 mmol) and kryptofix222 (72.4 mg, 0.19 mmol). After completion of addition, the reaction mixture was heated at 90 °C. After 10 min, the reaction mixture was cooled to room temperature and diluted with water (1 mL). The aqueous layer was separated and extracted with ethyl acetate $(3 \times 5 \text{ mL})$. All combined organic layers were dried over Na2SO4, filtered, and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 4:1) to provide analogue 27 (28 mg, 79% yield) in good yield. ¹H NMR (DMSO- d_6 , 600 MHz) δ : 8.22 (s, 1H), 7.45 (d, 2H, J = 8.2 Hz), 7.39 (d, 2H, J = 8.2 Hz), 5.42 (s, 2H), 4.60 (m, 1H), 4.54 (s, 2H), 4.52 (m, 1H), 3.71 (m, 1H), 3.66 (m, 1H), 1.57 (s, 9H); ¹³ C NMR (DMSO-*d*₆, 150 MHz) δ: 157.8, 153.8, 138.6, 134.6, 127.8, 127.7, 126.2, 115.6, 83.5 (82.4), 71.6, 71.2, 69.1 (69.0), 65.3, 27.4; ¹⁹F NMR (DMSO-d₆, 564 MHz) δ : -221.74 (1F, m); HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₈H₂₂ClFN₂O₃, 369.1375; found, 369.1377.

Synthesis of Methyl-4-[2-hydroxy- d_4 -ethoxymethyl]benzoate (87). A solution of methyl 4-hydroxymethylbenzoate (70, 2.5 g, 15 mmol) in DCM (30 mL) was added to a two-neck round-bottom flask, which was equipped with a Dewar condenser and cooled at -10 °C in a salt/ice bath. d_4 -Ethylene oxide (1.10 mL) was added to the cooled stirring solution dropwise followed by the addition of boron trifluoride etherate (0.51 mL). The reaction mixture was stirred for 45 min and then warmed to room temperature for 30 min to distill out any excess of d_4 -ethylene oxide in the reaction mixture. The reaction mixture was then diluted with brine (50 mL). The aqueous layer was extracted with dichloromethane (3 × 50 mL). The organic layers were combined, dried over Na₂SO₄, filtered,

and concentrated to provide an oil. The crude material was purified using silica gel chromatography (pentane:ethyl acetate, 4:1) to provide compound **87** (520 mg, 16% yield) in low yield. ¹H NMR (CDCl₃, 600 MHz) δ : 8.02 (d, 2H, J = 8.2 Hz), 7.41 (d, 2H, J = 8.1 Hz), 4.62 (s, 2H), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ : 167.1, 143.5, 130.8, 129.9, 127.5, 72.8, 52.4.

Synthesis of Methyl-4-[2-(*tert*-butyldimethylsilanyloxy)- d_4 ethoxymethyl]benzoate (88). To a solution of compound 87 (500 mg, 2.33 mmol) in DMF (23 mL) was added TBDMS-Cl (528 mg, 3.50 mmol) and imidazole (238 mg, 3.50 mmol). The reaction was stirred at room temperature overnight and then diluted with water (30 mL) and extracted with ethyl acetate (2×50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to obtain a crude oil. The oil was purified bypassage through a thick pad of silica gel (pentane:ethyl acetate, 3:1) to obtain the compound **88** as a clear oil (602 mg, 79% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 8.00 (d, 2H, J = 8.3 Hz), 7.40 (d, 2H, J = 8.5 Hz), 4.62 (s, 2H), 3.90 (s, 3H), 0.90 (s, 9H), 0.06 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 167.2, 144.2, 129.9, 129.5, 127.3, 72.8, 52.3, 26.1, 18.6, –5.8.

