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Abstract. In this work, graphitic carbon nitride (g-C3N4) decorated with 

molybdenum-substituted tungstophosphoric acid as a novel photocatalyst 

(H3PW4Mo8O40/g-C3N4) was used to catalyze the oxidation of alcohols and 

sulfides. H3PW4Mo8O40/g-C3N4 (PW4Mo8/g-C3N4) displays higher 

photocatalytic activity under visible light irradiation for the oxidation of 

alcohols and sulfides compared with Keggin/g-C3N4 (PW12/g-C3N4). To obtain 

the optimum value, molybdenum substitution contents (H3PW12-xMoxO40) were 

changed from x= 4 to 12. The results showed that PW4Mo8 produces the best yield 

under visible-light irradiation. The results showed that PW4Mo8 was the best 

sample. The reaction rate increase can be due to the redox and acid properties 

of PW4Mo8/g-C3N4.This study provides a new insight for the preparation of 

highly efficient photocatalysts for the oxidation of organic compounds.

Keywords: Heteropolyacid, g-C3N4, Photocatalyst, Oxidation.

Running title: molybdenum-substituted tungstophosphoric acid/g-C3N4 as 

photocatalyst.



Highlights

 Designing a new set of HPAs as photocatalyst under visible-light.

 Proving the promising role of Mo cations in selective photocatalytic oxidation 
of alcohols and sulfides.

 The g-C3N4 with electronic structural property as visible-light active 
photocatalyst



Introduction

Recently, water pollution treatment has attracted the increasing attention of researchers. There are 

many water treatment technologies, like adsorption [1], Microwave [2,3], extraction [4], oxidation 

[5], and photo-oxidation [6] which are used to eliminate pollutants. Compared with other advanced 

oxidation technologies, photocatalysis was considered to be a more promising technology for 

transforming organic pollutants into harmless substances [7].

on the other hand, The Selective Oxidation of alcohols and sulfides to the corresponding carbonyl 

compounds and sulfoxides represent key reactions in the field of synthetic organic chemistry [8-

18]. Sulfoxides have received enormous interest as chiral auxiliaries in organic synthesis, as useful 

building blocks to produce various chemically, biologically, and medicinally active molecules [19-

21]. Several types of oxidizing agents, such as toxic metal oxides and peroxides, and methods have 

been used for the oxidation of alcohols and sulfides in solution and solid phases [22-29]. Many of 

these reagents and catalysts suffer from certain drawbacks such as the toxicity of the transition 

metals and environmentally harmful waste by‐products, long reaction times, low selectivity, poor 

yields of products, and over-oxidation of the sulfoxides and aldehydes to sulfones and Carboxylic 

acids as side-reaction [30-32]. Therefore, in order to oxidation of sulfides and alcohols to 

sulfoxides and carbonyl compounds without excessive oxidation to sulfones and carboxylic acids, 

there is a demand for environmental-economic methods. Over the past few decades, significant 

attention has been paid to selective oxidation photocatalysts. Recently, numerous research on 

discovering new photocatalytic materials has been undertaken that are both more effectual and 

innately active under visible light [33-37]. Visible light has attracted wide attention with its clean 

and abundant advantages [38]. In this regard, photocatalysis using semiconductors is as ZnO [39], 



TiO2 [40], metal-organic frameworks [41, 42], heteropoly acids (HPAs) [43], and g-C3N4 

nanaosheets [44, 45], is an efficient approach for oxidation reactions such. Among these 

compounds, heteropoly acids show high efficiency due to the redox and acidity properties. The 

dodecatunvgstophosphoric acid, H3PW12O40 could show photocatalytic activity under visible light 

[46]. 

Recently tungesto- and molybo-phosphoric acids draw attention in photocatalytic reactions. For 

example, Fazlali et al. [47] explored Keggin hetero polyacid supported on BN and C3N4 as an 

efficient catalyst in the methanol photocatalytic dehydration reaction. Also, the ion-exchange in 

Keggin type HPAs (W and Mo) lead to improve the catalytic properties of the catalysts because 

the substitution of these atoms changes their acid and redox properties [48-50]. Unfortunately, low 

charge separation and high solubility in polar media hinder its practical utilization at a large scale. 

Recent studies have shown that the recombination of photogenerated electrons and holes can be 

controlled by coupling HPAs with an ideal substrate [51, 52]. In this perspective, for the anchoring 

of HPAs, graphitic carbon nitride (g-C3N4) can be an appropriate candidate because of the presence 

of various functional groups and their unique properties. Graphitic carbon nitrides as the most 

stable allotrope of carbon nitride with high chemical and thermal stability and also unique 

electronic structure, have been standing in the hot research area for their potential applications in 

photocatalysis [53-55]. Also, g-C3N4 has rich surface properties that are attractive for catalysis 

applications due to the presence of basic surface sites. Besides, the band gap of g-C3N4 is 2.85 eV, 

with valence band (VB) and conduction band (CB) positions respectively at −1.1 and +1.6 eV. The 

g-C3N4 with this electronic structural property can be visible-light active photocatalyst [56]. 

Results show that the pure g-C3N4 almost exhibits no photocatalytic performance during the 

photocatalytic process, however, PMO/g-C3N4 composite exhibits excellent photocatalytic 



performance because the step-scheme heterojunction promotes the separation of photoexcited 

electron-hole pairs [57, 58, 64]. In an S-scheme heterojunction, the powerful photogenerated 

electrons and holes are reserved in the CB of RP and VB of OP, respectively, while the pointless 

photogenerated charge carriers are recombined, introducing a strong redox potential. Also, in these 

catalysts, three factors: the internal electric field, band bending, and Coulombic attraction, act as 

the driving forces for the recombination of electrons in the CB of oxidation photocatalyst and holes 

in the VB of reduction photocatalysts [59-61].

The present work deals with the preparation of PW4Mo8/g-C3N4 as a stable and efficient step-

scheme photocatalyst for the oxidation of sulfides and alcohols to sulfoxides and carbonyl 

compounds under visible light. We found that the stability and photocatalytic activity were 

significantly improved by PW4Mo8/g-C3N4 compared with PW12/g-C3N4, PW4Mo8, and PW12 in 

the oxidation of sulfides and alcohols. This s-scheme photocatalyst has many advantages such as 

high activity, high specific surface area, strong oxidizing ability, non-toxicity, and high 

recyclability.

2. Experimental

2.1. Materials and Physical Techniques

Chemicals used in this work were purchased from Fluka and Merk chemical companies and used 

without purification. FT-IR spectra were obtained over the region 400-4000 cm-1 with NICOLET 

IR100 FT-IR with spectroscopic grade KBr. The phase purity and crystalline structure of samples 

were analyzed by using Philips X-pert X-ray diffractometer using Cu Kα radiation (α = 0.154056 

Å). For specific surface areas, BET (Micromeritics Instrument Corporation TriStar II) was used. 

The field emission scanning electron microscopy (FESEM) analysis was carried out using a Philips 



XL-300. The UV/Vis diffusive reflectance (UV/Vis DRS) was obtained using Thermo Scientific 

Evolution 300/600 UV-Visible spectrophotometer (USA) spectrophotometer. The visible 

illumination was provided by a 400 W lamp (high-pressure mercury-vapor lamp and λ=546.8 nm.

2.2. Preparation and characterization of the photocatalyst

The bulk graphitic carbon nitride (g-C3N4) was synthesized by thermal condensation of melamine 

following a previously published method [62]. HPAs nanoparticles were prepared according to 

reported reference [50]. For the synthesis of PW4Mo8/g-C3N4, the g-C3N4 (0.5 g) was taken in 

ethanol (30 ml) and sonicated for 2 h to make the thick slurry. H3PMo8W4O40 (0.8 g) was added to 

the slurry and then sealed and stirred for 20 hours. Afterward, the cap was removed and the solid 

phase was filtered. Subsequently, it was dried at 75 ̊C. The steps of photocatalyst preparation are 

illustrated in Scheme 1.

Scheme 1. Schematic representation of the synthesis of magnetic PW4Mo8/g-C3N4.



