ORGANIC LETTERS

1999 Vol. 1, No. 5 713-715

Oxidative Cleavage of *vic*-Diols to Aldehydes with Dioxygen Catalyzed by Ru(PPh₃)₃Cl₂ on Active Carbon

Eiichiro Takezawa, Satoshi Sakaguchi, and Yasutaka Ishii*

Department of Applied Chemistry, Faculty of Engineering & High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan ishii@ipcku.kansai-u.ac.jp

Received June 2, 1999

ABSTRACT

A variety of *vic*-diols were first successfully cleaved to the corresponding aldehydes with dioxygen catalyzed by Ru(PPh₃)₃Cl₂ on active carbon in fair to good yields. For example, treatment of 1,2-octandiol and 1,2-cyclooctanediol with dioxygen in the presence of Ru(PPh₃)₃Cl₂/C in PhCF₃ at 60 °C for 15 h produced heptanal and 1,8-octanedial in 77% and 76% yields, respectively.

Oxidative cleavage of vic-diols is an important and frequently used transformation in organic synthesis. Typically, two oxidants, lead tetraacetate¹ and periodic acid,² are used for this purpose. On occasion, other reagents such as ceric ammonium nitrate,³ sodium bismuthate,⁴ and CrO₃⁵ cause the cleavage of vicinal diols. However, these reagents have the obvious drawbacks of being toxic and producing a large amount of waste. There has been reported the catalytic cleavage of vic-diols to carboxylic acids with several oxidants such as t-BuOOH,6 H₂O₂,7 and O₂.8 To our knowledge, however, few papers have been published on the catalytic cleavage of vic-diols to aldehydes with O₂, 9 probably because of the difficulty to suppress the formation of overoxidation products such as carboxylic acids. Our approach is to establish the oxidative cleavage of vic-diols to aldehydes with O_2 via transformation of *vic*-diols to aldehydes.

In an initial screening, we tested the oxidation of 1,2-octanediol (1) under dioxygen atmosphere (1 atm) by using several ruthenium complexes which catalyze the aerobic oxidation of primary alcohols to aldehydes (Table 1).¹⁰

Although tetrapropylammonium perruthenate (TPAP)¹¹ and Ru(PPh₃)₃Cl₂¹² are reported to catalyze the aerobic oxidation of primary alcohols to aldehydes, diol **1** was cleaved by these catalysts to heptanal (**2**) in low conversion and selectivity (entries 1 and 2). The formation of acetal **3** by Ru(PPh₃)₃Cl₂ would be based on the acetalization of the resulting heptanal **2** with **1** by an acid like hydrochloric acid, probably generated by the decomposition of a part of the Ru(PPh₃)₃Cl₂ during the reaction. However, Ru₃(CO)₁₂, RuCl₃, and RuO₂ were inactive in the present transformation (entries 3–5).

Previously, we have learned that the catalytic activity of a mixed addenda molybdovanadophosphate (NPMoV) whose average composition is approximately indicated as (NH₄)₅H₆-PMo₄V₈O₄₀ in the aerobic oxidation of benzyl alcohols was considerably enhanced by supporting on the active carbon. 13

⁽¹⁾ Wolf, F. J.; Weijjlard, J. Org. Synth., Collect. Vol. 1963, 4, 124.

⁽²⁾ Hudlicky, M. *Oxidations in Organic Chemistry*; American Chemical Society: Washington, DC, 1981; p 159.

⁽³⁾ Trahanovsky, W. S.; Young, L. H.; Bierman, M. H. J. Org. Chem. 1969 34, 869

^{(4) (}a) Rigby, W. *J. Chem. Soc.* **1950**, 1907. (b) Uskokovic, M.; Gut, M.; Trachtenberg, E. N.; Klyne, W.; Dorfman, R. I. *J. Am. Chem. Soc.* **1960**, 82, 4965.

⁽⁵⁾ Tavares, D. F.; Borger, J. P. Can. J. Chem. 1966, 44, 1323.

⁽⁶⁾ Kanada, K.; Morimoto, K.; Imanaka, T. Chem. Lett. 1988, 1295.

^{(7) (}a) Veturello, C.; Ricci, M. J. Org. Chem. 1986, 51, 1599. (b) Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. J. Org. Chem. 1988, 53, 3587. (c) Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. Tetrahedron Lett. 1995, 36, 6293.

^{(8) (}a) Vries, G. D.; Schors, A. *Tetrahedron Lett.* **1968**, *9*, 5689. (b) Felthouse, T. R. *J. Am. Chem. Soc.* **1987**, *109*, 7566.