Synthesis of {4-[2-(*tert*-Butyldimethylsilanyloxy)- d_4 -ethoxy- d_2 -methyl]phenyl}methanol (52). To a solution of compound 88 (610 mg, 1.86 mmol) in THF (19 mL) at 0 °C was added LAD (1.9 mL of 1 M solution in THF, 1.86 mmol) dropwise. After completion, the reaction was stirred at room temperature for 3.5 h before being diluted with water and extracted with ethyl acetate (2 × 50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to obtain compound 52 as a clear oil (482 mg, 86% yield). The material was used in the next step without further purification. ¹H NMR (600 MHz, CDCl₃) δ : 7.33 (s, 4H), 4.56 (s, 2H), 0.89 (s, 9H), 0.06 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 140.3, 138.4, 128.1, 127.3, 73.1, 29.9, 26.2, 18.6, -5.0.

Synthesis of 2-*tert*-Butyl-4-chloro-5-{4-[2-(*tert*-butyldimethylsilanyloxy)-*d*₄-ethoxy-*d*₂-methyl]benzyloxy}-3-(2*H*)-pyridazinone (62). To a solution of compound 56 (212 mg, 1.05 mmol) in THF (15 mL) was added compound 52 (475 mg, 1.57 mmol), PPh₃ (412 mg, 1.57 mmol), and DIAD (304 μ L, 1.57 mmol). The reaction mixture was stirred at room temperature for 2 h. After concentration of the reaction mixture in vacuo, the crude material was purified by silica gel chromatography (pentane:ethyl acetate, 9:1) to obtain compound 62 as a clear oil (336 mg, 66% yield). ¹H NMR (CDCl₃, 600 MHz) δ : 7.70 (s, 1H), 7.39 (m, 4H), 4.58 (s, 2H), 1.63 (s, 9H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ : 158.5, 153.2, 139.0, 133.4, 127.5, 126.7, 124.6, 117.8, 72.2, 65.8, 27.3, 25.4, 17.8, -5.1; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₂₄H₃₁-D₆ClN₂O₄Si, 486.2588; found, 509.2480 [M + Na]⁺.

Synthesis of 2-*tert*-Butyl-4-chloro-5-[4-(2-hydroxy- d_4 -ethoxy- d_2 -methyl)benzyloxy]-3-(2H)-pyridazinone (68). To a solution of compound 62 (330 mg, 0.68 mmol) in THF (7 mL) was added TBAF (1 mL of 1 M solution in THF, 1.02 mmol) dropwise. The reaction mixture was stirred at room temperature for 2 h followed by solvent removal under reduced pressure to yield a crude oil. The crude material was dissolved in DCM and passed through a thick pad of silica (100% ethyl acetate) to obtain compound 68 (250 mg, 99% yield) containing a minor percentage of the corresponding silanol. The material was used in the next step without further purification. ¹H NMR (CDCl₃, 600 MHz) δ : 7.72 (s, 1H), 7.41 (s, 4H), 4.59 (s, 2H), 1.64 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.2, 153.9, 139.5, 134.5, 128.5, 127.5, 125.3, 118.6, 73.0, 66.6, 28.1; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₁₈H₁₇-D₆ClN₂O₄, 395.1609; found, 395.1615 [M + Na]⁺.

Synthesis of 2-*tert*-butyl-4-chloro 5-[4-(2-*p*-toluenesulfonyloxy- d_4 -ethoxy- d_2 -methyl)benzyl]oxy-3-(2H)-pyridazinone (74). To a solution of compound 68 (250 mg, 0.67 mmol) in DCM (7 mL) was added TsCl (153 mg, 0.81 mmol), DMAP (98 mg, 0.81 mmol), and TEA (140 μ L, 1.01 mmol). The reaction was stirred at room temperature overnight and was then concentrated under reduced pressure. The crude material was purified by silica gel chromatography (hexanes:ethyl acetate gradient, 2:1 to 100% ethyl acetate) to recover the unreacted starting material 68 (9 mg) and the product 74 (261 mg, 77% yield based on recovered starting material) as a clear oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.76 (d, 2H, J = 8.3 Hz), 7.73 (s, 1H), 7.36 (d, 2H, J = 8.1 Hz), 7.29 (m, 4H), 4.47 (s, 2H), 2.40 (s, 3H), 1.61 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 159.0, 153.8, 145.0, 138.5, 134.4, 133.1, 129.9, 128.1, 128.0, 127.3, 125.2, 118.1, 72.7, 71.0, 37.0, 63.4, 28.0, 21.7; HRMS-TOF (*m*/*z*): [M + H]⁺ for C₂₅H₂₃D₆ClN₂O₆S, 526.1811; found, 549.1705 [M + Na]⁺.

