

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 5752-5756

N',2-Diphenylquinoline-4-carbohydrazide based NK₃ receptor antagonists II

Jason M. Elliott,^{a,*} Robert W. Carling,^a Gary G. Chicchi,^c James Crawforth,^a Peter H. Hutson,^b A. Brian Jones,^a Sarah Kelly,^a Rose Marwood,^b Georgina Meneses-Lorente,^a Elena Mezzogori,^a Fraser Murray,^b Michael Rigby,^b Inmaculada Royo,^d Michael G. N. Russell,^a Duncan Shaw,^a Bindi Sohal,^a Kwei Lan Tsao^c and Brian Williams^a

^aDepartment of Medicinal Chemistry, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK

^bDepartment of In Vivo Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 20R, UK

^cDepartment of Immunology, Merck Research Laboratories, Rahway, NJ 07065, USA

^dCIBE-Merck Research Laboratories, Merck, Sharp and Dohme de España, cl Josefa Valcárcel, 38 Madrid 28027, Spain

Received 26 July 2006; revised 17 August 2006; accepted 19 August 2006 Available online 6 September 2006

Abstract—Introduction of selected amine containing side chains into the 3-position of N',2-diphenylquinoline-4-carbohydrazide based NK₃ antagonists abolishes unwanted hPXR activation. Introduction of a fluorine at the 8-position is necessary to minimize unwanted hI_{Kr} affinity and a piperazine *N-tert*-butyl group is necessary for metabolic stability. The lead compound (**8m**) occupies receptors within the CNS following oral dosing (Occ₉₀ 7 mg/kg po; plasma Occ₉₀ 0.4 μ M) and has good selectivity and excellent PK properties.

© 2006 Elsevier Ltd. All rights reserved.

In our previous paper,¹ we reported our initial studies on N',2-diphenylquinoline-4-carbohydrazide based NK₃R antagonists related to Talnetant as potential treatments for schizophrenia. The lead compound **1** had good affinity (hNK₃R IC₅₀ 8.8 ± 5.1 nM)² and was brain penetrant, occupying NK₃ receptors within the CNS following oral dosing to gerbils (Occ₉₀ 30 mg/kg po; plasma Occ₉₀ 0.95 μ M).¹ A key liability for the series was CYP3A4 induction in human hepatocytes at high concentrations (**1**, 77% at 20 μ M),¹ which could be correlated to activation of the hPXR nuclear receptor in vitro (HepG2 cells transiently transfected with hPXR; **1**, 49% of 10 μ M rifampicin positive control).³

0960-894X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.08.085

In order to further develop this promising lead toward a potential once a day oral drug candidate for the treatment of schizophrenia, we chose to target improvements to the in vivo occupancy and PK profile, and reduction in hPXR activation and hence CYP induction, while also ensuring that the selectivity profile was maintained.

The precursor for 3-alkoxy-substituted quinolines was the 3-hydroxy analog 2^{1} Alkylation with methyl

Keywords: NK₃; Schizophrenia; *N'*-2-Diphenylquinoline-4-carbo-hydrazide.

^{*}Corresponding author. Tel.: +44 1279 440000; fax: +44 1279 440390; e-mail: jason@elliottj25.fsnet.co.uk

Scheme 1. Reagents and conditions: (i) BrCH₂CO₂Me, NaI, K₂CO₃, THF; (ii) LiBH₄, THF; (iii) CBr₄, Ph₃P, CH₂Cl₂; (iv) Me₂NH; (v) 1-(1,1-dimethylethyl)-4-piperidinol or 1,1-dimethylethyl 4-hydroxypiperidinecarboxylate, DTBAD, Ph₃P, THF; (vi) KOH, MeOH; (vii) (COCl)₂, DMF, CH₂Cl₂; (viii) PhNHNH₂, K₂CO₃, CH₂Cl₂, H₂O; (ix) MeOCOCl, PhMe; (x) TFA, CH₂Cl₂; (xi) tetrahydro-4*H*-pyran-4-one, NaBH(OAc)₃, AcOH, CH₂Cl₂; (xii) (BOC)₂O, NaH, THF; (xiii) NBS, CCl₄, h₇; (xiv) R₂NH, Et₃N, THF, reflux; (xv) (BOC)₂O, CH₂Cl₂; (xvi) DMSO, (COCl)₂, Et₃N, CH₂Cl₂; (xvii) acetophenone, LiHMDS, THF; (xviii) MeSO₂Cl, Et₃N, CH₂Cl₂; (xix) H₂, Pd–C, EtOAc; (xx) isatin, KOH, EtOH, H₂O.