2.3. General procedure for the oxidation reaction of sulfides and alcohols in the 

presence of PW4Mo8/g-C3N4 as photocatalyst 

A mixture of sulfide or alcohol (1 mmol), 0.5 mL of H2O2 33%, 10 mL of ethanol as solvent, and 

0.005 g of PW4Mo8/g-C3N4 as photocatalyst was added. The reaction mixture was then stirred 

under visible light irradiation for an appropriate time (Table 2, 3) until the completion of the 

reaction was achieved as monitored by TLC. After the photocatalytic reaction, the suspension was 

centrifuged at 5000 rpm for 10 min and the supernatant was analyzed by gas chromatography 

(GCYonglin 6100; BP-5; 30m×0.25×mm×0.25μm).

3. Results and discussion

3.1 PW4Mo8/g-C3N4 as photocatalyst for oxidation of sulfides to the sulfoxides:

Preliminary, the catalyst effect on the oxidation of thioanisole (1a) as the model substrate was 

studied. Various conditions on the yield were investigated using visible light irradiation, reaction 

temperature, catalyst loading, various catalysts, oxidants, and solvents. (Table 1)

Table 1. Optimization for the oxidative reaction 1a with oxidanta

Catalyst, visible light, oxidant

Solvent, T °C,
S

S
O

1a 1b
Entry Catalyst Catalyst 

amount (g)
Solvent oxidant Time 

(min)
T ◦C Yieldb 

(%)
1 None - EtOH H2O2 110 45-55 -

2 g-C3N4 0.002 EtOH H2O2 110 45-55 -

3 PW4Mo8/g-C3N4 0.005 EtOH H2O2 110 25-35 45

4 PW4Mo8/g-C3N4 

(Without light)

0.005 EtOH H2O2 110 45-55 Trace

5 PW12 0.003 EtOH H2O2 110 45-55 75

6 PW4Mo8 0.003 EtOH H2O2 110 45-55 78



7 PW12@g-C3N4 0.005 EtOH H2O2 110 45-55 83

8 PW8Mo4/g-C3N4 0.005 EtOH H2O2 110 45-55 80

9 PW6Mo6/g-C3N4 0.005 EtOH H2O2 110 45-55 88

10 PW4Mo8/g-C3N4 0.005 EtOH H2O2 110 45-55 91

11 PW2Mo10/g-C3N4 0.005 EtOH H2O2 110 45-55 82

12 PMo12/g-C3N4 0.005 EtOH H2O2 110 45-55 74

13 PW4Mo8/g-C3N4 0.005 EtOH O2 110 45-55 58

14 PW4Mo8/g-C3N4 0.005 EtOH air 110 45-55 27

15 PW4Mo8/g-C3N4 0.003 EtOH H2O2 110 45-55 85

16 PW4Mo8/g-C3N4 0.007 EtOH H2O2 110 45-55 90

17 PW4Mo8/g-C3N4 0.005 DMSO H2O2 110 45-55 25

18 PW4Mo8/g-C3N4 0.005 CH3CN H2O2 110 45-55 27

19 PW4Mo8/g-C3N4 0.005 DMF H2O2 110 45-55 55

20 PW4Mo8/g-C3N4 0.005 H2O H2O2 110 45-55 58
aReaction conditions: 1 mmol of 1a, 3 mmol of H2O2, catalyst.
bIsolated yield.

It was found that the reaction did not proceed without a heteropolyacid as a catalyst and no activity 

was observed in the presence of bare g-C3N4 (entries 1 and 2). Then, the effect of light irradiation 

on the reaction was investigated and it was found that the reaction worked out best under visible 

light irradiation. Also, in the absence of light, only trace amounts of the product were formed and 

the starting materials remained almost intact (entry 4). Generally, the activity of heteropolyacid/g-

C3N4 in catalytic conditions versus the oxidation was higher than that of the pristine heteropolyacid 

(entry 4 and 5) and the catalytic activity of PW4Mo8/g-C3N4 was higher than PW12@g-C3N4, 

PW8Mo4/g-C3N4, PW6Mo6/g-C3N4, PW2Mo10/g-C3N4, and PMo12/g-C3N4 (entries 6-11). Also, the 

use of H2O2 as an oxidant gave higher yields than O2 and air (entry 12, 13). Reducing the amount 

of catalyst leads to a decrease in yield (entry 14). The reaction produces the best yield under 



visible-light irradiation, using 0.005 g of catalyst and H2O2 as the oxidant in EtOH. To explore the 

scope, the optimized conditions are extended to a variety of sulfides and alcohols. (Table 2, 3).