Synthesis of 2-*tert*-Butyl-4-chloro-5-[4-(2-fluoro- d_4 -ethoxy- d_2 -methyl)-benzyloy]-3-(2H)-pyridazinone (28). To a solution of compound 74 (14 mg, 0.03 mmol) in ACN (300 μ L) was added KF (3.1 mg, 0.05 mmol) and kryptofix222 (20 mg, 0.05 mmol). The reaction mixture was stirred at 90 °C for 10 min. The reaction mixture was then cooled to room temperature and concentrated under reduced pressure. The crude material was purified by preparative TLC (hexanes:ethyl acetate, 2:1) to obtain analogue 28 (6.2 mg, 62% yield) as an oil. ¹H NMR (CDCl₃, 600 MHz) δ : 7.70 (s, 1H), 7.40 (s, 4H), 4.61 (s, 2H), 1.63 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ : 158.5, 153.1, 138.2, 133.8, 127.7, 126.8, 124.6, 117.8, 72.4, 65.9, 27.3; ¹⁹F NMR (CDCl₃, 564 MHz) δ : -225.2 (m, 1F).

General Procedure for the Radiosynthesis of F-18 Labeled Pyridazinone Analogues 22-28. A 500 mCi lot of aqueous F-18 was made by the ¹⁸O(p,n)¹⁸F reaction (PETNET Pharmaceutical Services, Cummings Park, Woburn, MA) and applied to a previously activated MP1 anion exchange resin (BioRad) cartridge. This cartridge was placed into an elution loop contained within a remotely controlled radiosynthesis system. The radioactivity was eluted from the cartridge and collected into a silanized 25 mL pearshaped flask by the addition of 1 mL of a solution prepared as follows: K₂CO₃ (15 mg) was dissolved in deionized water (1 mL), and kryptofix222 (90 mg) was dissolved in ACN (4 mL); the two solutions were combined, and the appropriate aliquot was used for elution of the column. The eluate from the MP1 anion exchange resin was then concentrated to dryness by applying a gentle stream of heated He and a slight vacuum. ACN (0.5 mL) was added, and the solvent was again removed by the same vacuum heated He procedure to ensure removal of all water. The material was reconstituted with ACN (0.5 mL). The ¹⁸F solution with the remaining constituents (K, CO32-, K222) was transferred to a conical bottomed 5 mL Wheaton vial containing 3.0 mg of the desired tosylate precursor 55, 64, 66, 69, 71, 73, or 74 (3.0 mg) dissolved in ACN (0.5 mL). The vial and contents were heated at 90 °C for 30 min. The reaction solution was transferred to a 25 mL pear-shaped flask and diluted with water (18.5 mL). The resultant mixture was passed through a Sep Pak C18 cartridge, then rinsed with water (5 mL). The Sep Pak C18 cartridge was then eluted with ACN (3 mL) and the column dried with $N_{2(g)}$. The collected acetonitrile fraction was purified via HPLC (Phenomenex LUNA C-18 column 250 mm \times 10 mm, 5 μ m particle size, 100 Å pore, mobile phases A: 90/10 H₂O/CH₃CN; B: CH₃CN, both containing 0.1%TFA as stabilizer; gradient: 0-100/15 sustained at 100% B to 20 min, flow rate 2.5 mL/min) ¹⁸F analogues 22-28 eluted from the column and were collected as single fractions (Table 6). The solvent was then removed via rotary evaporation. Upon drying, the contents of the flask were reconstituted with a 10% ethanol solution. The final product yield was ~ 25 mCi, with a radiosynthesis and purification time of 90 min. Aliquots of this material were used for biodistribution and PET imaging studies in rats.

