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ABSTRACT: Nucleophilic organic base DABCO (1,4-diazabicyclo[2.2.2]octane)-mediated Meinwald rearrangement of various 

epoxides was investigated. 2-Aryl, alkenyl, and alkynylepoxides generate the corresponding methyl ketones chemospecifically in 

good to excellent yields. The current DABCO-mediated Meinwald rearrangement of epoxides features readily accessible starting 

materials, wide substrate scope, transition metal and acid-free environment, and chemospecificity in the isomerization of epoxides. 

Epoxides are readily available and important intermediates in 

organic synthesis.1 They undergo the nucleophilic ring-opening 

reactions to generate 2-hydroxyalkylated derivatives,1,2 the 

acid-catalyzed rearrangements to yield carbonyl compounds,1a 

and strong base-promoted isomerization to give rise to allylic 

alcohols.3 The isomerization of epoxides into carbonyl com-

pounds is well known as the Meinwald rearrangement or Mein-

wald reaction.4 The acid-catalyzed, including various protonic 

and Lewis acids, Meinwald rearrangements of epoxides have 

been widely investigated,5 in which terminal epoxides generate 

the corresponding aldehydes as sole or major products (Scheme 

1, a),6 companied with methyl ketones as byproducts in some 

cases,6d,6e while internal epoxides generally afford the corre-

sponding ketones with aldehydes as side products in certain re-

actions,7 especially for aryl epoxides.8 Occasionally, aldehydes 

are obtained as major products.9  To realize the isomerization of 

terminal epoxides into the corresponding methyl ketones (the 

inverse selectivity from that in the acid-catalyzed rearrange-

ments), some transition metal catalysts10 and Lewis acid-nucle-

ophilic metal systems with (transition) metal-organic ligand 

complexes have been designed and applied in the Meinwald re-

arrangement of terminal epoxides (Scheme 1, b).11 2-Al-

kylepoxides were converted into the desired methyl ketones 

chemospecifically in good yields. However, 2-arylepoxides 

generated the desired acetophenones with arylethanals as by-

products in most cases. The isomerization is very attractive in 

organic synthesis because it could be an alternative to Wacker 

oxidation by a two step epoxidation-Meinwald rearrangement 

sequence for Lewis acid-sensitive olefins and displace the se-

quence of methyl-Grignard reagent addition-alcohol oxidation 

after the combination with the Corey-Chaychovsky epoxidation 

for nonoxidation transformation of aldehydes into methyl ke-

tones. After carefully considering and analyzing the mechanism 

of the Meinwald rearrangement,1a,5 we designed an organic 

base-mediated Meinwald rearrangement. Nucleophilic tertiary 

or aromatic organic bases can serve as nucleophiles to open 

epoxides at their more electrophilic ring carbon atom (usually 

less substituted one)2 to generate zwitterionic intermediates, 

which undergo a 1,2-hydride-shift with loss of the organic base 

(similar to an intramolecular substitution) to afford the desired 

methyl ketones because the organic bases can work as leaving 

groups in the zwitterionic intermediates as well (Scheme 1, c). 

In continuation of our interest in the synthetic application of 

small heterocycles,12 herein, we present our nucleophilic or-

ganic base DABCO-mediated chemospecific Meinwald rear-

rangement of various nonalkyl terminal epoxides into the cor-

responding methyl ketones in good yields. The current strategy 

is a mild basic, metal-free, and chemospecific isomerization of 

nonalkyl terminal epoxides into methyl ketones. It is a good 

complement for the Meinwald rearrangement, especially for 

Lewis acid-nucleophilic metal systems. The current method can 

be applied in the acid-sensitive epoxides. 

 

Scheme 1. Rearrangement of terminal epoxides to carbonyl 

compounds. a) Lewis acid-catalyzed rearrangement; b) 

Costes and Kunz’s work; c) This work: Organic base-medi-

ated rearrangement. 

Page 1 of 9

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

 

To avoid the existence of a protonic acid and to extend the 

scope of substrates, we directly selected acid-sensitive 2-

styrylepoxide (1a) as a model substrate to react with tertiary or 

aromatic organic amine bases under thermal conditions. 

Stoichiometric amount of organic amines can rule out the 

possible involvement of a trace amount of acid from silica 

borate glassware’s residue acidic sites. We started our optimi-

zation with 2-styrylepoxide (1a) and two representative tertiary 

organic bases TEA (triethylamine) and DABCO (1,4-diazabi-

cyclo[2.2.2]octane). When 2-styrylepoxide (1a) and 2 equiva-

lents of TEA were stirred in anhydrous toluene at 40 C, 80 C, 

and 100 C for 12 hrs, no reaction occurred (Table 1, entries 1, 

3 and 5). However, the reaction of 2-styrylepoxide (1a) and 2 

equivalents of DABCO produced the desired product 4-phenyl-

but-3-en-2one (2a) in 58% and 65% yields, respectively, at 80 

C and 100 C for 12 hrs (Table 1, entries 4 and 6). The yield 

was further improved to 80% when 2-styrylepoxide (1a) and 

DABCO were stirred in anhydrous mesitylene (Me3C6H3) at 

130 C for 12 hrs (Table 1, entry 8). However, triethylamine 

was still not efficient at 130 C (Table 1, entry 7). Furthermore, 

a number of organic amine bases, including pyridine (Py), 2-

chloropyridine (2-ClPy), 4-methylpyridine (4-MePy), 2,6-di-

methylpyridine (2,6-Me2Py), 4-(dimethylamino)pyridine 

(DMAP), N-methylimidazole (N-MeIm), N-ethyl-N-iso-

propylpropan-2-amine (DIPEA), 4-methylmorpholine, mor-

pholine, and hexamethylenetetramine (HMTA), was screened, 

only the reaction with DMAP as a base produced product 2a in 

8% yield (Table 1, entries 9-18). Strong organic nucleophile 

PPh3 was test. However, it was inefficient (Table 1, entry 19). 

