ChemComm

Cite this: Chem. Commun., 2012, 48, 4323-4325

COMMUNICATION

Improved photocatalytic efficiency of a WO_3 system by an efficient visible-light induced hole transfer[†]

Srinivasan Anandan and Masahiro Miyauchi*

Received 16th February 2012, Accepted 8th March 2012 DOI: 10.1039/c2cc31162c

Amorphous Cu(II) nanoclusters grafted WO₃ particles were coated on a smooth TiO₂ film, and site selective depositions of PbO₂ and metal Ag particles by photocatalytic processes were observed on TiO₂ and WO₃ due to transfer of holes to TiO₂, and accumulation of electrons in WO₃ respectively. As a result, the photocatalytic activity of TiO₂ modified Cu(II)–WO₃ increased \sim 3.5 fold higher than that of Cu(II)–WO₃.

Although N-doped TiO₂ is considered as an efficient visible-light photocatalyst;^{1a} its quantum yield (QE) under visible light is 1-2 orders of magnitude smaller than those under UV light due to slower hole mobility and lower oxidation power of holes.1b Recently, Irie et al.² succeeded in fabricating an efficient visiblelight responsive photocatalyst through high oxidation power of holes in the valence band (VB) of photocatalysts induced by interfacial charge transfer (IFCT) and multi-electron reduction via Cu(II)-ions. The efficiency of Cu(II)-grafted WO₃ photocatalysts is ~ 16 times higher than that of N-doped TiO₂. Based on this report, extensive research studies³ have been carried out such as (i) varying co-catalysts, $3^{a,b}$ or (ii) varying other metal oxides, 3c-e or (iii) using nanotubes/nanosheets, 3fg to improve the performance. These previous works optimized the conduction band (CB) side to improve its reduction reaction of electrons, but the performance becomes saturated. The oxidation pathway is also very important in WO₃ based photocatalysts, but the optimization of the VB side for Cu(II)-WO₃ is still challenging. Recently in water splitting systems, RuO₂ or IrO₂ act as a co-catalyst for oxygen evolution.⁴ Previous studies also reported heterogeneous semiconductor systems like CdS–TiO₂, 5a TiO₂–SnO₂, 5b TiO₂–ZnO, 5c TiO₂–WO₃, 5d but the UV light irradiation to excite the TiO₂ side was indispensable to proceed photocatalytic reactions. Especially under the indoor environment, a light source like an incandescent lamp or LED does not emit any UV light, thus the visible-light-sensitive photocatalyst is very important for the practical use in the indoor environment. Herein, we report a simple and effective strategy to improve the efficiency of photocatalysts (Cu(II)-WO₃) by the modification of TiO₂. Hole transfer

Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan. from VB of WO₃ to TiO₂ upon visible-light illumination has been observed by thermodynamic and kinetic analysis. And the visible-light activity was improved much more than the reported Cu(π)–WO₃.

We constructed a Cu(II)–WO₃/TiO₂ thin-film by dispersing Cu(II)–WO₃ particles on a smooth TiO₂ film (thickness \approx 200 nm) (see Fig. S1 and S2, ESI[†]), which is an ideal setup to observe charge transfer experimentally by an electron microscope analysis. We photocatalytically oxidized 1 mM Pb(NO₃)₂ solution by employing the Cu(II)–WO₃/TiO₂ thin-film under visible-light irradiation, and tried to observe PbO₂ which formed by the oxidation of lead⁶ (Pb²⁺ + 2H₂O + 2h⁺ \rightarrow PbO₂ + 4H⁺) by holes. The surface morphology of photo-irradiated Cu(II)–WO₃/TiO₂ is measured by an Auger electron, and scanning electron microscope coupled with an energy dispersive X-ray spectroscope (SEM-EDX), and the results are shown in Fig. 1. Fig. 1a and b show that PbO₂ particles (diameter \approx 400 nm) generate on both surfaces of TiO₂ and WO₃. TiO₂, WO₃ and PbO₂ are indicated in Fig. 1b as blue, green, and red color respectively.

Fig. 1 (a) Auger electron image, (b) Auger elemental mapping, (c) SEM image, and (d) EDX patterns of PbO₂ deposited Cu(II)–WO₃/TiO₂. (Photocatalytic oxidation conditions: 1 mM Pb $(NO_3)_2 = 5$ ml; light source: xenon lamp with Y-43 and c-50s cut-off filters; adsorption in dark = 1 hour; irradiation time = 1 hour.)