Preparation of Submitochondrial Particles from Bovine Hearts. Bovine heart mitochondria were prepared as described by Lester et al.⁴⁴ A brief description of the procedure follows: bovine heart was minced, and 200 g of ground heart tissue was suspended in 400 mL of 0.25 M sucrose, 0.01 M Tris-Cl, 1 mM Tris-succinate, and 0.2 mM ethylenediamine tetra-acetic acid (EDTA) and homogenized in a Waring blender. The homogenate was centrifuged for 20 min at 1200*g*, and the supernatant was centrifuged for 15 min at 26000*g*, resulting in a mitochondrial pellet. The protein concentration of the mitochondrial samples as measured by a BioRad Protein Assay Kit (BioRad Life Science Research, Hercules, CA) was adjusted to 20 mg/mL using 0.25 M sucrose, 10 mM Trisacetate pH 7.5, 1.5 mM adenosine triphosphate (ATP), and 10 mM MgCl₂. The samples were stored at -80 °C.

Bovine submitochondrial particles (SMPs) were prepared from mitochondria as described by Matsuno-Yagi et al.⁴⁵ Isolated bovine heart mitochondria were sonicated in batches of 15 mL for 1 min with a digital Branson sonifier (Branson, Danbury, CT) at 70% maximum output in an ice bath. The sonicated suspension was centrifuged at 16000*g* for 10 min, and the supernatant was centrifuged at 150000*g* for 45 min at 4 °C. The submitochondrial pellet was resuspended in buffer containing 0.25 M sucrose, 10 mM Tris-acetate, pH 7.5. The protein concentration was determined using the BioRad Protein Assay Kit (BioRad Life Science Research, Hercules CA), and the samples were stored at -80 °C, at a concentration of 20 mg/mL.

Submitochondrial Particle (Bovine) Catalytic Activity and Compound Inhibition Assay. The procedure for determining the catalytic activity of submitochondrial particles was adapted from Satoh et al.⁴⁶ NADH-DB reductase activity was measured using a stirred cuvette in a spectrophotometer (Hewlett-Packard, Houston TX) at 37 °C, as the rate of NADH oxidation at 340 nm ($\epsilon = 5.4$ $mM^{-1} \times cm^{-1}$) for 120 s. The final volume of the reaction was 2.5 mL, containing 50 mM K₂HPO₄ (pH 7.4), 0.4 µM Antimycin A, and 2 mM KCN. The final SMP concentration was 45 μ g/mL. The enzyme reaction was initiated by the addition of $100 \,\mu\text{M}$ decyl ubiquinone (DB) and 50 µM NADH. Inhibitors at varying concentrations were preincubated with the reaction mixture containing SMPs for 4 min prior to initiation of the reaction. The IC_{50} value was determined as the concentration of the inhibitor required for 50% inhibition of NADH oxidation. The IC₅₀ value was calculated using GraphPad Prism Version 4 (GraphPad, San Diego, CA).

Tissue Biodistribution of [¹⁸F]22-28 in rats (300-400 g male Sprague–Dawley rats). Tissue biodistribution of [¹⁸F]**22–28** was examined in sodium pentobarbital (50 mg/kg, ip) anesthetized Sprague-Dawley rats. After anesthesia, the left femoral vein of rats was canulated and $[^{18}F]$ **22–28** at a dose of about 15 μ Ci in 0.3 mL 10% ethanol saline per rat was injected intravenously. At 30 or 120 min after the injections, rats (n = 3/each time point) were euthanized in a CO₂ chamber and tissue samples of blood, heart, lung, liver, spleen, kidney, femur, muscle, and brain were collected, weighed, and counted in an autogamma counter (Wallac Wizard 1480, PerkinElmer Life and Analytical Sciences, Shelton, CT) for radioactivity. The radioactivity measurements were decay corrected and the net injected dose was calulcated by substracting residual activities in the syringe and venous catheter. The tissue biodistribution of [¹⁸F]22–28 was expressed as % injected dose per gram of tissue (%ID/g) (Table 7).