The results indicate that DABCO is an efficient base for the 

isomerization due to its strong nucleophilicity. According to the 

nucleophilicity scale described by Mayr and coworkers,13 

DABCO is a much more potent nucleophile than other organic 

amines tested. This could explain its exceptional performance 

in this reaction. Solvent evaluation revealed that mesitylene was 

the best choice (Table 1, entries 8, 20, and 21). Lengthening the 

time to 24 h had a positive influence on the yield, the product 

2a was isolated in an excellent yield of 91% (Table 1, entry 22) 

(Method A). Decreasing the amount of DABCO to 1.5 to 1.0 to 

0.5 equivalents gave lower yields of 79%, 63%, and 47%, re-

spectively (Table 1, entries 23-25). Raising the reaction temper-

ature to 165 C (refluxing conditions) resulted in a slightly de-

creased yield (Table 1, entry 26).  

Table 1. Optimization of base-mediated reaction conditionsa 

 

Entry Base. 
Base 

equiv. 

Solvent Time 

h 

Yieldb 

% 

1 TEA 2 Toluene 12 NRc 

2 DABCO 2 Toluene 12 NRc 

3 TEA 2 Toluene 12 NRd 

4 DABCO 2 Toluene 12 58d 

5 TEA 2 Toluene 12 NRe 

6 DABCO 2 Toluene 12 65e 

7 TEA 2 Me3C6H3 12 NR 

8 DABCO 2 Me3C6H3 12 80 

9 Py 2 Me3C6H3 12 NR 

10 2-ClPy 2 Me3C6H3 12 NR 

11 4-MePy 2 Me3C6H3 12 NR 

12 2,6-Me2Py 2 Me3C6H3 12 NR 

13 DMAP 2  12 8  

14 N-MeIm 2 Me3C6H3 12 NR 

15 DIPEA 2 Me3C6H3 12 NR 

16 4-Memor-

pholine 

2 Me3C6H3 12 NR 

17 Morpholine 2 Me3C6H3 12 NR 

18 HMTA 2 Me3C6H3 12 NR 

19 PPh3 2 Me3C6H3 12 NR 

20 DABCO 2 ClC6H5 12 59 

21 DABCO 2 DMSO 12 Mess 

22 DABCO 2 Me3C6H3 24 91  

23 DABCO 1.5 Me3C6H3 24 79  

24 DABCO 1 Me3C6H3 24 63  

25 DABCO 0.5 Me3C6H3 24 47  

26 DABCO 2 Me3C6H3 24 86f 

a Unless otherwise specified, reactions were performed on a 0.5 

mmol scale at 130 C. b Isolated yield. c Reaction was conducted 
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at 40 C.  d Reaction was conducted at 80 C.  e Reaction was 

conducted at 100 °C. f Reaction was conducted at 165 C. 

 

Table 2. Optimization of the Lewis acid-catalyzed base-medi-

ated reaction conditionsa 

 

Entry Catalyst (equiv.) T (C) Yield (%)b 

1 - 80 58 

2 MgSO4 (0.2) 80 58 

3 Mg(ClO4)2 (0.2) 80 67 

4 MgI2 (0.2) 80 68 

5 LiOAc.2H2O (0.2) 80 52 

6 LiCl (0.2) 80 49 

7 LiBr (0.2) 80 51 

8 SnCl2
.2H2O (0.2) 80 67 

9 Sc(OTf)3 (0.2) 80 59 

10 MnSO4H2O (0.2) 80 67 

11 AgOAc (0.2) 80 33 

12 AgNO3 (0.2) 80 38 

13 FeCl2
.7H2O (0.2) 80 56 

14 FeCl3 (0.2) 80 56 

15 Fe(NO3) .9H2O (0.2) 80 0 

16 CoCl2
.2H2O (0.2) 80 52 

17 CeCl37H2O (0.2) 80 73 

18 CuSO4
.5H2O (0.2) 80 46 

19 CuBr (0.2) 80 53 

20 Cu(OAc)2 (0.2) 80 55 

21 Cu(SO4)2 ( 0.2) 80 64 

22 Cu(OTf)2 (0.2) 80 49 

23 CuBr2 (0.2) 80 79 

24 CuCl22H2O (0.2) 80 78 

25 CuCl22H2O (0.1) 80 71 

26 CuCl22H2O (0.3) 80 74 

27 CuCl22H2O (0.2) 90 58 

28 CuCl22H2O (0.2) 70 45 

29 CuCl22H2O (0.2) 80 59c 

30 CuCl22H2O (0.2) 80 84d 

31 CuCl22H2O (0.2) 80 0e,f 

32 TsOHH2O (0.2) 80 messe 

  a Unless otherwise specified, 2 equiv of DABCO . b Isolated 

yields; c 1.5 equiv of DABCO; d 3 equiv of DABCO. e Without 

DABCO. f PhCH2CH=CHCHO generated in a trace amount. 