⁽⁹⁾ Okamoto, T.; Sakai, K.; Oka, S. J. Am. Chem. Soc. 1988, 110, 1187.

⁽¹⁰⁾ **General Procedure.** To a solution of Ru complex (2 mol %) in α,α,α -trifluorotoluene (5 mL) in a flask was added diol (1 mmol), and a balloon filled with O₂ (1 atm) was attached to the flask. The mixture was vigorously stirred at 60 °C for 15 h. After removal of catalyst by filtration, the solvent was evaporated under reduced pressure. Products were isolated by flash chromatography on silica gel (n-hexane/AcOEt = 2:1).

^{(11) (}a) Lenz, R.; Ley, S. T. *J. Chem. Soc., Perkin Trans 1* **1997**, 3291. (b) Marco, I. E.; Giles, P. R.; Tsukazaki, M.; Regnaut, I. C.; Urch, C. J.; Brown, S. M. *J. Am. Chem. Soc.* **1997**, *119*, 12661.

⁽¹²⁾ Hanyuu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1998, 39, 5557.

Table 1. Ruthenium-Catalyzed Aerobic Oxidation of 1,2-Octanediol^a

C ₆ H ₁₃ ′	OH Ru complex PhCF ₃ , 60 0 ₂ (1	°C, 15 h	0 O) 2 C ₆ H ₁₃ 3		
entry	Ru complex	Conversion (%)	Selectivit 2	y (%) 3		
1	TPAP	20	49	n.d.		
2	$Ru(PPh_3)_3Cl_2$	23	n.d.	48		
3	$Ru_3(CO)_{12}$	no reaction				
4	RuCl ₃ ·nH ₂ O	3.9	n.d.	42		
5	$RuO_2 \cdot H_2O$	no reaction				
6 ^{b, c}	$^{4wt.\%}$ Ru(PPh ₃) ₃ Cl ₂ /C _W	92(80)	77(75)	9.5(11)		
7^b	$^{4wt.\%}$ Ru(PPh ₃) ₃ Cl ₂ /C _{KB}	87	52	9.0		
8^b	$^{4wt.\%}$ Ru(PPh ₃) ₃ Cl ₂ /C _{KG}	47	77	3.9		
9^b	^{4wt.} [%] TPAP/C _W	43	74	n.d.		
a 1 (1 mmol) was allowed to react under 1 atm of O ₂ in the presence of Ru complex (2 mol%) in PhCF ₃ (5 mL) at 60 °C for 15 h.						
^b Activated carbons · C · Wako Pure Chemical Cyp · Kurare BP-25						

^b Activated carbons; C_w : Wako Pure Chemical, C_{KB} : Kurare BP-25, C_{KG} : Kurare coal GLC. ^c 10 mmol of 1 was used.

Hence, TPAP and Ru(PPh₃)₃Cl₂ which were effective to some extent for the cleavage of **1** to **2** were loaded on several active carbons. Among the supported catalysts examined, the best catalyst was Ru(PPh₃)₃Cl₂, loaded on the active carbon available from Wako Pure Chemical, Ru(PPh₃)₃Cl₂/C_w, ¹⁴ giving 77% selectivity of **2** in 92% conversion of **1** (entry 6). Use of TPAP/C_w catalyst resulted in **2** in relatively high selectivity, although the conversion was moderate (43%) (entry 9). Thus, the oxidation of **1** using the Ru(PPh₃)₃Cl₂/C_w catalyst under various conditions was examined. Aldehyde **2** was obtained in higher selectivity and conversion in

hydrophobic solvents (benzene, 55% selectivity in 73% conversion; toluene, 59% selectivity in 80% conversion; dichloroethane, 59% selectivity in 80% conversion) than those in hydrophilic solvents (THF, 39% selectivity in 56% conversion; acetonitrile: 14% selectivity in 19% conversion). When the amount of catalyst (1 mol %) was halved, the conversion of 1 was reduced to 64%, but the selectivity to 2 was almost the same as that using 2 mol % of catalyst. The reaction proceeded smoothly even at 50 °C to give 2 in satisfactory conversion of 1 (74%) and selectivity of 2 (72%).

On the basis of these results, a variety of vic-diols were allowed to react under 1 atm of O_2 using $Ru(PPh_3)_3Cl_2/C_W$ in $PhCF_3$ at 60 °C (Table 2).