Cardiac Imaging with [¹⁸F]27 in Rats (300-400 g Male Sprague–Dawley rats) and Nonhuman Primate (Male and Female Rhesus Monkeys, 4-6 kg, Covenace). Rats were anesthetized with pentobarbital (50 mg/kg ip) and the left femoral vein was canulated for imaging agent injection. Nonhuman primates were anesthetized with acepromazine (0.3 mg/kg, i.m) and ketamine (10 mg/kg, i.m) in addition to being orally intubated and maintained with isoflurane 0.4–1.5%). The saphenous vein was canulated for drug injection. Cardiac imaging was performed using a microPET camera (Focus220, CTI Molecular Imaging, Inc. Knoxville, TN), which provides 95 transaxial slices in 22 cm operational field of view. After the animal was positioned for cardiac imaging, about 1 mCi of [18F]27 was injected intravenously into the rat, whereas 3 mCi of [¹⁸F]27 was injected into the nonhuman primate via the canulated saphenous vein. Image acquisition was started 5 min post injection and performed for the next 2 h in dynamic mode (10 min \times 12 frames). The images were reconstructed using OSEM2D algorithm with 256×256 matrix at zoom 2, no attenuation correction. Image visualization, ROI placement, and quantification were performed using ASIPRO software developed by the manufacturer.

