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Abstract: The Dirichlet process can be regarded as a random probability measure for which the authors 
examine various sum representations. They consider in particular the gamma process construction of Fer- 
guson (1973) and the “stick-breaking’’ construction of Sethuraman (1994). They propose a Dirichlet finite 
sum representation that strongly approximates the Dirichlet process. They assess the accuracy of this ap- 
proximation and characterize the posterior that this new prior leads to in the context of Bayesian nonpara- 
metric hierarchical models. 

Representations exactes et approximatives du processus de Dirichlet par des sommes 
RCsumC: Le processus de Dirichlet constitue une mesure de probabilitk alkatok dont les auteurs examinent 
diffkrentes repdsentations B I’aide de sommes. Ils s’intkressent en particulier B la construction de Fergu- 
son (1973) fondke sur la loi gamma et i la construction dite B “bfitons rompus” de Sethuraman (1994). Ils 
proposent une approximation forte du processus de Dirichlet par somme finie de type Dirichlet. Ils tvaluent 
la qualitk de cette approximation qui conduit B une loi a priori dont ils caracErisent la loi a posteriori dans 
le cadre des modbles bayksiens hikrarchiques non paramktriques. 

1. INTRODUCTION 

The Dirichlet process was discovered by Freedman (1963) through the notion of a tail-free mea- 
sure (see also Fabius 1964), and its properties and theory were developed by Ferguson (1973, 
1974) and Blackwell & MacQueen (1973). In its most general form, the Dirichlet process can 
be defined over an arbitrary measurable space (Ferguson 1973). However, for measure-theoretic 
reasons, our discussion of the process will be confined to a measurable Polish space (Y, B), 
where B is the cr-algebra for the space Y .  In his seminal paper, Ferguson (1973) provided two 
key definitions for the Dirichlet process. His first definition described it as a stochastic process, 
F ,  indexed by elements B of P ,  such that for each measurable partition B 1 ~  . . . , Bd of Y ,  

where p is a finite non-null measure on ( Y ,  P). Ferguson (1973) referred to this process as the 
Dirichlet process with parameter p, which we will denote as DP( p) .  

This characterization as a stochastic process, along with its conjugacy property to iid sam- 
pling, also established in Ferguson (1973), were enough to fuel much of the early work on the 
Dirichlet process. See Antoniak (1974), Berry & Christensen (1979), Lo (1984), Doss (1985), 
and Kuo (1986) for examples. However, for reasons to be discussed, very little of this work uti- 
lized the alternate definition of Ferguson (1973) which, by exploiting a connection to the gamma 
process, described the Dirichlet process as a random probability measure with an infinite sum 
construction. Some early exceptions were Korwar & Hollander (1973), Hannum, Hollander & 
Langberg (1981) and Yamato (1984). This constructive definition, and other sum constructions, 
especially those that can be practically used in computational algorithms in Bayesian nonpara- 
metric problems, will be the focus of this paper. 
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1.1. The Dirichlet process as a random measure. 
The sum construction of Ferguson (1973) was based on earlier work by Ferguson & Klass (1972), 
who provided a representation for the gamma process based on arrival times from a homogeneous 
Poisson process. Let Ek be independent and identically distributed (iid) exp( 1) random variables 
and let I‘k = El +. . . + Ek . Let zk be iid elements, independent of r k ,  with a probability dish- 
bution H over (Y , a). Then, Ferguson (1973) showed that the Dirichlet process with parameter 
,u = a H ,  for some real value Q > 0, could be described as the random probability measure 

M M 

k = l  k 1  

where 62 denotes a discrete measure concentrated at 2, and 

00 e-u 
~ ( t )  = QJ,  - du, forz > 0, 

U 

is the U v y  measure for a Gamma( a) random variable. 

difficulty in working with the random weights 
The earlier lack of interest in the Ferguson (1973) sum construction reflected perhaps the 

e = i  

used in (l), since no closed form solution exists for the inverse of the Uvy measure (2) and since 
each weight p k  requires computing an infinite sum. The theory for this sequence of weights was 
studied by Kingman (1975), who called the distribution of the infinite vector (PI, pa,  . . . ) the 
Poisson-Dirichlet distribution. 