E-mail: mmiyauchi@ceram.titech.ac.jp

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c2cc31162c

It is interesting to note that PbO_2 mainly appears on the TiO_2 surface near the interface between TiO₂ and WO₃, though some PbO₂ particles deposit on WO₃. In contrast, PbO₂ particles were not observed in the bare TiO2, even after long-time photoirradiation of Pb(NO₃)₂ solutions (see Fig. S3, ESI⁺), revealing that TiO₂ cannot be excited by visible-light illumination. SEM observation at various portions of the Cu(II)-WO3/TiO2 thin film reveals the uniform deposition of PbO₂ on the surface of the TiO₂ film (see Fig. S4, ESI⁺). SEM-EDX results of the Cu(II)-WO₃/ TiO₂ thin film are shown in Fig. 1c and d. The EDX patterns represented in red, blue, and green in Fig. 1d correspond to the spectrum I, II, and III of Fig. 1c respectively. The EDX pattern for point I reflects the presence of TiO₂ alone, while point II displays the existence of TiO₂ and PbO₂. Point III exhibits the presence of not only WO₃, but also TiO₂ and PbO₂. These results instruct that the holes generated initially on WO3 are responsible for the deposition of PbO₂ on WO₃ particles, while migration of holes from WO_3 to TiO_2 is the reason for the formation of PbO_2 on TiO_2 . We compared the peak intensities of PbO_2 (Fig. 1d) on the WO₃ with that on the interface between TiO₂ and WO₃. Then, the PbO₂ particles deposited more on the interface than on WO₃. Moreover, we investigated the SEM-EDAX analysis on several portions of particles, then a similar trend has been observed. The grazing angle X-ray diffraction (GXRD) pattern (see Fig. S5, ESI[†]), and X-ray photoelectron spectroscopic (XPS) results (Fig. S6, ESI[†]) of photo-irradiated Cu(II)-WO₃/TiO₂ revealed the presence of crystalline PbO₂ particles.⁷

Next, to investigate reduction reaction, $Cu(II)-WO_3/TiO_2$ in AgNO₃ solution was irradiated by visible-light, and the results of microscopic analysis are shown in Fig. 2. Fig. 2a and b show SEM images of the surfaces of the $Cu(II)-WO_3/TiO_2$ thin-film after Ag deposition. Ag particles (inside black line in Fig. 2a and b) having sizes of about 2–5 nm deposit only on WO₃ rather than on TiO₂. The EDX pattern (Fig. 2d) represented in green and red corresponds with points I and II of Fig. 2c, revealing that photoreduction of Ag⁺ ions takes place only on WO₃. XPS results

Fig. 2 (a and b) FE-SEM images, (c and d) SEM-EDX analysis of Ag deposited Cu(II)–WO₃/TiO₂. (Photocatalytic reduction conditions: 1 mM AgNO₃ = 5 ml; light source: xenon lamp with Y-43 and c-50s cut-off filters; adsorption in dark = 1 hour; irradiation time = 1 hour.)

(see Fig. S7, ESI[†]) confirm the presence of metallic Ag on photo-deposited Cu(II)–WO₃/TiO₂. These results indicate the accumulation of electrons in WO₃ particles. It is also important to consider the electron transfer from the CB of WO₃ to Cu(II) ions. As reported by Irie *et al.*,² a visible-light excited electron in CB of WO₃ is consumed by Cu(II) ions, which reduces oxygen through multi-electron reduction.

The CB potential of WO₃ is +0.3 to +0.5 V (vs. SHE, $pH = 0^{8a}$) more positive than that of TiO₂ (0.04 V vs. SHE, pH = 0) and it is not sufficient for single-electron reduction of an oxygen molecule ($O_2 + H^+ + e^- \rightarrow HO_2$, -0.046 V vs. SHE at pH = 0).^{8b} The VB potential of WO₃ is 3.1–3.2 V (vs. SHE, $pH = 0^{8c}$) positive than that of TiO₂ (3.04 V vs. SHE, $pH = 0^{8b}$). When visible-light is irradiated on Cu(II)-WO₃/TiO₂ the charge carriers (holes and electrons) are generated on WO3 as shown in Fig. 3. Holes in the VB of WO₃ transfer to TiO₂, since the VB positions of TiO_2 is more negative than that of WO_3 .⁹ The holes in the VB of TiO₂ have sufficient life-time to initiate photocatalytic oxidation either in solution (oxidation of Pb^{2+} in to Pb⁴⁺) or under aerobic conditions (oxidation of acetaldehyde into carbon dioxide) as shown in Fig. 3. The electron in the CB of WO_3 transfers to either Cu^{2+} or Ag^+ ions as per thermodynamic consideration, since their redox potentials $\{Cu^{2+}/Cu^{+}, E^{0}\}$ 0.16 V); Ag^+/Ag (0.77 V)} are more positive than that of CB of WO₃. The electron transfer to Cu(II) ions may reduce oxygen into hydrogen peroxide through multi-electron reduction reaction.⁹ Due to this charge transfer, holes and electrons generated in WO₃ efficiently separated, so that Cu(II)-WO₃/TiO₂ can utilize visible-light efficiently to decompose organic pollutants.