References

- Foot, D. K.; Lewis, R. P.; Pearson, T. A.; Beller, G. A. Demographics and Cardiology 1950–2050. J. Am. Coll. Cardiol. 2000, 35 (5), 66B– 80BSuppl. B.
- (2) Slart, R. H. J. A.; Bax, J. J.; van Veldhuisen, D. J.; van der Wall, E. E.; Dierckx, R. A. J. O. D.; Jager, P. L. Imaging techniques in nuclear cardiology for the assessment of myocardial viability. *Int. J. Cardiovasc. Imaging* **2006**, *22*, 63–80.
- (3) Kapur, A.; Latus, K. A.; Davies, G.; Dhawan, R. T.; Eastick, S.; Jarritt, O. H.; Roussakis, G.; Young, M. C.; Anagnostopoulos, C.; Bomanji, J.; Costa, D. C.; Pennell, D.; J.; Prvulovich, E. M.; Ell, P. J.; Underwood, S. R. A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. *Eur. J. Nucl. Med. Mol. Imaging* **2002**, *29*, 1608–1616.
- (4) Koeppe, R. C.; Hutchins, G. D. Instrumentation for Positron Emission Tomography: Tomographs and Data Processing and Display Systems. *Semin. Nucl. Med.* 1992, 22, 162–181.
- (5) Herzog, H.; Roesch, F. Chemie und Physik der Bildgebung: PETund SPECT. *Pharm. Unserer Zeit.* 2005, 34, 468–473.
- (6) Cuocolo, A.; Acampa, W.; Imbriaco, M.; DeLuca, N.; Iovino, G. L.; Salvatore, M. The many ways to myocardial perfusion imaging. *J. Nucl. Med. Mol. Imaging* **2005**, *49*, 4–18.
- (7) Beller, G. A. Myocardial perfusion imaging agents: SPECT and PET. J. Nucl. Cardiol. 2004, 11, 71–86.
- (8) Glover, D. K.; Ruiz, M.; Edwards, N. C. Comparison between 201Tl and ^{99m}Tc-sestamini uptake during adenosine-induced vasodilation as a function of coronary stenosis severity. *Circulation* **1995**, *91*, 813– 820.
- (9) Glover, D. K.; Okada, R. D. Myocardial kinetics of Tc-MIBI in canine myocardium after dipyridamole. *Circulation* **1990**, *81*, 628–637.
- (10) Nienaber, C. A. PET in cardiology: current status and clinical expectations. *Clin. Physiol.* **1994**, *14*, 337–348.
- (11) Schwaiger, M. Myocardial Perfusion Imaging with PET. J. Nucl. Med. 1994, 35, 693–698.
- (12) Von Dahl, J. Untersuchungen der Myokardperfusion mit der Positron-Emissions-Tomographie. Z. Kardiol. 2001, 90, 835–847.
- (13) Schwaiger, M.; Muzik, O. Assessment of Myocardial Perfusion by Positron Emission Tomography. Am. J. Cardiol. 1991, 67, 35D–43D.
- (14) Machac, J. Cardiac Positron Emission Tomography Imaging. Semin. Nucl. Med. 2005, 35, 17–36.
- (15) Talkalkar, A.; Mavi, A.; Alavi, A.; Araujo, L. PET in cardiology. *Radiol. Clin. N. Am.* **2005**, *42*, 107–119.
- (16) Beanlands, R. S. B.; Muzik, O.; Melon, P.; Sutor, R.; Sawada, S.; Muller, D.; Bondie, D.; Hutchins, G. D.; Schwaiger, M. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13-ammonia positron emission tomography. *JACC* **1995**, *26*, 1465–1475.
- (17) Choi, Y.; Huang, S.-C.; Hawkins, R. A.; Kim, J. Y.; Kim, B.-T.; Hoh, C. K.; Chen, K.; Phelps, M. E.; Schelbert, H. R. Quantification of Myocardial Blood Flow using 13N-Ammonia and PET: Comparison of Tracer Models. J. Nucl. Med. 1999, 40, 1045–1055.
- (18) Go, R. T.; Marwick, T. H.; MacIntyre, W. J.; Saha, G. B.; Neumann, D. R.; Underwood, D. A.; Simpfendorfer, C. C. A Prospective Comparison of Rubidium-82 PET and Thallium-201 SPECT Myocardial Perfusion Imaging Utilizing a Single Dipyridamole Stress in the Diagnosis of Coronary Artery Disease. J. Nucl. Med. 1990, 31, 1899–1905.
- (19) Bergmann, S. R.; Herrero, P.; Markham, J.; Weinheimer, C. J.; Walsh, M. N. Noninvasive Quantification of Myocardial Blood Flow in Human Subjects with Oxygen-15-Labeled Water and Positron Emission Tomography. J. Am. Coll. Cardiol. 1989, 14, 639–52.
- (20) Marshall, R. C.; Powers-Risius, P.; Reutter, B. W.; Taylor, S. E.; VanBrocklin, H. F.; Huesman, R. H.; Budinger, T. F. Kinetic Analysis of [125]I-Iodorotenone as a Deposited Myocardial Flow Tracer: Comparison with [99m]Tc-Sestamibi. J. Nucl. Med. 2001, 42, 272–281.
- (21) Negherbon, W. O. Handbook of Toxicology. Vol. III: Insecticides;
 W. B. Saunders: Philadelphia, 1959; pp 661–673.
- (22) Tomlin, C. D. S. Rotenone. In *The Pesticide Manual*, 11th ed.; British Crop Protection Council: Farnham, UK, 1997; 1097–1099.
- (23) Walker, J. E. The NADH-ubiquinone oxidoreductase (complex I) of respitory chains. Q. Rev. Biophys. 1992, 25, 253–324.
- (24) Caroll, J.; Fearnley, I. M.; Shannon, R. J.; Hirst, J.; Walker, J. E. Analysis of the subunit composition of complex I from bovine heart mitochondria. *Mol. Cell. Proteom.* **2003**, *2*, 117–126.
- (25) Kronauge, J. F.; Chiu, M. L.; Cone, J. S.; Davidson, A.; Homan, B. L.; Jones, A. G.; Piwnica-Worms, D. Comparison of Neutral and Cationic Myocardial Perfusion Agents: Characteristics of Accumulation in Cultured Cells. *Nucl. Med. Biol.* **1992**, *19*, 141–148.
- (26) Luemmen, P. Complex I inhibitors as insecticides and acaricides. *Biochim. Biophys. Acta* 1998, 1364, 287–296.
- (27) Miyoshi, H. Structure-activity relationships of some complex I inhibitors. *Biochim. Biophys. Acta* 1998, 1364, 236–244.