bromoacetate followed by reduction and replacement of the terminal hydroxyl group gave **3** as shown (Scheme 1). However, alkylation of **2** to give more hindered cyclic O-linked substituents at C-3 was low yielding; it proved more efficient to O-alkylate the ester **4** with a suitable piperidin-4-ol under Mitsonobu conditions. The N-protecting group was removed and the compound was further elaborated under reductive amination conditions (Scheme 1).

In order to introduce aminomethyl groups at C-3, the versatile 3-bromomethyl precursors 7 (X = H, F) were targeted. These were most efficiently prepared via radical bromination of **6** after initial protection of the hydrazide 2-nitrogen. Deprotection and facile displacement with amines gave 3-aminomethyl derivatives (hindered *N*-tert-alkyl piperazines were prepared as shown in Scheme 2).

Compounds with a C-linked piperidine at C-3 were prepared via reaction of ketone 9 (prepared from piperidine-4-methanol) with isatin under basic Pfitzinger conditions⁴ to give 10 (Scheme 1). This was further elaborated as shown.

We have already reported¹ that substitution at most of the aromatic positions on the quinoline core was poorly tolerated, but a range of small substituents at the quin-

Scheme 2. Reagents and condition: (i) cyclohexanone or tetrahydro-4*H*-pyran-4-one, 1,2,3-triazole, PhCH₃, reflux; (ii) MeMgCl, THF; (iii) HCl, MeOH.

oline C-3 position improved hNK_3R affinity. Further exploration of the SAR showed that much larger alkoxy and amine-containing substituents were tolerated at this position (Table 1). This led, in some cases, to improved affinity relative to 1 (e.g., **8j**). Simple lipophilic groups at C-3 did not have an effect on hPXR activation, but we saw that certain amine containing side chains did reduce or abolish this unwanted activity. The disruption of hPXR activation was found to be quite selective, requiring a basic nitrogen held some distance from the quinoline core by a rigid, cyclic structure (e.g., **8b** and **11b**). If the side chain was flexible (**3**); if the basicity was reduced by benzylation (**8h**), removed by acylation (**8i**) or sulfonylation (**8j**); or if the basic center was too close to the quinoline (**8a**), hPXR activation persisted.

We next explored the effect of N-alkylation of **8b** and **11b**. We were pleased to find that the disruption of

Table 1.

Compound	Х	R	$hNK_3 IC_{50}^a (nM)$	$hI_{Kr} K_i^b (\mu M)$	hPXR response ^c (%)
3	0	INMe₂	11 ± 1	0.089	40
5c	0		12 ± 2	8.9	18
5d	0	I-\v	17 ± 7	3.0	
8a	CH ₂	-N_>	160 ± 6	4.9	92
8b	CH ₂	-N_NH	34 ± 7	0.84	7
8c	CH ₂	-N_N-Me	17 ± 6	0.32	
8d	CH ₂	-n_N_<	5.8 ± 1.4	0.88	<5
8e	CH ₂		2.0 ± 0.4	1.8	6
8f	CH ₂		3.3 ± 0.3	6.5	10
8g	CH ₂		1.9 ± 0.3	0.51	9
8h	CH ₂	H-N_N_Ph	1.6 ± 0.2	0.53	57
8i	CH ₂	-N N-Ac	7.4 ± 2.3	>9	53
8j	CH ₂	N-SO ₂ Ph	0.72 ± 0.06	2.5	120
11b	CH ₂	−−€_№Н	51 ± 17	0.52	<5
11c	CH ₂	\v\o	5.7 ± 2.7	8.0	<5