Recognizing the complexities in working with (1) (and with the formulation of the Dirichlet 
process as a stochastic process), Sethuraman (1994) considered an alternate “stick-breaking” sum 
representation using random weights constructed via a stick-breaking approach involving inde- 
pendent beta random variables. Using this construction, Sethuraman (1994) was able to prove 
directly several of the key properties of the Dirichlet process established by Ferguson (1973) and 
Blackwell & MacQueen (1973). See also Mdloskey (1965). Patil & Taillie (1977), Sethura- 
man & Tiwari (1982), Hoppe (1987), Donnelly & Joyce (1989), Perman, Pitman & Yor (1992) 
and Pitman (1996) who have discussed this stick-breaking construction. 

Although Sethuraman’s stick-breaking construction was motivated more from a theoreti- 
cal interest in the Dirichlet process (see his Examples section, however, where Monte Car10 
schemes are suggested), the stick-breaking construction, and its approximations, have become 
increasingly utilized in Bayesian computational procedures. For example, Doss (1994) used the 
representation explicitly in a Gibbs sampling procedure for analyzing censored data, while trun- 
cation approximations have been used by Muliere & Tardella (1998) for approximating Dirichlet 
process functionals, and by Ishwaran & James (2001,2002) and Gelfand & Kottas (2002) for 
posterior computations in Dirichlet process mixture models. 

In addition to these truncation approximations, there has also been a surge of interest in 
other approximating sum representations for the Dirichlet process as a method for directly sam- 
pling from the random posterior measure in Bayesian nonparametric models. See for example, 
Liu (1996), Muliere & Secchi (1996) and Ishwaran & Zarepour (2000). More discussions of 
these techniques as well as those mentioned above wil l  appear in Section 3. 

1.2. Outline and contributions of the paper. 
Given such wide interest, the focus of this paper will be to present a new theory for exact and 
approximate sum representations of the Dirichlet process. We look at representations expressible 
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as random discrete measures 
N 

k = l  

where p k  are random variables chosen to be independent of Z k  and constructed so that 0 5 p k  5 
1 and Er- - pk = 1 with probability one. To a large extent, we will motivate such representations 
in the context of Bayesian nonparametric problems. 

We begin in Section 2 by revisiting the Ferguson (1973) Dirichlet process construction (1). 
There, we prove that there is a class of alternate-sum representations expressible in terms of a ho- 
mogeneous Poisson process, thus showing directly that the Dirichlet process can be represented 
in many ways as a discrete random measure. Moreover, the same idea can be generalized to 
infinitely divisible distributions and their random probability measures (see Theorem 1). In Sec- 
tion 3, we review the Sethuraman (1994) stick-breaking construction and describe its connection 
to the Poisson process. We also look at techniques for truncating this construction and discuss 
how they can be exploited computationally in fitting Bayesian nonparametric models. 

In Section 4, we present a finite-dimensional random measure based on symmetric Dirichlet 
random weights. One of its nice features is its interpretation as a mixture of Dirichlet processes. 
We exploit this in showing that its limit is the Dirichlet process (see Theorem 2 for a precise 
statement). Not surprisingly, given its simple construction, this measure has been the subject of 
some interest in the literature, seeming to have been discovered independently by several authors 
in different contexts (see Section 4 for more discussion). However, little seems to be known 
about its theoretical properties in Bayesian nonparametric problems. We present a detailed anal- 
ysis of such properties, first by discussing the adequacy in which the measure approximates the 
Dirichlet process, giving bounds on the L1 distance between marginal densities in nonparamet- 
ric hierarchical models (Theorem 4) and by giving bounds on the number of distinct sampled 
values (Theorem 3). We then present an informative characterization of its posterior in Bayesian 
nonparametric hierarchical models (see Theorem 5).  We show how such a characterization can 
be readily used with known computational algorithms, such as P6lya urn Gibbs samplers, to al- 
low for draws directly from the posterior random measure. As will be discussed, this presents 
Bayesians with another method for estimating laws for arbitrary functionals of the posterior, in 
direct analogue to the methods discussed in Section 3. 