- (28) Esposti, M. D. Inhibitors of NADH-ubiquinone reductase: an overview. *Biochim. Biophys. Acta* **1998**, *1364*, 222–235.
- (29) Hollingworth, R. M.; Ahammadsahib, K. I.; Gadelhak, G.; McLaughlin, J. L. New inhibitors of Complex I of the mitochondrial electron transport chain with activity as pesticides. *Biochem. Soc. Trans.* 1994, 22, 230–233.
- (30) Lindell, S. D.; Ort, O.; Luemmen, P.; Klein, R. The design and synthesis of novel inhibitors of NADH:ubiquinone oxidoreductase. *Bioorg. Med. Chem. Lett.* 2004, 14, 511–514.
- (31) Okun, J. G.; Luemmen, P.; Brandt, U. Three Classes of Inhibitors share a Common Binding Domain in Mitochondrial Complex I (NADH:Ubiquinone Oxidoreductase). J. Biol. Chem. 1999, 274, 2625– 2630.
- (32) Purohit, A.; Benetti, R.; Hayes, M.; Guaraldi, M.; Kagan, M.; Yalamanchili, P.; Su, F.; Azure, M.; Mistry, M.; Yu, M.; Robinson, S.; Dischino, D. D.; Casebier, D. Quinazoline derivatives as MC-I inhibitors: Evaluation of myocardial uptake using positron emission tomography in rat and nonhuman primate. *Bioorg. Med. Chem. Lett.* 2007, 17, 4882–4885.
- (33) Radeke, H. S.; Hanson, K.; Yalamanchili, P.; Hayes, M.; Zhang, Z.-Q.; Azure, M.; Yu, M.; Guaraldi, M.; Kagan, M.; Robinson, S.; Casebier, D. Synthesis and Biological Evaluation of Mitochondrial Complex 1 Inhibitor 2-[4-(4-Fluoro-butyl)-benzylsulfanyl]-3-methylchromene-4-one as a Potential Cardiac Positron Emission Tomography Tracer. J. Med. Chem. 2007, 40, 4304–4315.
- (34) Hirata, K.; Kawamura, Y.; Kudo, M. Development of a New Acaricide, Pyridaben. J. Pestic. Sci. 1995, 20, 177–179.
- (35) Igarashi, H.; Sakamoto, S. Summary of Toxicity Studies with Pyridaben. J. Pestic. Sci. 1994, 19, S243.
- (36) Compound **21** ($IC_{50} > 4000 \text{ nM}$):