 

Considering that the reaction temperature of 130 C is 

somewhat high for certain thermally unstable epoxides in pos-

sible synthetic applications, and the fact that our DABCO-

mediated rearrangement works at 80 C with a relatively low 

yield (Table 1, entry 4), we hope to decrease the reaction tem-

perature with the assistance of Lewis acids to activate the epox-

ides. We evaluated many weak acidic Lewis acids as catalysts 

for the DABCO-mediated reaction at 80 C, including MgSO4, 

Mg(ClO4)2, MgI2, LiOAc·2H2O, LiCl, LiBr, SnCl2·2H2O, 

Sc(OTf)3, MnSO4·H2O, AgOAc, AgNO3, FeCl2·7H2O, FeCl3, 

Fe(NO3)3·9H2O, CoCl2·2H2O, CeCl3·7H2O, CuSO4·5H2O, 

CuBr, Cu(OAc)2, Cu(SO4)2, Cu(OTf)2, CuBr2, and CuCl2·2H2O 

(Table 2). After all these attempts, Mg(ClO4)2, MgI2, 

SnCl2·2H2O, MnSO4·H2O, CeCl3·7H2O, Cu(SO4)2, CuBr, and 

CuCl22H2O can improve the yield (Table 2, entries 3, 4, 8, 10, 

17, 21, 23, and 24). The others decreased the yield possibly due 

to strong conjunction between the Lewis acids and base 

DABCO. The conjunction not only quenched the Lewis acid, 

but also decreased the amount of free DABCO, resulting in the 

decrease of the yield. CuCl2·2H2O was chosen as the best cata-

lyst due to its cheaper price. Both increasing and decreasing re-

action temperatures resulted in loss of the yield (Table 2, entries 

27 and 28). Adjusting the amount of DABCO to 3 equivalents 

and CuCl2·2H2O to 0.2 equivalent gave the best yield of 84% 

(Table 2, entry 30) (Method B). The representative Lewis and 

protonic acid-catalyzed conditions were evaluated as well. 

However, no reaction was observed (Table 2, entries 31 and 32).  

With the optimal conditions (Method A) in hand, 

substituted 2-styrylepoxides 1b−1e were treated with DABCO 

in mesitylene at 130 C, the corresponding methyl ketones 

2b−2e were isolated as sole products in good to excellent yields 

with chemospecificity (Table 3, entries 2-5, Method A). To 

extend the scope of substrates, 2-arylepoxides 1f−1o with both 

electron-donating and electron-withdrawing substituents, as 

well as 2-heteroarylepoxides 1p and 1q, were subjected to the 

rection conditions, affording the desired products in satisfactory 

to excellent yields (Table 3, entries 6-17, Method A). The 

results indicates that 2-arylepoxides with electron-withdrawing 

substituents generally gave the corresponding methyl ketones 

in higher yields that those with electron-donating substituents 

possibly because the electron-deficient aryls are favorable to 

stabilize the generated alkoxide anions in the reactions (Scheme 

1, c). The reaction was further extended to 2-alkynylepoxide 1r, 

affording the desired methyl alkynyl ketone 2p in 42% yield 

(Table 3, entry 18). However, alkyl substituted terminal 

epoxides 2-butylepoxide (1s) and 2-dodecylepoxide (1t) 

showed no reactivity under the reaction conditions (Table 3, 

enmtries 19 and 20). 

The Lewis acid-catalyzed conditions were applied in the 

isomerization reactions of epoxides 1a-1t at 80 C, the corre-

sponding methyl ketones 2a-2r were obtained in comparable 

yields except for 1s and 1t (Table 3, Method B). Even under the 

Lewis acid catalysis conditions, they did not work either. 

 

Table 3. Scope of epoxides 

 

Entry Substrate Product Yielda in Method  

(%) 

Ab Bc 

1 

1a 
2a 

91 85 
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2 

1b 2b 

69 90 

3 

1c 2c 

74 75 

4 

1d 
2d 

66 65 

5 

1e 
2e 

73 39 

6 

1f 
2f 

70 58 

7 

1g 2g 

94 95 

8 

1h 2h 

75 56 

9 

1i 2i 

95 99 

10 

1j 2j 

89 84 

11 

1k 2k 

56 13 

12 

1l 2l 

41 33 

13 

1m 2m 

50 48 

14 

1n 2n 

71 49 

15 

1o 2o 

90 95 

16 

1p 2p 

96 92 

17 
1q 2q 

84 53 

18 

1r 
2r 

42 31 

19 
1s 

2s 

0 0 

20 

1t 2t 

0 0 

aYields are isolated yields. bMethod A: 1 (0.5 mmol) and 

DABCO (112 mg, 1 mmol) in 2 mL of mesitylene were stirred 

at 130 C for 24 hrs. cMethod B: 1 (0.5 mmol), DABCO (112 

mg, 1 mmol), and CuCl2
.2H2O (17 mg, 0.1 mmol) in 2 mL of 

toluene were stirred at 80 C for 24 hrs.  

 

Gram-scale preparations of methyl ketones 2a and 2f were 

realized in 82% and 63% isolated yields, respectively (Scheme 

2). 

 

Scheme 2. Meinwald Rearrangement of Epoxides into Methyl 

Ketones in Gram-Scale Reactions 

 

 

     In conclusion, we have realized nucleophilic organic base 

DABCO-mediated Meinwald rearrangement of monosubsti-

tuted nonalkylepoxides under thermal conditions, specifically 

affording methyl ketone products. Most Lewis acids can cata-

lyze the rearrangement at relatively low temperature, while 

CeCl37H2O, CuBr2, and CuCl2·2H2O are efficient ones. Com-

pared with previously reported Meinwald rearrangements, 

DABCO-mediated rearrangement can be metal-free, acid-free, 

specific, and suitable for monosubstituted nonalkylepoxides. 

Our current strategy can be taken as a complementary method 

for the acid-catalyzed isomerization of epoxides. 

EXPERIMENTAL SECTION 

General Information. Unless otherwise noted, all materials 

were purchased from commercial suppliers. Reactions were 

conducted in base-washed and flame-dried glassware under ni-

trogen atmosphere. Mesitylene was refluxed with sodium/ben-

zophenone, and freshly distilled prior to use. Flash column 

chromatography was performed using silica gel (normal phase, 

200300 mesh) from Qingdao Haiyang Chemical. Petroleum 

ether used for column chromatography was 6090 C fraction, 

and the removal of residue solvent was accomplished under ro-

tovap with repeated azeotrope with chloroform, and then evap-

oration under vacuum (< 1 mmHg pressure). Reactions were 

monitored by thin-layer chromatography on silica gel 60-F254 

coated 0.2 mm plates from Yantai Chemical Industry Institute. 

The plates were visualized under UV light, as well as other TLC 

stains (phosphomolybdic acid: 10% in ethanol; potassium per-

manganate: 1% in water; iodine: 10 g iodine absorbed on 30g 

silica gel). 1H and 13C NMR spectra were recorded on a Bruker 

400 MHz spectrometer, usually in CDCl3 with TMS as an inter-

nal standard, and the chemical shifts (δ) were reported in parts 

per million (ppm). IR spectra (KBr pellets, v (cm−1)) were taken 

on an FT-IR spectrometer. The high-resolution mass spectra 

were obtained under ESI ionization using an LC/MSD TOF 

mass spectrometer. 
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General procedure for the DABCO-mediated Meinwald 

rearrangement of epoxides 1. Method A. Epoxide 1 (0.5 mmol) 

was dissolved in 2 mL of mesitylene in a 10 mL reaction tube. 

DABCO (112 mg, 1.0 mmol) was added at room temperature, 

and then the reaction mixture was heated at 130 C for 24 h. 

After cooling to room temperature, the reaction mixture was di-

rectly subjected to flash column chromatography with ethyl ac-

etate/petroleum ether (1:50, v/v) to afford product 2. 

Method B. Epoxide 1 (0.5 mmol) was dissolved with 2 mL of 

toluene in a 10 mL reaction tube. DABCO (112 mg, 1.5 mmol) 

and CuCl22H2O (17 mg, 0.1 mmol) were added at room tem-

perature, and then the reaction mixture was heated at 80 C for 

24 h. After cooling to room temperature, the reaction mixture 

was directly subjected to flash column chromatography with 

ethyl acetate/ petroleum ether (1:50, v/v) to afford product 2. 

(E)-4-Phenylbut-3-en-2-one (2a).14 Purified by flash column 

chromatography (PE/EA 100:1, v/v) on silica gel to give the de-

sired product as red-brown oil, method A: 133 mg, 91% yield 

(from 1.0 mmol 1a), method B: 62 mg, 85% yield (from 0.5 

mmol 1a). Rf = 0.30, 5% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.57 – 7.47 (m, 3H), 7.42 – 7.35 (m, 

3H), 6.71 (d, J = 16.3 Hz, 1H), 2.37 (s, 3H). 13C{1H} NMR (101 

MHz, CDCl3) δ 198.3, 143.4, 134.4, 130.5, 128.9, 128.2, 127.1, 

27.5. 

(E)-4-(4-Chlorophenyl)but-3-en-2-one (2b).14 Purified by 

flash column chromatography (PE/EA 50:1, v/v) on silica gel to 

give the desired product as yellow oil, method A: 125 mg, 69% 

yield (from 1.0 mmol 1b), method B: 81 mg, 90% yield (from 

0.5 mmol 1b). Rf = 0.25, 5% ethyl acetate in petroleum ether. 
1H NMR (400 MHz, CDCl3) δ 7.50 – 7.43 (m, 3H), 7.40 – 7.35 

(m, 2H), 6.69 (d, J = 16.3 Hz, 1H), 2.38 (s, 3H). 13C{1H} NMR 

(101 MHz, CDCl3) δ 198.0, 141.8, 136.4, 132.9, 129.3, 129.2, 

127.4, 27.6.  

(E)-4-(2-Methoxyphenyl)but-3-en-2-one (2c).14 Purified by 

flash column chromatography (PE/EA 50:1, v/v) on silica gel to 

give the desired product as yellow oil, method A: 104 mg, 74% 

yield (from 0.80 mmol 1c), method B: 40 mg, 75% yield (from 

0.3 mmol 1c). Rf = 0.20, 5% ethyl acetate in petroleum ether. 
1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 16.4 Hz, 1H), 7.54 

(dd, J = 7.6, 0.8 Hz, 1H), 7.39 – 7.35 (m, 1H), 6.97 (dd, J = 7.6, 

7.6 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.75 (d, J = 16.8 Hz, 1H), 

3.90 (s, 3H), 2.39 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 

199.1, 158.3, 138.7, 131.8, 128.3, 127.8, 123.4, 120.8, 111.1, 

55.5, 27.1. 

(E)-3-Methyl-4-phenylbut-3-en-2-one (2d).15 Purified by 

flash column chromatography (PE/EA 50:1, v/v) on silica gel to 

give the desired product as colorless oil, method A: 106 mg, 66% 

yield (from 1.0 mmol 1d), method B: 31 mg, 65% yield (from 

0.3 mmol 1d). Rf = 0.28, 5% ethyl acetate in petroleum ether. 
1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 1.2 Hz, 1H), 7.45-

7.40 (m, 4H), 7.36 – 7.32 (m, 1H), 2.47 (s, 3H), 2.06 (d, J = 1.2 

Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 200.3, 139.6, 

137.8, 135.9, 129.7, 128.5, 128.4, 25.8, 12.9. 

(E)-3-Benzylideneoctan-2-one (2e).15 Purified by flash col-

umn chromatography (PE/EA 50:1, v/v) on silica gel to give the 

desired product as yellow oil, method A: 129 mg, 73% yield 

(from 0.82 mmol 1e), method B: 42 mg, 39% yield (from 0.5 

mmol 1e). Rf = 0.18, 5% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.50 – 7.29 (m, 6H), 2.52 – 2.45 (m, 

2H), 2.44 (s, 3H), 1.50 – 1.40 (m, 2H), 1.40 – 1.10 (m, 4H), 

0.92-0.84 (m, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 200.3, 

137.3, 134.3, 130.6, 128.6, 128.2, 126.7, 52.0, 31.7, 31.7, 27.5, 

22.4, 14.0. 