^a Displacement of ¹²⁵I-labelled neurokinin B from the cloned hNK₃ receptor expressed in CHO cells. Data are means \pm SD (*n* = 3 or more).²

^b Displacement of labeled MK-499 from cloned channel expressed in HEK cells.⁵

^c Increase in hPXR activation in HepG2 cells transiently transfected with hPXR (% of 10 µM rifampicin positive control).³

hPXR activation was not affected by this change and hNK₃R affinity was improved (e.g., 8c-g, 11c).

Unfortunately, this type of side chain did tend to introduce ion channel activity, especially affinity for the hERG ion channel (hI_{Kr}) .⁵ Blockade of this channel is linked to QT prolongation and severe cardiorhythmic side effects. We found that this affinity could be minimized by the use of a pyran-4-yl substituent (**8f** and **11c**). However, this group was found to be metabolically

Compound	Х	R	hNK ₃ IC ₅₀ ^a (nM)	$hI_{Kr}\;K_{i}^{b}\;(\mu M)$	hPXR response ^c (%)
8k	CH ₂	-N_NH	37 ± 16	8.2	<5
81	CH ₂		5.8 ± 0.8	>9	<5
8m	CH ₂		4.0 ± 0.7	>9	<5
8n	CH ₂		1.5 ± 0.4	2.0	
80	CH ₂		3.5 ± 0.9	>9	<5
8p	CH ₂		3.5 ± 1.6	>9	7

^a Displacement of ¹²⁵I-labeled neurokinin B from the cloned hNK₃ receptor expressed in CHO cells. Data are means \pm SD (*n* = 3 or more).² ^b Displacement of labeled MK-499 from cloned channel expressed in HEK cells.⁵

^c Increase in hPXR activation in HepG2 cells transiently transfected with hPXR (% of 10 µM rifampicin positive control).³

labile. For example, 8f had short half-life (rat, 1.4 h, dog, 2.4 h), with significant levels (greater than parent) of the dealkylated metabolite 8b detected in plasma.

Metabolic N-dealkylation was a general problem for all analogs of 8f and 11c with primary and secondary N-alkyl groups. A potentially interesting approach to blocking this pathway would be to replace the pyran with a more hindered group, such as *tert*-butyl. Unfortunately, the SAR already established suggested that unacceptable hIKr affinity would be problematic with simple alkyl groups (e.g., **8d**, $hI_{Kr} K_i 0.88 \mu M$).

We have previously reported¹ that fluorination at the 8position of the quinoline was tolerated by the hNK₃ receptor. This remained the case for molecules with amine side chains at C-3 and we were able to verify that it did not reintroduce hPXR activation (Table 2). However, we found that this substitution had the added benefit of significantly attenuating hIKr affinity (e.g., hIKr K_{is} : 8d, 0.88 μ M; 8l, >9 μ M). Crucially, this change expanded the scope of acceptable piperazine N-substituents, allowing us to introduce a range of groups onto the piperazine nitrogen without incurring an excessive hI_{Kr} liability (e.g., $hI_{Kr} K_{is}$: **8n**, 2 μ M; **8p**, >9 μ M).

We were disappointed to find that the hindered 4-methylpyran in **8p** did not improve PK properties (rat, $t_{1/2}$) 1.4 h). However, we noted that 8k was not detected as a metabolite in plasma, suggesting that we had been successful in blocking N-dealkylation, but that a new mode of metabolism had been inadvertently introduced. This was supported by replacement of the N-substituent with a simple *tert*-butyl group (8m, hNK₃R IC₅₀ 4.0 nM; hI_{Kr} $K_i > 9 \,\mu\text{M}$) which led to good metabolic stability in vitro (incubation with rat and human liver microsomes: <5%turnover after 15 min) and excellent PK properties (e.g., dog: F, 100%, $t_{1/2}$ 6.5 h) with no dealkylation to **8** k detectable in plasma.

Cellular functional NK₃R antagonist activity of 8m was measured in inositol phosphate generation studies using CHO/hNK₃R cells in response to eledoisin or senktide stimulation.¹ Eledoisin caused a concentration-dependent increase in inositol phosphate generation in these cells with an EC₅₀ of 6.6 ± 0.1 nM (n = 2). In a Schild analysis of its antagonist behavior, 8m caused a concentration-dependent rightward shift in the EC₅₀ of eledoisin with a concomitant diminution of the maximal agonist response, indicative of a non-competitive or insurmountable antagonism. When titrated versus an approximate EC₅₀ concentration (3 nM) of senktide, 8m inhibited inositol phosphate generation with an IC_{50} of 3.0 ± 0.0 nM (n = 2).

Compound 8m was very potent in the gerbil ex vivo central receptor occupancy assay¹ with an Occ_{90} of 7 mg/kg po and a plasma Occ_{90} of 0.4 μ M when occupancy was measured 45 min post dosing. Further profiling of 8m showed that it had modest affinity for hNK_2R (IC₅₀) 50 nM) and good selectivity over hNK₁R (IC₅₀ > 1 μ M) as well as a panel of other receptors and ion channels.

8m also showed very low levels of CYP450 inhibition (human liver microsomes, 2C9, 2D6, 3A4, IC₅₀s > 30 μ M) and had excellent physical properties (log *D* 1.7, p K_a 9.4, solubility > 5 mg/ml at pH 7.4).

In summary, we have shown that introduction of cyclic amine containing side chains onto N',2-diphenylquinoline-4-carbohydrazide based NK₃R antagonists resolved the issue of unwanted activation of the hPXR receptor. A combination of fluorination at the quinoline 8-position and judicious choice of amine substituent led to a compound, **8m**, with excellent in vitro and in vivo properties.

References and notes

 Elliott, J. M.; Carling, R. W.; Chambers, M.; Chicchi, G. G.; Hutson, P. H.; Jones, A. B.; MacLeod, A.; Marwood, R.; Meneses-Lorent, G.; Mezzogori, E.; Murray, F.; Rigby, M.; Royo, I.; Russell, M. G. N.; Sohal, B.; Tsao, K. L.; Williams, B. *Bioorg. Med. Chem. Lett.*, **2006**, *16*, 5748.

- 2. NK₃ binding studies were conducted as a modification of a previously reported protocol⁶ incubating 3×10^4 CHO cells stably expressing human NK₃ receptors with 30 pM [¹²⁵I]-labeled neurokinin B for 1 h at 25 °C followed by filtration over GF/C filter plates pre-soaked in 0.5% BSA.
- Gao, Y. D.; Olson, S. H.; Balkovec, J. M.; Zhu, Y.; Royo, I.; Mosley, R. T.; Ismail, A. J.; Hartley, D. Drug Metab. Dispos., submitted for publication.
- Buu-Hoï, P.; Hoán, K.; Xuong, D. J. Org. Chem. 1950, 15, 511.
- Cooper, L. C.; Carlson, E. J.; Castro, J. L.; Chicchi, G. G.; Dinnell, K.; Di Salvo, J.; Elliott, J.; Hollingworth, G. J.; Kurtz, M. M.; Ridgill, M. P.; Rycroft, W.; Tsao, K. L.; Swain, C. J. *Bioorg. Med. Chem. Lett.* 2002, *12*, 1759.
- Sadowski, S.; Huang, R. R. C.; Fong, T. M.; Marko, O.; Cascieri, M. A. *Neuropeptides* 1993, 24, 317.