2. FERGUSON’S SUM CONSTRUCTION 
By using point process methods, we will show how a class of infinite sum representations can be 
constructed for random probability measures based on infinitely divisible random variables. In 
particular, this method directly establishes the existence of many nontrivial alternate representa- 
tions of the Dirichlet process as a random discrete measure (3). 

Let J be a positive infinitely divisible non-Gaussian random variable whose characteristic 
function can be expressed as 

where N (the U v y  measure) is a Bore1 measure defined on (0, cm) by N (  x )  = s,” d N ( u )  so 
that 

a3 

N-’ fu )  du < 00, foreach ,c > 0, (4) 

where N - ’ ( u )  = sup{x : N ( x )  5 u}. If N is positive and continuous, then by Ferguson & 
Mass (1972) it follows that J = Cr=l J k  almost surely, where J k  = N - ’ ( r k ) .  Thus, 

03 03 
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is a random probability measure with random weights based on an infinitely divisibledistribution. 
As shown by Ferguson (1973). the Dirichlet process is an example of a random measure 

expressible as (5). In this case, J = c,"==, J k  is a Gamma(&) random variable and N is the 
LRvy measure defined by (2). Note that the integrability condition (4) is satisfied from 

Our discussion will also include other infinitely divisible distributions, such as positive stable 
laws with index 0 < Q < 1, in which case 

Notice that (4) is easily verified since N - l ( u )  = u-lIa.  The gamma distribution and stable 
laws are examples of infinitely divisible distributions which satisfy the following theorem (see 
the Appendix for a proof). 

THEOREM 1. Suppose that N is a positive, continuous L&y measure satisfying (4). If w k  ate 
iidpositive mndom variables independent of r k  such that E(  w; ' ) = 1, then 

Observe that the random weights on the left-hand side of (6) form an ordered decreasing 
sequence since N is non-increasing. Thus, for the case of a gamma LRvy measure (2), The- 
orem 1 shows directly that there are many alternate representations for the Dirichlet process 
using nonordered random weights. Unfortunately, both the Ferguson sum construction and the 
alternate-sum construction described on the right of (6) are difficult to work with directly because 
of the complexity of the associated LRvy measure. However, there exists simpler representations 
that one can work with, also constructed from a Poisson process. One such example is given 
by Bondesson (1982). Let E i  be iid exp(1) random variables, independent of both r k  and z k .  

Bondesson (1982) showed that the DP(aH) process has the sum construction 

00 

k = l  !=1 

which is somewhat easier to work with since it avoids the use of a Uvy measure. In the next 
section, we will see that there are even simpler representations available, also related to the 
Poisson process, but which are constructed using a stick-breaking method. 

3. STICK- B R EAKl N G REP R ES E NTATl ON 
The unpublished thesis by McCloskey (1965) appears to be the first work that drew comparisons 
between the Poisson-Dirichlet random weights and random weights defined by a beta random 
variable stick-breaking procedure. It wasn't until Sethuraman (1994), however, that this stick- 
breaking representation was used as a means for directly proving key properties of the Dirichlet 
process. See also Sethuraman & 'ITwari (1982) as well as Diaconis & Kemperman (1996) for 
examples of theoretical results derived using this representation. Also see Hoppe (1987), Don- 
nelly & Joyce (1989), Perman, Pitman & Yor (1992), Pitman (1996) and Pitman & Yor (1997) 
for further discussion on McCloskey's result. 

In the Sethuraman (1994) stick-breaking construction, the random weights p k  are defined by 

=v1 and p k = ( l - ~ ' i ) . . . ( l - v k - i ) ~ k ,  fOrk22 ,  
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where Ii. are iid Beta( 1, Q )  random variables independent of Z k  . The distribution for this se- 
quence of random weights p l  , p? , . . . is often referred to as the GEM distribution with parameter 
a, named so by Ewens (1990) after Griffiths, Engen and McCloskey (for further details see also 
Johnson, Kotz & Balakrishnan 1997, ch. 41). Using such weights, Sethuraman (1994) showed 
that 

(7) 
cu 

P (  = t'ldz, ( + C { (  1 - \ i . . . (1 - I k -  1 )  \ i. 1 dz, ( , ) 
k = 9  

is the Dirichlet process DP( O H ) .  

3. I .  Relationship to the Poisson process. 

The stick-breaking construction is related to the Poisson process in many ways. For example, 
the GEM weights used in the Sethuraman (1994) construction can be obtained by a size-biased 
random permutation of the Poisson-Dirichlet random weights (Patil & Taillie 1977; Perman, 
Pitman & Yor 1992; Pitman & Yor 1997). The two sets of weights are also related by 

where p(l) 2 p ( ? )  2 . . . are the ordered GEM weights and N is the gamma Uvy measure (2). 
A more direct connection to the Poisson process is the following representation 

k = l  

where I'o = 0. An easy way to see this is to observe that 

V because e - E 1 l a  2 Beta( a ,  1) = 1 - Beta( 1 ,  a). 

3.2. Almost sure truncations. 

The representation (8) is a useful formulation for deriving explicit bounds on truncations of the 
Sethuraman sum construction. In Ishwaran & James (2001,2002), the construction (8) was used 
to determine the accuracy of almost sure truncations of the form 

N 

p,v( . ) = 171 62, ( . ) + C ((1 - 1,i) . . . (1 - 1 i - 1 )  ~ i )  s z k  ( . ) (9) 
k = ?  

N 

k = 2  

N where 1hr = 1 (EN = 00) so that Ck=l p k  = 1 (hereafter we use N to denote a finite positive 
integer). It follows automatically that P N ( ~ )  P ( g )  for each bounded and continuous real- 
valued function g. Although other methods could potentially be used to truncate the Sethuraman 
representation, the method of setting the Nth beta variable to one ensures that the joint distribu- 
tion for the random weights has a generalized Dirichlet distribution (Connor & Mosimann 1969). 
This key property can be exploited to describe an efficient Gibbs sampler for Bayesian nonpara- 
metric problems in which P, is used as an approximating prior to the Dirichlet process (Ish- 
waran & Zarepour 2000). Muliere & Tardella (1998) have also used the same truncation (9) for 
sampling Dirichlet process functionals. They refer to (9) as the "E-Dirichlet random probability" 
and show that the truncation can be made arbitrarily accurate to within any E > 0 in the total 
variation distance. Below in Section 3.4, we will show that the representation (8) can be used to 
get more explicit bounds for the prior as well as bounds for other Bayesian quantities. 
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3.3. Truncations applied ro the postenor. 

In another interesting use of an almost sure truncation, Gelfand & Kottas (2002) use (9) to ap- 
proximate the posterior in Bayesian nonparametric (and semiparametric) models subject to the 
Dirichlet process prior. A generalization of a similar method appears in the discussion of The- 
orem 3 of Ishwaran & James (2001a). Note that such approaches use truncations to approxi- 
mate the posterior based on a Dirichlet process prior, which is different from methods such as in 
Muliere & Tardella (1998) and Ishwaran & Zarepour (2000), which use (9) as the prior. It is worth 
elaborating more on this. In the first approach, a typical set-up involves data X = (XI,  . . . , X,),  
observed from the nonparametric hierarchical model (the approach readily extends to semipara- 
metric models as well) 

x,IY,’fif(X1121;.), I;IP’.tdP, P - P ,  i = l ,  . . . )  71, (10) 

where P is a DP( crH) measure and f( 3: I y) denotes the density for 3: E X given y E Y ,  jointly 
measurable in 3: and y, where f( z I y) is taken with respect to a a-finite measure A. 

The posterior from (10) (see Antoniak 1974; Lo 1984) is characterized by 

where P( . 1 Y) is a Dirichlet process with finite measure p, = a H  + 
(Yi,...,Y,),and 

&;, where Y = 

Gelfand & Kottas (2002) approximate laws for functionals of the posterior P( . I X) by first 
drawing Y from v( . 1 X) (they use a P6lya urn Gibbs sampler, although other Monte Car10 
methods will also work) and then they compute the corresponding functional of an almost sure 
truncation PN ( . I Y) to P( . 1 Y). They note that because P( . I Y) is a Dirichlet process with 
finite measure p,, = (a + n)H,, where H ,  = p n / ( a  + n) is a probability distribution, the 
corresponding almost sure approximation to P ( . I Y) is 

k = 2  

where V: are iid Beta( 1, cr + n) random variables (V; = 1) independent of 2; which are iid 
with law H,. 

A generalization of this idea is discussed in Ishwaran & James (2001a, Theorem 3) which 
applies to the two-parameter Poisson-Dirichlet process, a generalization of the Dirichlet process, 
although the approximation used there for the Dirichlet process differs from (12). Ishwaran & 
James (2001a) fist note that by Pitman (1996) 

j = 1  

where Y; , . . . , Y: are the unique set of 21;. values occurring each with frequencies n; , and 

( p : ,  . . . , p k , ~ k + ~ )  N Dirichlet(n;, . . . , n;, a) 

is independent of P which is a DP(cuH) process. Thus, to approximate arbitrary functionals, 
they suggest drawing Y from v( . I X) and then computing the corresponding functional from 
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the approximation 
m 

T N  ( , I Y )  = c Pj  &; ( . ) + P;,+ 1 P N  ( . ) 3 

j = 1  

where 7" is an independent almost sure approximation (9) to 7'. Notice that the selection for K 
is less of an issue here, as one draws from PN only with probability a/ ( .  + n ) ,  which becomes 
small for reasonable sample sizes n. 

3.4. Truncations applied to the prior. 

Alternately, one can apply the almost sure truncation as a prior in Bayesian nonparametric hier- 
archical models. Now the set-up involves data X = ( S 1 ,  . . . , S, ), observed from the nonpara- 
metric hierarchical model 

s, 11; f(xZ lx), 1; IP P, P PN> i = 1,.  . . , ? I ,  (13) 

where PAT is an almost sure truncation (9) to P. 
A nice feature of using the approximation at the modeling stage is that it leads to a simple 

Gibbs sampling algorithm, dubbed the "blocked-Gibbs sampler" by Ishwaran & James (2001a), 
which allows one to directly draw values from the posterior of P N ,  thus by-passing the need to 
use approximations as discussed above. Selecting the truncation value AT in this approach is also 
straightforward. One method is to choose N so that the C1 distance of the marginal densities 
under (10) and (13) are close. Let mN(X) be the marginal density of (13), i.e., 

If m, is the marginal density for (lo), then as Ishwaran & James (2001,2002) showed, 

(15) 

by using the fact that 

N N 

k = l  k = l  

This bound provides a convenient mechanism for selecting N. 

4. FINITE-DIMENSIONAL DlRlCHLET PRIORS 

By using Dirichlet random weights, we can construct a finite-sum random probability measure 
that is both computationally and theoretically easy to work with as a prior in Bayesian nonpara- 
metric problems and which has the added appeal that it approximates the Dirichlet process. Let 
p = ( P I ,  . . . , p l y )  have the Dirichlet(a/N, . . . , a / N )  distribution independent of z k ,  which are 
iid H as before. Equivalently, let pk = Gk/G, where G = + . . . + G N  and Gk are iid 
Gamma( a /fi ) random variables independent of Z k  . Define 

Then, PN is called afinite-dimensional Dirichlet prior. 
A nice feature of the finite-dimensional Dirichlet measure is the exchangeability of the ran- 

dom weights, and the simplicity of the Dirichlet construction. It is perhaps not too surprising, 
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therefore, that (1 6) seems to have been discovered independently by several authors in differ- 
ent contexts and under different names. Pitman (1996, Example 16) attributes this measure to 
the early work of Fisher, referring to it as “Fisher’s model” (the general Fisher model, however, 
allows for an arbitrary shape parameter K > 0 in place of a / N ) .  Kingman (1975), Waner- 
son (1976), Patil & Taillie (1977), among others, discuss the limiting form of Fisher’s model. 
Muliere & Secchi (1995) looked at proper Bayesian bootstraps and named PN a ‘Dirichlet- 
multinomial process” (as noted by Muliere & Secchi this process is not to be confused with 
the Dirichlet-multinomial process studied by Lo 1986, whose finite-dimensional distribution is 
multinomial). Liu (1996) termed (16) an “m-spike” model, and Ishwaran & Zarepour (2000) 
studied (16) in Gibbs sampling procedures for fitting Bayesian nonparametric models. Also, 
see Neal (2000) who discussed the prior in the context of Bayesian mixture models, and 
Green & Richardson (2001). who also studied mixture models and referred to (16) as a ‘Dirich- 
let/multinomial allocation” model. Surprisingly, however, given the wide interest in this process, 
there seems to be very little known about its statistical properties. Here we will study its use as a 
prior in Bayesian nonparametric problems, providing a characterization of its posterior, as well 
as quantifying how well it approximates the Dirichlet process. 

Intuitively, it is not surprising that PN is a good approximation of the DP(aH) measure. 
Notice that for a hed value of Z = (21 , . . . , Z N ) ,  it is already a Dirichlet process: 

(PN Iz)-DP{a<N(z,’)) ,  

where 
* N  

is the empirical measure of Z1 , . .  . , ZN.  Thus, since <N % H ,  we expect PN R DP(aH). 
Somewhat more formally, notice that PN can be expressed as a mixture of Dirichlet processes 
because <N (Z , . ) is a random measure. Conditioning on Z, and then integrating, we can write 

PN /DP{~<N(z, .  ~ H N ( z ) .  

A conditioning argument will also show that PN can be used to approximate integrable function- 
als of the Dirichlet process. See the Appendix for a proof of the following theorem. 

THEOREM 2. For each real-valued measurable furction g, integrable with respect to H ,  
p N ( g )  $ P(g) ,  where P = DP(aH). 

Note that the theorem gives a stronger form of convergence than weak convergence, which 
only applies to bounded and continuous functions. See Muliere & Secchi (1 995) for a proof of 
weak convergence for PN. See also Ishwaran 8z Zarepour (2000) where Theorem 2 is discussed 
(without proof). 

4.1. Clustering and marginal density approximations. 

Another method for comparing PN to the DP(aH) process is to compare their clustering be- 
haviour under sampling. Call Y = (3’1, . . . , y,) a sample from PN (or P) if given P are iid 
P and P has the law PN (or P). With a nonatomic distribution H, clustering events for Y can 
be reinterpreted in terms of partitions of the set { 1, . . . , n}. Towards this end, we introduce the 
following notation. Let P = { Cj : j = 1, . . . , n(P)} be a partition of the set { 1, . . . , R}, where 
Cj is the jth cell of the partition, e j  is the number of elements in a cell Cj, and R (  P) is the num- 
ber of cells in the partition. Also, for each y > 0, let y[O] = 1 and ybl = y(y + 1) . . . (y + j - 1) 
for j 2 1. For a proof of the following theorems, see the Appendix. 
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THEOREM 3. Let D,v and D, equal the number of distinct values in Y when sampled under 
PN and P = DP( cr H ), respectively. If H is nonatomic, then 

h' ! ~ { D N  = k }  < < nak"> for I;  = 1, .  . ., m i i i ( 7 1 ,  N ) .  
N k ( N  - k ) !  - Pr{Dm = k }  - 

Notice that the two distributions agree in the limit as ic' + am because both left and right- 
hand sides converge to one for each k. See Ishwaran & Zarepour (2000), where Theorem 3 was 
stated and its implication discussed in more detail. The same type of calculations used in the 
proof of the theorem can also be used to compute the .C1 -distance between the marginal densities 
under PN and the Dirichlet process, similar to the calculation (15). 

THEOREM 4. Let m, and m N  be the marginal densities for (10) and (13) under the DP(aH) 
prior and the prior ( 1  6), respectively. Suppose that H is nonatomic and N 2 n. Then, 

where we write k = n (P) for clarity, the above the sum is over all partitions P of { 1 . . . , n}, 
and 

k 
Q k  

&I T(P) = - H ( C j  - l)! 
J = 1  

is the probability for a partition P under the DP( o H )  prior. 

The theorem is easily adjusted for the case when N < n. In this case, replace the expression 
following r(P) with the value one for each partition P with n ( P )  > N .  Although the bound 
given in (17) is more difficult to work with than the bound (15) for the almost sure truncation, it 
is more typical for theoretical results for finite-dimensional Dirichlet priors to be simpler because 
of their connection to the Dirichlet process. For example, in the forthcoming section, we are able 
to work out an explicit and informative characterization of its posterior. 

4.2. Posterior for PN 
The following theorem characterizes the posterior of PN in the nonparametric hierarchical 
model (13). It extends Theorem 3 of Ishwaran & James (2001a) who considered priors P with 
two-parameter Poisson-Dirichlet laws. The proof relies on Theorem 1 of Lo (1984) and Corol- 
lary 20 of Pitman (1996), while the representation for PN ( . I Y) appearing in the theorem was 
suggested to us by Lancelot James (personal communication). 

THEOREM 5.  Write P,  ( I I X) for  the posterior from ( 1  3 )  under the prior (16). Then, 

PN(. IY)dvdYIX) ,  

where 
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and Y<i, . . . , Y;, ,, are the mi unique values in the sequence Y1, . . . ,I$- 1. each occurring with 
frequency n3,i (note: ml = 0). Moreover; 

where Y; , . . . , YA are the unique values in the full sequence Yl , . . . ,I; occum‘ng each with 
frequencies nj., and 

( p ; ,  . . . , p k , ~ k + ~ )  - Dirichlet(n; + a / N ,  . . . , n k  + a / N ,  a ( l  - r n / N ) )  

is independent of 
N - m ,  j-1 \ 

J 

where vj are independent Beta( 1 + a / N ,  a( 1 - (m + j ) / N ) )  random variables for j < N - m 
(C’;Y-, = l), and all variables are independent of Zj which are iid H .  

Note that the characterization (18) is in direct analogue to (1 1). Hence one can draw values 
from the laws for functionals of the posterior using the same ideas discussed earlier. Thus, to 
draw from the law of some arbitrary functional, draw Y from UN ( . I X) and then use this value 
to compute the functional of the corresponding random measure PN ( . I Y) . Notice here that no 
form of approximation is needed for PN ( . I Y), thanks to its simple finite-sum expression. We 
also note that Monte Car10 techniques are readily available for drawing Y from U N  ( . I X). For 
example, see Ishwaran & James (2001a) who describe a P6lya urn Gibbs sampler for drawing 
from such measures. 

Remark. Corollary 20 of Pitman (1996) also explicitly identifies (19) as an example of Fisher’s 
model. That is, (19) is a finite-dimensional Dirichlet prior with N - m parameters equal to a / N .  
This in fact implies the following equivalent representation for PN : 

N , i-1 . 

where vj are independent Beta( 1 + a / N ,  a( 1 - j / N ) )  random variables for j < N and VN = 1. 
This relationship can also be deduced from Patil & Taillie (1977, Example 2.7), who note that 
the random weights on the right-hand side of (20) are a size-biased random permutation of the 
ranked weights on the left-hand side. 

APPENDIX: PROOFS 

Pmof of Theorem I :  Let T be a measurable map T: [0, m] x [0, m] + [0, m]. Then, 

k = l  

is a Poisson point process with mean measure u o T-‘ , where du = d F  x dX, F is the distribution 
for i’vk, and is Lebesgue measure on [O,m]. See Resnick (1987, Chapter 3). 

The Laplace functional for C is 
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where g is a nonnegative bounded measurable function on [O, m] x [O. cc]. This applies to 
T ( z .  y)  = Ar-’(zy), which is measurable by the continuity of A’. For this choice of T, 

v 0 T-“t,m] = v { ( x , y )  : N-l(zy)  2 t } .  

Remembering that N is a decreasing function, this equals 

LrnjyY d F ( z )  d y  = i” F { h ’ ( t ) / y }  dy = I” P {.iv(t) lql 2 u }  dv 

where the last equality can be seen to equal E { A‘ ( t  ) M-; } . Therefore, 

which is also the Laplace functional for the Poisson point process cp==l S N -  1 ( h r k  ) ( . ), where 
h = 1 / E ( Pi’; ) . Therefore, by the uniqueness of the Laplace functional 

03 W 

k = l  k = l  

The identity (6) follows when h = 1. 0 

Pmof of Theorem 2: As noted by Sethuraman (1994), the representation (7) can be used to 
decompose the Dirichlet process random probability measure into two conditionally independent 
components. Sethuraman (1994) observed that 

(21) z1 P( . ) = r,’lSz, ( . ) + ( 1 - L i  ) P  ( . 1 

where on the right-hand side P is independent of Vi andZ1. 
By the distributional equation (21), it follows that the characteristic function + of P (g )  equals 

$( t )  = E exp[it{ L’lg(Z1) + (1 - k;)P(g)}] = E [d(tVl)${t(1 - 1,’1)}], (22) 

where we have used the independence of Vl , Z1 and P(g)  and we write 4 for the characteristic 
function of g( Z1). Any characteristic function which satisfies (22) must be the characteristic 
function for P (9). See Lemma 3.3 of Sethuraman (1994). 

Let U ~ N  represent the characteristic function for PN(g). Recall that for a fixed value of Z, 
the measure PN is a Dirichlet process. Therefore, using a similar argument as above, while 
conditioning on the value for Z, we have 

where 

Rewrite (23) as two terms, where the first term replaces the average on the right-hand side of (23) 
by its almost sure limit q5(tV1), while the second term is the remaining expression. Using the 
strong law of large numbers and Lebesgue’s dominated convergence theorem, we can deduce 
that the remainder term goes to zero (note that $N I z (t ) is bounded by one), while integrating 
over Z and taking limits for the first term we have 

t’co(t) = E [4(fl,i)v>03{t(l - L’i)}It 

where is the limit of $ N .  Furthermore, because P N ( ~ )  is tight (by the integrability of g), 
it follows that @, must be the characteristic function for the limiting law of PN (9). Therefore, 
since $,co satisfies the same equation as (22), we deduce that PN(g) converges weakly to P(g) .  
0 

$’NIZ(t) E [exp{itPN(g)} I z]. 



280 ISHWARAN 8 ZAREPOUR Vol. 30, No. 2 

Proof of Theorem 3: The probabilities in question are obtained by summing over all partitions 
P with n ( P )  = k .  Let r ( P )  denote the prior probability for a partition P under the DP(aH) 
process. Following the work of Antoniak (1 974), if H is nonatomic and n (P) = k, 

Under PN , this same set has the probability 

Dividing (25) by (24), we get 

The first term on the extreme right is bounded above by 1, while the term to the right of this is 
bounded below by 1. Hence, 

The right-hand side can be bounded by e x p ( a k  logn/N). Summing over all partitions P with 
13 n ( P )  = k gives the desired bound. 

Proof of Theorem 4: Let rp denote the distribution for p, the vector of random weights. Integrat- 
ing over the random measure P in the integrand of m N  (X) (see for example (14)), and keeping 
Z fixed until the end, we have 

Lo (1984, Lemma 2) established a pardel identity for moo with XN (P) replaced with r( P) in 
13 the above expansion. The bounds in (17) now follow automatically from (26) and (27). 

Proof of Theorem 5: The characterization (1 8) follows by mimicking the proof of Theorem 1 
of Lo (1984), replacing the marginal distribution for Y under the Dirichlet process with that 
under PN : 
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To arrive at the representation for PN ( . I Y), deduce by equations (51) and (52) prior to Corol- 
lary 20 of pitman (1996) that 

where \; are independent Beta(nj + a / N ,  a (  1 - j / K )  + c:,,, n:) random variables for 
1 5 j 5 m, while for m t 1 5 j < N - 1, they are independent Beta( 1 + @/AT,  a(1-  j / N ) )  
random variables, and V, = 1. Let p; denote the random weights in the first sum. Using the 
fact that 

m m 

a little bit of rearrangement gives 

where = C,+j for j = 1, . . . ~ 2%’ - m. It is straightforward to verify that the joint distribution 
0 for the pj* has the stated Dirichlet law. 
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