1-Phenylethan-1-one (2f).16 Purified by flash column chro-

matography (PE/EA 50:1, v/v) on silica gel to give the desired 

product as colorless oil, method A: 70 mg, 70% yield (from 0.83 

mmol 1f), method B: 70 mg, 58% yield (from 0.5 mmol 1f). Rf 

= 0.27, 5% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 8.02 – 7.92 (m, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 (dd, 

J = 7.6 7.6, Hz, 2H), 2.61 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 198.1, 137.0, 133.0, 128.5, 128.2, 26.5. 

1-(4-Chlorophenyl)ethan-1-one (2g).17 Purified by flash col-

umn chromatography (PE/EA 50:1, v/v) on silica gel to give the 

desired product as colorless oil, method A: 145 mg, 94% yield 

(from 1.0 mmol 1g), method B: 73 mg, 95% yield (from 0.5 

mmol 1g).  Rf = 0.38, 5% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.8 Hz, 2H), 7.38 (d, J 

= 8.4 Hz, 2H), 2.59 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) 

δ 196.8, 139.5, 135.4, 129.7, 128.8, 26.5. 

1-(4-Bromophenyl)ethan-1-one (2h).18 Purified by flash col-

umn chromatography (PE/EA 50:1, v/v) on silica gel to give the 

desired product as white solid, method A: 75 mg, 75% yield. 

(from 0.5 mmol 1h), method B: 56 mg, 56% yield (from 0.5 

mmol 1h). M.p. 57–58 C (Lit.19 M.p. 52−53 C). Rf = 0.30, 

6.67% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.82 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 2.59 

(s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 197.0, 135.8, 131.9, 

129.8, 128.3, 26.5.  

4-Acetylbenzonitrile (2i).20 Purified by flash column chroma-

tography (PE/EA 50:1, v/v) on silica gel to give the desired 

product as white solid, method A: 69 mg, 95% yield (from 0.5 

mmol 2i), method B: 45 mg, 99% yield (from 0.3 mmol 1i). M.p. 

60–63 C (Lit.21 M.p. 59−60 C). Rf = 0.14, 10% ethyl acetate 

in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 

8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 2.66 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 196.4, 139.8, 132.4, 128.6, 117.8, 

116.3, 26.7. 

1-(4-(Trifluoromethyl)phenyl)ethan-1-one (2j).20 Purified 

by flash column chromatography (PE/EA 50:1, v/v) on silica gel 

to give the desired product as yellow liquid, method A:  85 mg, 

89% yield (from 0.5 mmol 1j), method B: 47 mg, 84% yield 

(from 0.3 mmol 1j). Rf = 0.46, 6.67% ethyl acetate in petroleum 

ether. 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.0 Hz, 2H), 

7.72 (d, J = 7.9 Hz, 2H), 2.63 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 196.9, 139.6, 134.4 (q, JC-F = 32.6 Hz), 128.6, 125.6 

(q, JC-F = 3.8 Hz), 123.6 (q, JC-F = 272.8 Hz), 26.7. 19F NMR 

(377 MHz, CDCl3) δ -63.14. 

1-(4-Methoxyphenyl)ethan-1-one (2k).22 Purified by flash 

column chromatography (PE/EA 50:1, v/v) on silica gel to give 

the desired product as colorless oil, method A: 84 mg, 56 % 

yield (from 1.0 mmol 1k), method B: 10 mg, 13% yield (from 

0.5 mmol 1k). Rf = 0.18, 6.67% ethyl acetate in petroleum ether. 
1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.8 Hz, 2H), 6.93 (d, 

J = 8.8 Hz, 2H), 3.87 (s, 3H), 2.56 (s, 3H). 13C{1H} NMR (101 

MHz, CDCl3) δ 196.8, 163.5, 130.6, 130.3, 113.7, 55.5, 26.3. 

1-(4-Methylphenyl)ethan-1-one (2l).20 Purified by flash col-

umn chromatography (PE/EA 50:1, v/v) on silica gel to give the 

desired product as yellow liquid, method A: 41 mg, 41% yield 

(from 0.75 mmol 1l), method B: 13 mg, 33% yield (from 0.3 

mmol 1l). Rf = 0.37, 6.67% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.1 Hz, 2H), 7.26 (d, J 
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= 7.9 Hz, 2H), 2.58 (s, 3H), 2.41 (s, 3H). 13C{1H} NMR (101 

MHz, CDCl3) δ 197.8, 143.9, 134.7, 129.2, 128.4, 26.5, 21.6.  

1-([1,1'-Biphenyl]-4-yl)ethan-1-one (2m).23 Purified by 

flash column chromatography (PE/EA 50:1, v/v) on silica gel to 

give the desired product as yellow solid, method A: 50 mg, 50% 

yield (from 0.5 mmol 1m), method B: 47 mg, 48% yield (from 

0.5 mmol 1m). M.p. 125–128 C (Lit.24 M.p. 123−124 C). Rf 

= 0.46, 10% ethyl acetate in petroleum ether. 1H NMR (400 

MHz, CDCl3) δ 8.06 – 8.01 (m, 2H), 7.71 – 7.67 (m, 2H), 7.65 

– 7.61 (m, 2H), 7.50 – 7.44 (m, 2H), 7.42 –7.39 (m, 1H), 2.64 

(s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 197.7, 145.8, 139.9, 

135.8, 128.9, 128.9, 128.2, 127.3, 127.2, 26.7. 

1-(4-Methylthiophenyl)ethan-1-one (2n).25 Purified by flash 

column chromatography (PE/EA 50:1, v/v) on silica gel to give 

the desired product as white solid, method A: 60 mg, 71% yield 

(from 0.5 mmol 1n), method B: 41 mg, 49% yield (from 0.5 

mmol 1n). M.p. 82–84 C (Lit.25 M.p. 80.6−81.4 C). Rf = 0.44, 

20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.86 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 2.56 

(s, 3H), 2.52 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 197.1, 

145.8, 133.4, 128.7, 124.9, 26.4, 14.7. 