Based on our experimental analysis for the visible-light induced charge transfer between WO₃ and TiO₂, a highly active visible-light sensitive powder system has been developed. We prepared TiO₂ modified Cu(II)-WO₃ by physical mixing of Cu(II)-WO₃ and commercial TiO₂ particles. Since small size particles are beneficial for hole mobility,¹⁰ we used TiO₂ nanoparticles (MT-150A, grain size 15 nm, TAYCA, Japan) for the modification of Cu(II)-WO₃. We investigate the photocatalytic efficiency for the decomposition of gaseous acetaldehyde under visible-light illumination (λ > 400 nm), and the changes in generated CO_2 concentration by oxidation reaction are shown in Fig. 4. For comparison, the results of TiO₂ and Cu(II)-WO₃ are also included in Fig. 4. Pure TiO₂ shows negligible visible-light activity due to lack of visible-light absorption. Cu(II)-WO₃ showed visible light activity, whereas pure WO₃ without Cu(II) co-catalysts was inactive.^{3a} In contrast, it is noted that the addition of TiO₂ particles onto Cu(II)-WO₃ abruptly

Fig. 3 Mechanism of charge separation over TiO_2 modified Cu(1)–WO₃. The aerobic phase reaction and the solution phase reaction take place independently in this system.

Fig. 4 Initial reaction rate of CO_2 generation over TiO_2 , Cu(1)– WO_3 , and TiO_2 modified Cu(1)– WO_3 .

enhances the photocatalytic activity of WO₃. It shows ~ 3.5 fold higher reaction rates than Cu(II)-WO₃. The photocatalytic activity as a function of TiO₂ loading in TiO₂ modified Cu(II)-WO₃ can be found in the ESI⁺ (Fig. S8). Since we carried out the photocatalytic reactions under light-limited conditions,11 the photocatalytic efficiency largely depends on the charge separation. High visiblelight sensitivity of TiO₂ modified Cu(II)-WO₃ is due to its efficient charge separation for both holes and electrons. TiO₂ nanoparticles act as co-catalysts for oxidation reaction by the extraction of holes from WO3, while the Cu(II) nanoclusters act as cocatalysts for reduction reaction through the multi-electrons reduction for adsorbed oxygen molecules.⁹ Kinetic fluorescence lifetime analysis (Fig. 5), revealing that TiO₂ modified Cu(II)-WO₃ shows a slow decay curve with long-lived (382 ps) charge carriers, whereas Cu(II)-WO₃ exhibits fast decay with short-lived (188 ps) carriers. The high photocatalytic activity of TiO2 modified Cu(II)-WO3 is assigned to its slow recombination rate. The trade off relation observed between photocatalytic activity and fluorescence analysis is consistent with the previous studies¹² (detailed discussion can be found in ESI[†]). Long-lived photo-generated charge carriers in the present study are mainly due to the addition of TiO₂ on Cu(II)-WO₃.

In conclusion, the visible-light induced charge transfer is successfully investigated in the Cu(II)– WO_3/TiO_2 thin-film. Hole transfer

Fig. 5 Time resolved fluorescence decay analysis of Cu(n)–WO₃, and TiO_2 modified Cu(n)–WO₃.

has been confirmed by site-selective photo-deposition of PbO₂ on the surface of TiO₂ by the excitation of WO₃ alone. This charge transfer ensures the efficient separation of charge carriers generated on WO₃. TiO₂ nanoparticles modification drastically improved the visible-light activity of Cu(II)–WO₃. Its visible light activity showed ~3.5 fold higher reaction rate than Cu(II)–WO₃, which was reported as one of the best efficient visible-light photocatalysts to date. Here TiO₂ plays an important role as a co-catalyst and is used for the accumulation of holes from WO₃. We have investigated the effect of TiO₂ addition to Cu(II)–WO₃ for other commercial TiO₂ particles, then this commercial TiO₂ also enhanced the photocatalytic activity of Cu(II)–WO₃ (see Fig. S9, ESI†). The simple strategy, *i.e.* modification of TiO₂ onto Cu(II)–WO₃ used in this study promises to be very valuable for designing more efficient visible-light-active photocatalysts using other semiconductors.

This work is supported by the New Energy and Industrial Technology Development Organization (NEDO) in Japan. We would like to thank the Japan Society for the Promotion of Science (JSPS) for providing the JSPS fellowship. This work was initiated by the discussion with Mr K. Yotsugi and Mr S. Yanai in Sekisuijushi Technical Research Corporation.

Notes and references

- (a) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269–271; (b) H. Irie, Y. Watanabe and K. Hashimoto, J. Phys. Chem. B, 2003, 107, 5483–5486.
- 2 H. Irie, S. Miura, K. Kamiya and K. Hashimoto, *Chem. Phys. Lett.*, 2008, **457**, 202–205.
- (a) R. Abe, H. Takami, N. Murakami and B. Ohtani, J. Am. Chem. Soc., 2008, 130, 7780–7781; (b) H. Yu, H. Irie, Y. Shimodaira, Y. Hosogi, Y. Kuroda, M. Miyauchi and K. Hashimoto, J. Phys. Chem. C, 2010, 114, 16481–16487; (c) X. Qiu, M. Miyauchi, H. Yu, H. Irie and K. Hashimoto, J. Am. Chem. Soc., 2010, 132, 15259–15267; (d) S. Anandan, N. Ohashi and M. Miyauchi, Appl. Catal., B, 2010, 100, 502–509; (e) S. Anandan and M. Miyauchi, Phys. Chem. Chem. Phys., 2011, 13, 14937–14945; (f) Z. G. Zhao and M. Miyauchi, Angew. Chem., Int. Ed., 2008, 47, 7051–7055; (g) A. