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ABSTRACT: (S)-2,15-Br2-DHTP-catalyzed asymmetric con-
jugate addition of boronic acids to β-trifluoromethyl α,β-
unsaturated ketones and enones was studied. The reaction
afforded the corresponding Michael addition products in
moderate to high yields with excellent enantioselectivities (up
to 99:1 er). This catalytic system features mild reaction
conditions, high efficiency, and tolerance to heteroarylboronic
acids.

Asymmetric conjugate addition is an important synthetic
method for constructing new C−C bonds.1 Although

transition-metal-catalyzed conjugate additions of boronic acids
and their derivatives to α,β-unsaturated carbonyl compounds
making use of Rh(I), Ir(I), Pd(I), and Cu(I) catalysts have
been realized,2 transition-metal-free conjugate addition reac-
tions are still an important alternative method due to their low
toxicity, functional-group tolerance, operational simplicity, and
high selectivity.3,4 After the pioneering study of the non-
stereoselective conjugate addition of vinyl boronates to α,β-
unsaturated ketones was reported by Suzuki and Hara,5 the
Chong group was the first to report the enantioselective
conjugate addition of alkynyl boronates to chalcones using
3,3′-disubstituted-BINOL as the catalyst, which was sub-
sequently applied to alkenylboronates and arylboronates.6

However, alkenylboronic acids afforded lower stereoselectiv-
ities, and arylboronic esters required harsh reaction conditions.
In 2011, May developed the asymmetric conjugate addition of
alkenylboronic acids and alkynylboronic esters to indole-
appended enone substrates in the presence of 3,3′-(C6F5)2-
BINOL and subsequently used heteroaryl and aryl trifluor-
oborate salts as nucleophiles.7 In addition, Sugiura used O-
monoacyltartaric acids as the catalyst for the conjugate
addition of alkenylboronic acids to enones to provide only
moderate yields and ee values,8 as compared with those
obtained from the reactions catalyzed by chiral biphenol
derivatives.
In fluorine chemistry, considerable efforts have been focused

on the catalytic asymmetric synthesis of molecules with CF3-
containing stereocenters,9 because these fluorine-containing
molecules can be converted into biologically active com-
pounds.10 In 2008, Konna and co-workers described the

Rh(I)-catalyzed asymmetric conjugate addition of arylboronic
acids to β-trifluoromethyl α,β-unsaturated ketones in the
presence of (S)-BINAP to give the corresponding addition
products in high yields and enantioselectives; however, the
selectivities were found to be poor for alkenylboronic acids
(one example with 40% ee).11 In 2014, Pedro reported the first
enantioselective conjugate addition of terminal alkynes to β-
trifluoromethyl enones using a taniaphos-Cu(I) complex as the
catalyst, and also achieved the alkynylation of β-aryl-β-
trifluoromethyl enones using diethylzinc and 3,3′-(C6F5)2-
BINOL with satisfactory enantioselectivities.12 To date there
are very few reports regarding the enantioselective conjugate
addition of alkenylboronic acids to β-trifluoromethyl enones in
high yields and enantioselectivities in the absence of a
transition metal catalyst.
Wong introduced chiral tetraphenylene scaffolds to asym-

metric synthesis and achieved good results.13 Recently, our
group has reported the asymmetric allylboration of ketones
using (S)-2,15-Br2-DHTP (Cat 1, Scheme 1a) as a sufficiently
reactive catalyst, affording optically pure tertiary alcohols in
moderate to good yields with up to 99% ee (Scheme 1a).14

These results have led us to believe that the (S)-2,15-Br2-
DHTP-catalyzed asymmetric conjugate addition of easy-to-
handle boronic acids to α,β-unsaturated ketones can be
accomplished. Herein, we report our hydroxytetraphenylene-
catalyzed approach toward the construction of enantioenriched
β-trifluoromethyl ketones from boronic acids and β-trifluor-
omethyl-α,β-unsaturated ketones (Scheme 1b).
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Initially, the reaction of β-trifluoromethyl α,β-unsaturated
ketone 1a with (E)-styrylboronic acid (2a) using Cat 1 as the
catalyst in toluene at room temperature was investigated,
affording the desired product 3a in 50% yield with 95.5:4.5 er
(entry 1, Table 1). We proposed that the mechanism of the
asymmetric conjugate addition of alkenylboronic boronic acids
to β-trifluoromethyl enones was similar to that proposed by
May,7a,b Chong,6b and Goodman.6e Figure 1a illustrates the
proposed mechanism of the reaction of 1a with 2a catalyzed by
Cat 1. Cat 1 and 2a first form A by losing two water molecules.
Then A and 1a form B with a tetracoordinated boron atom. C
is produced by the cleavage of the boron−carbon bond in B.
C, Mg(OtBu)2, and another 2a react to produce D and A. The
process of A to C (red box in Figure 1a) is critical to
determining the chirality of the product. To gain molecular
insights into the mechanism, we calculated the Gibbs free
energy profile along the reaction paths by density functional
theory calculations at B3LYP-D3BJ/Def2-SVP level of theory
with the C-PCM solvation model (Figure 1b). Computational
details are described in the Supporting Information. Path 1 and
Path 2 are the paths that produce the desired product 3a and
undesired product, respectively. The isosurface plot of the
lowest unoccupied molecular orbital (LUMO) for A indicates
that the boron atom in A acts as a Lewis acid site. The oxygen
atom in 1a can be coordinated to the boron atom in A. The
overall free energy barrier of Path 1 is 4.28 kcal/mol lower than
Path 2, suggesting the desired product 3a is the more favorable
product. Subsequently, various solvents were screened in the
presence of 10 mol % of Cat 1 at 25 °C; DCE was
demonstrated to be the optimal solvent (entries 1−6, Table 1).
Notably, the addition of Mg(OtBu)2 and 4 Å MS as additives
was critical to accelerate the reaction (Table S1; see
Supporting Information).7a,b In the absence of Mg(OtBu)2,
the product yield decreased to 30% (entry 7, Table 1). In the
absence of 4 Å MS, no product was afforded (entry 8, Table
1). The decrease of the solvent volume to 0.5 mL led to 3a
with a slightly higher enantioselectivity within a shorter
reaction time (entry 9, Table 1). Next, various chiral
tetraphenylene catalysts Cat 2, Cat 3, Cat 4, and Cat 515

were examined (entries 10−13, Table 1). However, all these
catalysts afforded 3a in a significantly diminished yield as well
as lower enantioselectivities as compared to those of Cat 1.
These results revealed that substituents on the tetraphenylene
frameworks considerably affect selectivities and activities of the
catalysts. Bulky, electron-withdrawing groups at positions 2
and 15 of (S)-DHTP were found to be imperative for better
results. This can be attributed to the fact that electron-
withdrawing substituents on the DHTP effectively increase the
Lewis acidity of the boron and facilitate co-ordination of the

boron to the carbonyl oxygen of the enone. Interestingly,
commercially available catalysts (R)-BINOL Cat 6, (R)-3,3′-
Br2-BINOL Cat 7, (R)-3,3′-I2-BINOL Cat 8, (R)-3,3′-Ph2-
BINOL Cat 9, and Cat 10 bearing two 3,5-bis(trifluoro-
methyl)phenyl groups exhibited poorer catalytic effects
(entries 14−18, Table 1). Furthermore, with the decrease of
the reaction temperature to 0 °C and the extension of the
reaction time to 84 h, Cat 1 gave a lower yield with a slightly
higher er (entry 19, Table 1). Moreover, slightly diminished
product enantioselectivities were observed at 60 °C (entry 20,
Table 1). Finally, the catalyst loading was decreased to 5 mol
%, affording the desired product in moderate yield with good
er (entry 21, Table 1). However, the increase in the catalyst
loading to 20 mol % did not achieve a significantly better result
(entry 21, Table 1). Thus, the optimal reaction conditions are
therefore 1a (0.1 mmol) and 2a (0.12 mmol) in the presence
of Cat 1 (0.01 mmol, 10 mol %), 4 Å MS (50 mg), and

Scheme 1. (S)-2,15-Br2-DHTP-Catalyzed Asymmetric
Reactions

Table 1. Optimization of the Reaction Conditionsa

Entry Cat (mol %) Solvent t (h) T (°C)
Yield
(%)b erc

1 Cat 1 (10) PhCH3 36 30 50 95.5:4.5
2 Cat 1 (10) CH2Cl2 45 25 78 97.1:2.9
3 Cat 1 (10) THF 45 25 <10 −
4 Cat 1 (10) MTBE 48 25 30 95.2:4.8
5 Cat 1 (10) PhCF3 48 25 82 97.3:2.7
6 Cat 1 (10) DCE 40 25 90 97:3
7d Cat 1 (10) DCE 40 25 30 97:3
8e Cat 1 (10) DCE 40 25 N.R. −
9f Cat 1 (10) DCE 30 25 88 97.2:2.8
10f Cat 2 (10) DCE 40 25 11 83.7:16.3
11f Cat 3 (10) DCE 40 25 5 78:22
12f Cat 4 (10) DCE 40 25 30 96.7:3.3
13f Cat 5 (10) DCE 48 25 32 95.5:4.5
14f Cat 6 (10) DCE 48 25 6 42.9:57.1
15f Cat 7 (10) DCE 48 25 19 10.2:89.8
16f Cat 8 (10) DCE 72 25 14 5.9:94.1
17f Cat 9 (10) DCE 48 25 10 17.3:82.7
18f Cat 10 (10) DCE 72 25 12 9:91
19f Cat 1 (10) DCE 84 0 38 98:2
20f Cat 1 (10) DCE 20 60 92 96.3:3.7
21f Cat 1 (5) DCE 72 25 74 96.8:3.2
22f Cat 1 (20) DCE 46 25 88 97.7:2.3

aReaction conditions: β-trifluoromethyl enone 1a (0.1 mmol), (E)-
styrylboronic acid 2a (0.12 mmol), catalyst (0.01 mmol), Mg(OtBu)2
(0.01 mmol), 4 Å MS (50 mg), and 1.0 mL of dry solvent were stirred
under N2.

bIsolated yield. cThe er values were determined by chiral
HPLC analysis. dWithout Mg(OtBu)2.

eWithout 4 Å MS. fWith 0.5
mL of DCE.
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Mg(OtBu)2 (0.01 mmol, 10 mol %) in dry DCE (0.5 mL) at
25 °C (entry 9, Table 1).
With the optimal reaction conditions in hand, the substrate

scope of β-trifluoromethyl α,β-unsaturated ketones 1a−1s was
investigated (Scheme 2). When the enantiomer of Cat 1 (R)-
2,15-Br2-DHTP was utilized in the reaction, the corresponding
product 3a′ was obtained in 89% yield with 97.3:2.7 er. In the
case of substrate 2b, desired product 3b was generated in 93%
yield with 97.2:2.8 er, and the result was considerably better
than that reported previously ((E,S)-3b′: 66% yield, 78% ee;
(E,R)-3b: 70% yield, 40% ee).12a,11a All reactions of β-
trifluoromethyl α,β-unsaturated ketones bearing either elec-
tron-donating or electron-withdrawing groups on the phenyl
ring were performed, leading to the formation of the
corresponding products in moderate to high yields with
excellent enantioselectivities (90−98% ee). Halides, Me, OMe,
CF3, and nitro groups on the ortho, para, or meta position of
the phenyl ring were tolerated under the standard reaction
conditions (Scheme 2, 3c−3n), albeit diminished yields for
products 3i and 3j were noted. In addition, heteroaromatic
thiophene α,β-unsaturated ketones 2o and 2p and ring-fused
naphthyl α,β-unsaturated ketones 2q and 2r afforded the
corresponding products in good yields with excellent er values
(Scheme 2, 3o−3r). The use of alkyl-substituted substrate 2s

afforded the desired product 3s in 68% yield with 98.5:1.5 er.
These results reveal that the substituents on the β-
trifluoromethyl-α,β-unsaturated ketones do not significantly
affect the stereoselectivities of products. Unfortunately,
relevant reactions involving ethyl 4,4,4-trifluorocrotonate, β-
methyl β-trifluoromethyl α,β-unsaturated ketone, or β-phenyl
β-trifluoromethyl α,β-unsaturated ketone were unsuccessful.
Furthermore, effects of alternative boronic acids were
examined for the reaction with substrate 1a. Thus,
furanboronic acid 2b and benzofuranboronic acid 2c exhibited
acceptable reactivities, affording products 3t and 3u with good
enantioselectivities, respectively. Arylboric acids were un-
reactive under our reaction conditions. These findings reveal
that structures of boronic acids lead to a significant impact on
reactivities and enantioselectivities of these catalytic reactions.
The absolute configuration of 3b was determined to be (E,R)
by comparison of chiral HPLC data and specific rotation values
reported in the literature.11a,12a Accordingly, the R-config-
uration was assigned to the remainder of the expected products
3 by assuming a uniform stereochemical pathway.
We also optimized the reaction conditions with trans-

chalcone 4a and (E)-styrylboronic acid (2a), and the desired
product 5a was obtained in 99% yield with 98.1:1.9 er using 5
mol % Cat 1 (Table S2; see Supporting Information). The

Figure 1. (a) Proposed catalytic mechanism. (b) Calculated relative
Gibbs free energy profile along reaction coordinates, structures of
intermediates and transition states, and isosurface plots of the highest
occupied molecular orbital (HOMO) for 1a and the lowest
unoccupied molecular orbital (LUMO) for A.

Scheme 2. Substrate Scope of β-Trifluoromethyl α,β-
Unsaturated Ketonesa

aUnless otherwise noted, reactions were carried out with β-
trifluoromethyl enones 1a−1t (0.1 mmol, 1.0 equiv), (E)-styrylbor-
onic acid 2a−2c (0.12 mmol, 1.2 equiv), Cat 1 (0.01 mmol, 10 mol
%), Mg(OtBu)2 (0.01 mmol), and 4 Å MS (50 mg) in 0.5 mL of dry
DCE at 25 °C under N2 for 24−48 h. Isolated yield. The er values
were determined by chiral HPLC analysis. bWith (R)-2,15-Br2-DHTP
(0.01 mmol, 10 mol %). cWith Cat 1 (0.02 mmol, 20 mol %).
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substrate scope of enones 4b−4q was then evaluated (Scheme
3). Initially, chalcones carrying β-aryl groups with diverse

substituents were examined. Various electron-donating groups
(OMe, Me) and electron-withdrawing groups (F, Cl, Br, CF3,
NO2) on the phenyl ring were well tolerated, delivering
adducts in excellent yields and enantioselectivities (5b−5i,
92−99% yields, 96−98% ee). Moreover, phenyl-type enones
bearing a fused ring and heteroaromatic ring at the β-position
were also applicable, affording the corresponding products with
excellent results (5j−5m). Then, enones bearing α′-aryl groups
with different substituents (OMe, Br) were allowed to react
with (E)-styrylboronic acid (2a) to give the expected products
in good yields and er values (5n and 5o). Of particular note is
that enone 4p bearing a methyl group and enone 4q bearing an
ester group both reacted with boronic acid 2a smoothly, and
the desired products 5p and 5q were obtained in quantitative
yields with 98.2:1.8 and 96.5:3.5 er, respectively. Finally, this
catalytic reaction also worked well with other boronic acids,
such as furanboronic acid 2b, benzofuranboronic acid 2c, and
alkenylboronic acid 2d. In the case of 2b and 2c, the
corresponding reactions provided the desired products 5r and
5s in excellent yields with 91.1:8.9 and 92.4:7.6 er under the
standard reaction condition, while the er values increased to
93:7 and 93.9:6.1 when the catalyst loading was increased to
10 mol %. Product 5t was afforded in 57% yield with 98.7:1.3
er, and the moderate yield is likely due to the lower reactivity
of alkenylboronic acid 2d as compared with that of 2a. All

results in our system were better than those reported by
Sugiura.8a The configuration of all products was assigned by
comparison with that reported in literature.
To confirm the scalability of the current protocol, a gram-

scale reaction of β-trifluoromethyl α,β-unsaturated ketone 1i
(4 mmol) with (E)-styrylboronic acid (2a) (4.8 mmol) was
carried out, affording product 3i in an isolated yield of 75%
with 97.2:2.8 er (eq 1, Scheme 4). A gram-scale reaction of

enone 4a with boronic acid 2a in the presence of Cat 1 (1 mol
%) and Mg(OtBu)2 (1 mol %) was also conducted. To our
delight, 1.15 g of product 5a was obtained in 92% yield with
95.8:4.2 er, and after crystallization, 0.85 g of 3a was afforded
with 99.8:0.2 er (eq 2, Scheme 4). After the reaction, Cat 1
was easily recovered by flash column chromatography, which
can be reused without loss of activity.
In summary, we have developed an asymmetric conjugate

addition of boronic acids to α,β-unsaturated ketones catalyzed
by (S)-2,15-Br2-DHTP under mild reaction conditions.
Enantioenriched products bearing a trifluoromethylated stereo-
center were obtained in moderate to high yields and good to
excellent enantioselectivities (up to 99:1 er). In addition,
heteroarylboronic acids were tolerated under these reaction
conditions, and gram-scale reactions were achieved without
loss of enantioselectivities. Additional investigations to extend
the scope to other substrates and applications of the resulting
products are underway in our laboratories.
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