1,2-Hexanediol and 1-phenyl-1,2-ethanediol were cleaved to pentanal and benzaldehyde in 65% and 92% selectivities at 97% and 92% conversions, respectively. In the same manner as terminal diols, internal *vic*-diols such as 4,5-octanediol were also cleaved to the corresponding aldehydes. From 4,5-octanediol, butanal and its acetal with 4,5-octanediol were obtained in 126% and 31% yields, respectively.

It is interesting to note that both cis- and trans-1,2-cyclooctanediols were successfully cleaved to 1,8-octanedial in high selectivities, although trans-1,2-cyclooctanediol was somewhat less reactive than the cis one. However, the oxidation of 1,2-cyclohexanediol under the same reaction conditions gave 1-formylcyclopentene. This shows that 1,2-cyclohexanediol is cleaved to 1,6-hexanedial which, however, undergoes easily the self-aldol condensation under these conditions to form 1-formylcyclopentene. 1,2-Cyclohexanediol is reported to be cleaved to dicarboxylic acid with O_2 by a heterogeneous Ru catalyst. The

In the aerobic oxidation of alcohols by a ruthenium complex, it is well-known that the oxidation proceeds via the formation of an alkoxy ruthenium complex¹⁵ and that the resulting ruthenium hydride is oxidized with O_2 to generate the original ruthenium complex and H_2O .⁹

Therefore, the present reaction seems to proceed through a similar six-membered transition state as shown in Scheme

Table 2. Oxidative Cleavage of Various vic-Diols with O₂ by Ru(PPh₃)₃Cl₂/C^a

entry	Diols	Conv. (%)	Selectivity (%)		
1	1,2-hexanediol	97	pentanal (65), 2,4-dibuthyldioxolane (14)		
2	1,2-octanediol	92	heptanal (77), 2,4-dihexyldioxolane (9.4)		
3	2,3-octanediol	100	hexanal (61), 2,4-dipentyl-5-methyldioxolane (15)		
4	4,5-octanediol	72	butanal (126), 2,4,5-tripropyldioxolane (31)		
5	1-phenyl 1,2-ethanediol	92	benzaldehyde (92)		
$6^{b,c}$	trans-1,2-cyclohexanediol	90	1-cyclopentenealdehyde (62), adipic acid (31)		
$7^{b,d}$	cis-1,2-cyclooctanediol	100	1,8-octanedial (76), suberic acid (25)		
8^b	trans-1,2-cyclooctanediol	91	1,8-octanedial (68), suberic acid (26)		
9^h	1,2-cyclododecanediol	98	1,12-dodecanedial (45), dodecanedioic acid (50)		
10°	1,2-benzenedimethanol	96	o-phthalaldehyde (2.2), phthalide (74)		
^a Diol (1 mmol) was reacted under 1 atm of O ₂ in the presence of 4 wt.% Ru(PPh ₃) ₃ Cl ₂ /C _W (480 mg) in PhCF ₃ at 60 °C for 15 h. ^b Catalyst					

(240 mg) was used with K_2CO_3 (5 mol%). c 95 °C. d 5 h. e 50 °C.

714 Org. Lett., Vol. 1, No. 5, 1999

Scheme 1

OH

$$OH$$
 OH
 OH

1. However, when *trans*-2-methoxy-1-cyclooctanol was allowed to react under these conditions, the oxidation occurred with difficulty to form 2-methoxy-1-cyclooctanone

in low yield. This fact shows that a six-membered transition state involving the ruthenium species is important to induce cleavage of *vic*-diols to aldehydes.

Acknowledgment. This work was partly supported by Research for the Future program JSPS.

Supporting Information Available: Experimental details and compound characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990117W

Org. Lett., Vol. 1, No. 5, 1999

⁽¹³⁾ Fujibayashi, S.; Nakayama, K.; Hamamoto, M.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. *J. Mol. Catal. A.; Chem.* **1996**, *110*, 105.

⁽¹⁴⁾ **Preparation of Ru(PPh₃)₃Cl₂/C.** To a solution of Ru(PPh₃)₃Cl₂ (0.4 g) in benzene (300 mL) was added active carbon (9.6 g). The mixture was stirred at room temperature for 2 h. After removal of the solvent, Ru(PPh₃)₃Cl₂/C catalyst was dried at room temperature in vacuo overnieht.

⁽¹⁵⁾ Wang, G. Z.; Andreasson, U.; Bäckvall, J. E. J. Chem. Soc., Chem. Commun. 1994, 1037.