Table 2. Oxidation of sulfides to the sulfoxides catalyzed by PW4Mo8/g-C3N4 

S
R2R1

S

O

R2R1

PW4Mo8/gC3N4, hv

EtOH, 25-35 0C
H2O2(33%)1a-11a 1b-11b

Entry Substrate 
1a-11a

Product
1b-11b

Time (min) Yieldb(%)

1
S

S
O

110 91

2
S

Br

S

Br

O
75 88

3 S

Cl

S

Cl

O
115 87

4
S

NO2

S
O

NO2

105 80

5
S S

O
80 93

6
S

S
O

140 88

7 S

Br

S

Br

O

150 68

8 S
S
O

140 73

9
S

S O 60 85

10
S S

O
85 91

11 S S

O

110 90



aAll reactions were carried out using 1-11 (1 mmol) and 0.005 gr of catalyst in 10 mL 
of ethanol under visible light irradiation. 
bIsolated yields.

Table 3. Oxidation of alcohols with hydrogen peroxide catalyzed by PW4Mo8/g-C3N4
a

CH

OH

R2R1

C

O

R2R1

PW4Mo8/gC3N4, hv

EtOH, 45-55 0C
H2O2(33%)R1: CH3, Ph R2: H, CH3,Ph, C6H13

Entry Substrate
1c-8c

Product
1d-8d

Time (min) Yieldb(%)

1 OH

O

H 75 88

2 OH

Cl O

Cl

H 100 90

3

OH

Me O

Me

H 120 80

4 OH

MeO O

MeO

H 140 78

5 OH O 160 83

6 OH O 115 85

7 OH O 150 62

8                           OH

NO2

O

NO2

60 87

aAll reactions were carried out using 1-8 (1 mmol) and 0.005 gr of catalyst in 10 mL of ethanol under visible light 
irradiation. 
bIsolated yields.

3.2 Possible mechanism for the photocatalytic oxidations



The accepted mechanism for the oxidation of alcohols and sulfides in the presence of PW4Mo8/g-

C3N4 and H2O2 under visible light is described in Scheme 2. 
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Scheme 2. The photocatalytic mechanism diagram of PW4Mo8/g-C3N4 under visible light irradiation.

3.2.1 Scavengers for determination of active species

To understand the key reactive species in the sunlight driven sulfides and alcohols oxidation 

process by PW4Mo8/g-C3N4, a series of control reactions were performed by adding different 

radical scavengers into the system. In this study, 1 mmol of KI, AgNO3, and t-BuOH was added 

into the reaction mixture for h+, e− and .OH trapping, respectively. As illustrated in Figure 1. The 

addition of KI significantly suppressed the efficiency of the oxidation reaction and a relatively 

smaller effect was observed when AgNO3, t-BuOH were added to the reaction system. These 

observations confirmed that photogenerated holes, e-, and .OH were the main oxidative species in 

the oxidation of alcohols and sulfides in the presence of PW4Mo8/g-C3N4 as a photocatalyst.



Figure 1. Effects of radical scavengers on the oxidation yields of Thioanisole and 1-phenylethanol in the 
presence of PW4Mo8/g-C3N4.

3.2.2 Possible oxidation mechanism

Combining our experiment results with related studies [63-67], a postulated mechanism for the 

oxidation of alcohols and sulfides in the presence of PW4Mo8/g-C3N4 and H2O2 under visible light 

is described in Scheme 3. At first, under the irradiation, the electrons (e-) are excited from the VB 

to the CB of the catalyst leaving behind (h+). The electrons are very active, so, can be easily trapped 

and transferred to the H2O2 promoting the (–OH) and (.OH) formation. Then alcohols undergo a 

deprotonation reaction with -OH to produce alkoxide anions. In the oxidative reaction, the alkoxide 

anions react with the positive holes (h+) and produce alkoxide radicals. It is observed that the 

dehydrogenation reaction with (.OH) produced the carbonyl compounds. Also, the oxidation 

mechanism of sulfides is proposed in Scheme 3.
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Scheme 3. Possible passway for oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by 
PW4Mo8/g-C3N

3.3. Characterization of the catalyst

The Fourier transform infrared (FT-IR) spectroscopy of (a) the PW4Mo8 and (b) PW4Mo8 /g-

C3N4 were also investigated in the range of 500–4000 cm-1. The chief peaks of PW4Mo8/g-C3N4 

located at 1048 and 1020 cm−1 (ν P-O), 930–945 cm−1 (ν metal=O), 850–890 cm−1 (ν metal-O-

metal) and 769 cm−1 (ν metal-O-metal) were observed (Figure 2a). For PW4Mo8/g-C3N4, the 

peaks between 3100 and 3300 cm-1 are assigned to N-H and OH stretching vibrations. As well 

as, the bands at 1150-1750 cm-1 regions are attributed to aromatic C-N heterocycles. The 

intensity of the specific bands of H3PW4Mo8O40 is low, due to the presence of a small amount of 

HPA on the g-C3N4 (Figure 2b) [68]. 



Figure 2. The FT-IR spectra of (a) the PW4Mo8 and (b) PW4Mo8 /g-C3N4.

The XRD measurements were implemented to investigate the presence as well as the crystallinity 

degree and purity of g-C3N4, PW4Mo8, and PW4Mo8/g-C3N4
 catalysts (Figure 3). The XRD pattern 

of g-C3N4 showed diffraction peaks at 2θ = 13.1  and 27.5  correspondings to the reflection planes 

(100) and (002), respectively (JCPDS No. 87-1526) [69, 70]. The intensity of the (100) plane is 

quite good which confirms the presence of a graphite-like structure. The sample of PW4Mo8 

exhibits peaks at 7º~10º, 16º~23º, 25º~31º, and 36º~43º corresponding to the peaks of the 

Keggin structure, which demonstrated that heteropoly acid with Keggin structure had been 

prepared [71]. Whole these diffraction peaks have remained in the XRD patterns of PW4Mo8/g-

C3N4 compound but with reduced intensity, which can result from the decrease crystallite size.  

The XRD pattern of both the g-C3N4 and PMo8W4 /g-C3N4 showed a strong diffraction peak at 2θ 

=27.5°, which indicated the characteristic interlayer stacking of aromatic systems. Thus the XRD 

pattern of the PW4Mo8/g-C3N4 exhibits the typical Keggin-type diffraction peaks and g-C3N4 

diffraction peaks which indicated that PW4Mo8 was loaded on g-C3N4 successfully.  



Figure 3. XRD of g-C3N4, PW4Mo8, and PW4Mo8/g-C3N4.

The SEM images of g-C3N4 support and PW4Mo8/g-C3N4 catalyst are reported in Figure 4. As 

seen in Fig. 4b, the g-C3N4 were covered by some crystals that indicate an acid-base reaction 

between PW4Mo8 and the NH/NH2 groups present in the g-C3N4 materials has occurred.  

Figure 4. SEM image of (a) g-C3N4 and (b) PW4Mo8/g-C3N4

The DRS spectra were recorded to study the optical properties of the PW4Mo8 and PW4Mo8/g-

C3N4 (Figure 5). The band gap energy of PW4Mo8 and PW4Mo8/g-C3N4 was estimated to be 3.53 

and 2.54 eV respectively. The reduced band gap energy of PW4Mo8/g-C3N4 could lead to better 



absorption of light in the visible region favoring more e-h+ pair formation, thus probably resulting 

in improved photoactivity. 

Figure 5. a) Diffuse reflectance spectra and band gaps of (a) PW4Mo8 and (b) PW4Mo8/g-C3N4.

To investigate the band-edge potentials of g-C3N4 and PW4Mo8 photocatalyst, Mott-Schottky 

plots were used at frequency of 500 Hz (Fig. 6). In Figure 6, which illustrates the plots, the 

positive slope of the curves indicates that both g-C3N4 and PW4Mo8 have typical n-type 

semiconductor nature [72]. The flat band potentials (EFB) of the samples are estimated to be − 1.3 

and − 1.0 V (vs Ag/AgCl, pH=7), based on the tangent of their Mott-Schottky curves. As is well 

known, the conduction band edge (ECB) is about 0.1− 0.2 eV below the EFB for an n-type 

semiconductor [73]. Thus, by considering it as 0.2, the CB edges for g-C3N4 and PW4Mo8 are 

calculated as − 1.5 eV and − 1.2 eV. The VB positions of g-C3N4 and PW4Mo8 are calculated to 

be 1.35 and 2.33 eV, respectively. Based on the results from Mott-Schottky plots, the conduction 

band edge of g-C3N4 is clearly more negative than the conduction band of PW4Mo8, whereas the 

valance band of g-C3N4 is less positive than the VB of PW4Mo8. A more negative EVB suggests a 

higher photoelectrochemical and photocatalytic oxidative activity [74]. The diagrams of the band 

energy of the g-C3N4 and PW4Mo8 are presented in Scheme 2.



Figure 5. Mott - Schottky plots of g-C3N4 and PW4Mo8 at 500 Hz.

To describe the textural properties of the catalyst, the nitrogen adsorption-desorption isotherm was 

measured and the results are presented in Figure 7. In general, the sample had an IV isotherm with a type 

of H3 hysteresis loop. The hysteresis loops at a relative pressure (P/P0) range of 0.4-0.95 indicated the 

mesoporous structure of PW4Mo8/g-C3N4. Pristine g-C3N4 had a low BET surface area of 10.1 m2/g, 

which was consistent with the reported value. [75, 76] After g-C3N4 was decorated with PW4Mo8, 

the specific surface area increased to 25.22 m2/g. Accordingly, the specific surface area was 

increased. The improved textural property of g-C3N4 can be ascribed to the hydrothermal treatment 

as the specific surface area of POMs is generally as low as g-C3N4.



Figure 7. N2 sorption isotherms of photocatalyst.

Conclusion

In summary, graphitic carbon nitride (g-C3N4) is a promising visible-light photocatalyst due to its 

unique electronic structure. The visible-light photocatalytic efficiency of g-C3N4 is relatively low 

and far from the requirements of practical applications. Therefore, it has been decorated with 

molybdenum-substituted tungstophosphoric acid (PW4Mo8/g-C3N4) to develop a higher 

performance photocatalyst, and then it has been employed as an effective photocatalyst in the 

presence of visible light and H2O2 to effect the oxidation of alcohols and sulfides. In the present 

work, we have examined five different H3PW12-yMoyO40/g-C3N4 photocatalysts in our reactions 

among which the PW4Mo8/g-C3N4 is found the best. We have used the Keggin/g-C3N4 (previously 

reported by us) in this work for the purpose of comparison with (PW4Mo8/g-C3N4) to verify that 

(PW4Mo8/g-C3N4) was superior in terms of yields as well as reaction times. The catalyst is able to 

oxidize sulfides and alcohols with excellent yields, and without over-oxidation or the formation of 

other by-products. 
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graphitic carbon nitride (g-C3N4) decorated with 
molybdenum-substituted tungstophosphoric acid 
(H3PW4Mo8O40) as a novel photocatalyst (and used to 
catalyze the oxidation of alcohols and sulfides. Increasing 
of the reaction rate in the photo-assisted catalytic reaction 
under visible light illumination can be due to the redox and 
the acidity properties of PW4Mo8/g-C3N4. h+
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Highlights

 Designing a new set of HPAs as photocatalyst under visible-light.

 Proving the promising role of Mo cations in selective photocatalytic oxidation 
of alcohols and sulfides.

 The g-C3N4 with electronic structural property as visible-light active 
photocatalyst