1-(Naphthalen-2-yl)ethan-1-one (2o).20 Purified by flash 

column chromatography (PE/EA 50:1, v/v) on silica gel to give 

the desired product as yellow oil, method A: 90 mg, 91% yield 

(from 0.6 mmol 1o), method B: 81 mg, 95% yield (from 0.5 

mmol 1o). Rf = 0.29, 5% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 8.51 – 8.42 (m, 1H), 8.06 – 7.80 (m, 

4H), 7.65 – 7.48 (m, 2H). 2.72 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 198.0, 135.6, 134.5, 132.5, 130.1, 129.5, 128.4, 128.4, 

127.7, 126.7, 123.9, 26.6.  

1-(Pyridin-4-yl)ethan-1-one (2p).23 Purified by flash column 

chromatography (PE/EA 2:1, v/v) on silica gel to give the de-

sired product as colorless liquid, method A: 48 mg, 96% yield 

(from 0.4 mmol 1p), method B: 55 mg, 92% yield (from 0.5 

mmol 1p). Rf = 0.22, 50% ethyl acetate in petroleum eth. 1H 

NMR (400 MHz, CDCl3) δ 8.83 – 8.73 (m, 2H), 8.00 – 7.41 (m, 

2H), 2.60 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 197.2, 

150.9, 142.7, 121.1, 26.6. 

1-(Thiophen-2-yl)ethan-1-one (2q).20 Purified by flash col-

umn chromatography (PE/EA 20:1, v/v) on silica gel to give the 

desired product as yellow liquid, method A: 53 mg, 84% yield 

(from 0.5 mmol 1q), method B: 33 mg, 53% yield (from 0.5 

mmol 1q). Rf = 0.50, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.70 (dd, J = 3.7, 1.2 Hz, 1H), 7.64 

(dd, J = 4.9, 1.2 Hz, 1H), 7.13 (dd, J = 5.0, 3.7 Hz, 1H), 2.57 (s, 

3H). 13C{1H} NMR (101 MHz, CDCl3) δ 190.7, 144.6, 133.7, 

132.4, 128.1, 26.9. 

4-Phenylbut-3-yn-2-one (2r).26 Purified by flash column 

chromatography (PE/EA 50:1, v/v) on silica gel to give the de-

sired product as colorless oil, method A: 30 mg, 42% yield 

(from 0.5 mmol 1r), method B: 28 mg, 31% % (from 0.5 mmol 

1r). Rf = 0.60, 20% ethyl acetate in petroleum ether. 1H NMR 

(400 MHz, CDCl3) δ 7.58 (d, J = 7.1 Hz, 2H), 7.46 (dd, J = 7.4, 

7.1 Hz, 1H), 7.39 (dd, J = 7.4, 7.1 Hz, 2H), 2.46 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 184.6, 133.0, 130.7, 128.6, 119.9, 

90.3, 88.3, 32.7. 

 

General procedure for the synthesis of epoxides 1. 

Styrylepoxides 1a-1e and arylepoxides 1g-1q were prepared 

from trimethylsulfonium iodide with the corresponding cin-

namaldehydes and aromatic aldehydes using Johnson-Corey-

Chaykovsky reaction.27 Sodium hydride (0.9 g, 22.5 mmol, 60% 

mineral oil dispersion) was washed with petroleum ether (3  5 

mL). The residual petroleum ether was removed under vacuum. 

Under atmosphere of nitrogen, dry THF (15 mL) and dry 

DMSO (15 mL) were added and the reaction mixture was 

cooled in an ice bath. A solution of trimethylsulfonium iodide 

(3.67 g, 18 mmol) in DMSO (4 mL) was added. After addition, 

cinnamyl aldehyde (1.98 g, 15 mmol) was added in one portion. 

The reaction mixture was stirred at 0 C for 30 min and at room 

temperature for an additional 12 h. The reaction mixture was 

slowly quenched with a mixture of water and ice (20 mL) and 

extracted with methylene chloride (3  10 mL). The combined 

organic extracts were washed with brine (2  30 mL), dried over 

sodium sulfate, filtered. The reaction mixture was directly sub-

jected to flash column chromatography with ethyl acetate/pe-

troleum ether (1:25, v/v) to give (E)-2-styryloxirane (1a) 

2-(Phenylethynyl)oxirane (1r) was prepared from but-3-en-

1-yn-1-ylbenzene using the m-CPBA epoxidation reaction.28 To 

a solution of but-3-en-1-yn-1-ylbenzene (640 mg, 5.0 mmol) in 

DCM (20 mL) in a 100 mL flask was added m-CPBA (1.5 g, 

7.5 mmol, 85%) and Na2HPO4·12H2O (2.15 g, 6 mmol) at 0 C. 

The reaction mixture was allowed to stir at room temperature 

overnight. The solution was then washed with NaHCO3 aq (20 

mL), and dried over Na2SO4. After evaporation of the solvent, 

the crude product was purified on silica gel column chromatog-

raphy with a mixture of petroleum ether/EtOAc (20:1, v/v) to 

afford the desired epoxide 1r. 

All prepared epoxides except 1e are known compounds with 

the same analytical data as reported ones. Epoxides 1f, 1s, and 

1t are commercially available. 

(E)-2-Styryloxirane (1a)29 Yellow liquid, 1.23 g, 56% yield. 

Rf = 0.68, 20% ethyl acetate in petroleum ether. 1H NMR (400 

MHz, CDCl3) δ 7.44 – 7.40 (m, 2H), 7.36 (t, J = 7.4 Hz, 2H), 

7.33 – 7.27 (m, 1H), 6.85 (d, J = 16.0 Hz, 1H), 5.92 (dd, J = 

16.0, 8.0 Hz, 1H), 3.64 – 3.45 (m, 1H), 3.09 (dd, J = 5.0, 4.2 Hz, 

1H), 2.81 (dd, J = 5.1, 2.6 Hz, 1H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 136.1, 134.5, 128.6, 128.0, 126.9, 126.4, 52.5, 49.1. 

(E)-2-(4-Chlorostyryl)oxirane (1b).29 Yellow liquid, 0.53 g, 

59% yield. Rf = 0.65, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.45 – 7.19 (m, 4H), 6.76 (d, J = 

16.0 Hz, 1H), 5.86 (dd, J = 16.0, 7.9 Hz, 1H), 3.63 – 3.38 (m, 

1H), 3.06 (dd, J = 4.8, 4.6 Hz, 1H), 2.77 (dd, J = 5.0, 2.4 Hz, 

1H). 13C NMR (101 MHz, CDCl3) δ 134.6, 133.7, 133.2, 128.8, 

127.7, 127.6, 52.4, 49.2 

(E)-2-(2-Methoxystyryl)oxirane (1c)30 Yellow oil, 483 mg, 

55% yield. Rf = 0.72, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.31 (d, J = 7.6 Hz, 1H), 7.16 –7.14 

(m, 1H), 7.05 (d, J = 16.1 Hz, 1H), 6.86 – 6.75 (m, 2H), 5.80 

(dd, J = 16.1, 8.2 Hz, 1H), 3.75 (s, 3H), 3.53 – 3.29 (m, 1H), 

2.95 (dd, J= 5.1, 4.6 Hz, 1H), 2.67 (dd, J = 5.1, 2.6 Hz, 1H). 
13C{1H} NMR (101 MHz, CDCl3) δ 156.6, 129.6, 129.0, 127.6, 

127.0, 125.1, 120.6, 110.8, 55.3, 53.1, 49.1. 

(E)-2-(1-Phenylprop-1-en-2-yl)oxirane (1d)29 Colorless oil, 

1.552 g, 97% yield. Rf = 0.5, 10% ethyl acetate in petroleum 

ether. 1H NMR (400 MHz, CDCl3) δ 7.37 – 7.27 (m, 4H), 7.26 

– 7.20 (m, 1H), 6.67 (s, 1H), 3.52 – 3.47 (m, 1H), 2.94 (dd, J = 

5.0, 4.6 Hz, 1H), 2.81 (dd, J = 5.0, 2.6 Hz, 1H), 1.74 (s, 1H). 

13C{1H} NMR (101 MHz, CDCl3) δ 137.1, 134.0, 128.9, 128.8, 

128.2, 126.7, 56.1, 46.8, 11.8. 

(E)-2-(1-Phenylhept-1-en-2-yl)oxirane (1e) Colorless oil, 

2.086 g, 97% yield. Rf = 0.58, 10% ethyl acetate in petroleum 
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ether. 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.30 (m, 2H), 7.28 

– 7.18 (m, 3H), 6.56 (s, 1H), 3.58 – 3.30 (m, 1H), 2.96 (dd, J = 

5.6, 4.1 Hz, 1H), 2.69 (dd, J = 5.6, 2.7 Hz, 1H), 2.26 (ddd, J = 

13.6, 10.8, 5.6 Hz, 1H), 2.14 (ddd, J = 13.6, 10.7, 5.4 Hz, 

1H).1.60 – 1.52 (m, 1H), 1.51 – 1.41 (m, 1H), 1.32 – 1.27 (m, 

4H), 0.89 – 0.86 m, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 

138.8, 137.1, 128.6, 128.2, 126.6, 126.3, 54.7, 48.8, 32.0, 28.8, 

27.8, 22.4, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ calcd for 

C15H21O
+ 217.1587, found 217.1584. 

2-(4-Chlorophenyl)oxirane (1g)12h Colorless oil, 262 mg, 32% 

yield. Rf = 0.5, 20% ethyl acetate in petroleum ether. 1H NMR 

(400 MHz, CDCl3) δ 7.30 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 

Hz, 2H), 3.85–3.79 (m, 1H), 3.13 (t, J = 4.7 Hz, 1H), 2.74 (dd, 

J = 5.0, 2.1 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 136.1, 

133.9, 128.7, 126.8, 51.7, 51.2.  

2-(4-Bromophenyl)oxirane(1h)12h Colorless oil, 600 mg, 60% 

yield. Rf = 0.43, 20% ethyl acetate in petroleum ether. 1H NMR 

(400 MHz, CDCl3) δ 7.47 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 8.4 

Hz, 2H), 3.82 (dd, J = 3.9, 2.6 Hz, 1H), 3.14 (dd, J = 5.4, 4.1 

Hz, 1H), 2.75 (dd, J = 5.5, 2.5 Hz, 1H). 13C{1H} NMR (101 

MHz, CDCl3) δ 136.7, 131.6, 127.1, 122.0, 51.8, 51.2. 

4-(Oxiran-2-yl)benzonitrile(1i)32 Colorless liquid, 320 mg, 

44% yield. Rf = 0.28, 10% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.3 Hz, 2H), 7.39 (d, J 

= 8.3 Hz, 2H), 3.91 (dd, J = 4.1, 2.5 Hz, 1H), 3.21 (dd, J = 5.5, 

4.1 Hz, 1H), 2.76 (dd, J = 5.5, 2.5 Hz, 1H). 13C{1H} NMR (101 

MHz, CDCl3) δ 143.2, 132.3, 126.1, 118.6, 111.9, 51.6, 51.5. 

2-(4-(Trifluoromethyl)phenyl)oxirane(1j)11c: Colorless liq-

uid, 0.456 g, 48% yield. Rf = 0.56, 10% ethyl acetate in petro-

leum ether.1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.4 Hz, 

2H), 7.39 (d, J = 8.0 Hz, 2H), 3.91 (dd, J = 4.1, 2.5 Hz, 1H), 

3.18 (dd, J = 5.5, 4.1 Hz, 1H), 2.77 (dd, J = 5.5, 2.5 Hz, 1H). 

13C{1H} NMR (101 MHz, CDCl3) δ 141.8, 130.34 (q, JC-F = 

32.5 Hz), 125.7, 125.4 (q, JC-F = 4.0 Hz), 124.0 (q, JC-F = 266.6 

Hz), 51.7, 51.4. 19F NMR (377 MHz, CDCl3) δ -62.60.  

2-(4-Methoxyphenyl)oxirane (1k)33 Colorless liquid, 1.04 g, 

77% yield. Rf = 0.83, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.20 (d, J = 8.6 Hz, 2H), 6.88 (d, J 

= 8.6 Hz, 2H), 3.89 – 3.76 (m, 4H), 3.15 – 3.10 (m, 1H), 2.81 

(dd, J = 5.2, 2.5 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 

159.7, 129.4, 126.8, 114.0, 55.3, 52.2, 51.0. 

2-(4-Methylphenyl)oxirane (1l)34 Colorless liquid, 665 mg, 

98% yield. Rf = 0.80, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.18 – 7.13 (m,4H), 3.83 (dd, J = 

4.1, 2.6 Hz, 1H), 3.12 (dd, J = 5.5, 4.1 Hz, 1H), 2.79 (dd, J = 

5.5, 2.6 Hz, 1H), 2.34 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) 

δ 138.0, 134.5, 129.2, 125.4, 52.3, 51.1, 21.2. 

2-([1,1'-Biphenyl]-4-yl)oxirane (1m)34: Yellow solid, 292 

mg, 30% yield. M.p. 103–105℃. Rf = 0.57, 10% ethyl acetate 

in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 7.60 – 7.57 

(m, 4H), 7.48 – 7.41 (m, 2H), 7.38 – 7.31 (m, 3H), 3.91 (dd, J 

= 4.1, 2.6 Hz, 1H), 3.18 (dd, J = 5.5, 4.1 Hz, 1H), 2.85 (dd, J = 

5.5, 2.6 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 141.2, 

140.6, 136.6, 128.8, 127.4, 127.2, 127.0, 125.9, 52.2, 51.2. 

2-(4-Methylthiophenyl)oxirane (1n)35 Colorless oil, 967 mg, 

58% yield. Rf = 0.63, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.22 (d, J = 8.5 Hz, 2H), 7.18 (d, J 

= 8.4 Hz, 2H), 3.80 (dd, J = 4.0, 2.7 Hz, 1H), 3.11 (dd, J = 5.4, 

4.1 Hz, 1H), 2.77 (dd, J = 5.4, 2.6 Hz, 1H), 2.46 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 138.4, 134.3, 126.5, 125.9, 52.0, 

51.0, 15.7. 

2-(Naphthalen-2-yl)oxirane (1o)34: White solid, 300 mg, 17% 

yield. M.p. 57−58 C (Lit.36 M.p. 57−58 C). Rf = 0.70, 20% 

ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 

7.92 – 7.76 (m, 3H), 7.55 – 7.46 (m, 3H), 7.36 (dd, J = 8.5, 1.8 

Hz, 1H), 4.06 (dd, J = 4.1, 2.6 Hz, 1H), 3.26 (dd, J = 5.4, 4.1 

Hz, 1H), 2.94 (dd, J = 5.5, 2.6 Hz, 1H). 13C{1H} NMR (101 

MHz, CDCl3) δ 135.0, 133.2, 133.1, 128.3, 127.7, 126.3, 126.0, 

125.1, 122.6, 58.1, 52.6, 51.2. 

4-(Oxiran-2-yl)pyridine (1p)37 Brown liquid, 60 mg, 10% 

yield. Rf = 0.22, 50% ethyl acetate in petroleum ether. 1H NMR 

(400 MHz, CDCl3) δ 8.58 (d, J = 6.0 Hz, 2H), 7.21 (d, J = 6.0 

Hz, 2H), 3.84 (dd, J = 4.1, 2.5 Hz, 1H), 3.19 (dd, J = 5.5, 4.2 

Hz, 1H), 2.76 (dd, J = 5.6, 2.5 Hz, 1H). 13C{1H} NMR (101 

MHz, CDCl3) δ 149.9, 146.8, 120.3, 51.2, 50.9. 

2-(Thiophen-2-yl)oxirane (1q)38 Colorless liquid, 248 mg, 

98% yield. Rf = 0.35, 20% ethyl acetate in petroleum ether. 1H 

NMR (400 MHz, CDCl3) δ 7.25 (dd, J = 4.9, 1.4 Hz, 1H), 7.13 

(dd, J = 3.5, 1.2 Hz, 1H), 6.98 (dd, J = 5.0, 3.5 Hz, 1H), 4.10 

(dd, J = 4.0, 2.6 Hz, 1H), 3.19 (dd, J = 5.2, 4.0 Hz, 1H), 3.00 

(dd, J = 5.1, 2.6 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 

141.3, 127.0, 126.3, 125.1, 51.5, 49.3. 

2-(Phenylethynyl)oxirane (1r)39 Yellow oil, 317 mg, 44% 

yield. Rf = 0.81, 20% ethyl acetate in petroleum ether. 1H NMR 

(400 MHz, CDCl3) δ 7.45 (dd, J = 7.6, 1.8 Hz, 2H), 7.36 – 7.29 

(m, 3H), 3.59 (t, J = 3.3 Hz, 1H), 3.01 (d, J = 3.2 Hz,  2H). 

13C{1H} NMR (101 MHz, CDCl3) δ 131.9, 128.8, 128.3, 121.9, 

85.7, 83.4, 49.1, 40.2. 
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