- (37) Degrado, T. R.; Moka, D. C. Non-beta-oxidizable-[18F]fluoro long chain fatty acid analogs show cytochrome P-450-mediated defluorination:implications for the design of PET tracers of myocardial fatty acid utilization. *Nucl. Med. Biol.* **1992**, *19*, 389–397.
- (38) Kilbourn, M. R. Fluorine-18 Labeling of Radiopharmaceuticals; Nuclear Science Series; National Academy Press: Washington, DC, 1990; pp 4470.
- (39) French, A. N.; Napolitano, E.; Van Brocklin, H. F.; Brodack, J. W.; Hanson, R. N.; Welch, M. J.; Katzenellenbogen, J. A. The β-heteroatom effect in metabolic defluorination: The interaction of resonance and inductive effects may be a fundamental determinant in the metabolic liability of fluorine-substituted compounds. J. Labelled Compd. Radiopharm. 1991, 30, 431–433.
- (40) Fowler, J. S.; Wang, G.-J.; Logan, J.; Xie, S.; Volkow, N. D.; MacGregor, R. R.; Schyler, D. J.; appas, N.; Alexoff, D. L.; Patlak, C.; Wolf, A. P. Selective Reduction of Radiotracer Trapping by Deuterium Substitution: Comparison of Carbon-11-L-Deprenyl and Carbon-1-Deprenyl-D2 for MAO B Mapping. J. Nucl. Med. 1995, 36, 1255–1262.
- (41) Shogo, M.; Kazuyoshi, A.; Masuo, Y.; Shuichi, I. Antitumor agent, novel 3(2)-pyridazinone derivatives and their preparation. E.U. Patent 0665 223 A1, January 26, 1995.
- (42) Latli, B.; Morimoto, H.; Williams, P. G.; Casida, J. E. Photoaffinity Radioligand for NADH:Ubiquinone Oxidoreductase: [S-C³H₂]-(Trifluoromethyl)diazirinyl-pyridaben. J. Labelled Compd. Radiopharm. **1998**, *3*, 191–199.
- (43) Suzuki, H.; Kawamura, Y.; Ogura, T. Process for producing 2-tertbutyl-4,5-dichloro-3(2)-pyridazinone. E.U. Patent 0 169 375, June 19, 1985.
- (44) Lester, R. L.; Smith, A. L. Studies on the electron transport system. 28. The mode of reduction of tetrazolium salts by beef heart mitochondria; role of coenzyme Q and other lipids. *Biochim. Biophys. Acta* 1961, 47, 475–496.
- (45) Matsuno-Yagi, A.; Hatefi, Y. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis. *J. Biol. Chem.* **1985**, 260, 11424–11427.
- (46) Satoh, T; Miyoshi, H; Sakamoto, K; Iwamura, H. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADHubiquinone oxidoreductases. *Biochim. Biophys. Acta* **1996**, *1273*, 21– 30.
- (47) Staley, J. K.; Van Dyck, C. H.; Tan, P.-Z.; Al Tikriti, M.; Ramsby, Q.; Klump, H.; Ng, C.; Garg, P.; Soufer, R.; Baldwin, R. M.; Innis, R. B. Comparison of [¹⁸F]altanserin and [¹⁸F]deuteroaltanserin for PET imaging of serotonin_{2A} receptors in baboon brain: pharmacological studies. *Nucl. Med. Biol* **2001**, *28*, 271–279.

- (48) Zhang, M.-R.; Maeda, J.; Ito, Z.; Okauchi, T.; Ogawa, M.; Noguchi, J.; Suhara, T.; Halldin, C.; Suzuki, K. Synthesis and evaluation of *N*-(5-fluoro-2-phenoxyphenyl)- *N*-(2-[¹⁸F]fluoromethoxy-d₂-5-methoxybenzyl)acetamide: a deuterium-substituted radioligand for peripherial benzodiazepine receptor. *Bioorg. Med. Chem.* **2006**, *13*, 1811– 1818.
- (49) Yu, M.; Guaraldi, M. T.; Mistry, M.; Kagan, M.; McDonald, J. L.; Drew, K.; Radeke, H.; Purohit, A.; Azure, M.; Casebier, D. S.; Robinson, S. P. BMS-747158–02: A Novel PET Myocardial Perfusion Imaging Agent. J. Nucl. Cardiol. 2007, 14, 789–796.

(50) Yu, M.; Mistry, M.; Guaraldi, M.; Kagan, M.; McDonald, J.; Drew, K.; Hayes, M.; Yalamanchili, P.; Purohit, A.; Radeke, H.; Azure, M.; Hanson, K.; Robinson, S.; Casebier, D. [18F]-RP1012: A Novel Myocardial Perfusion Imaging Agent for Use with Positron Emission Tomography (PET). *Circulation* 2005, *112* (17), II-761.

JM701443N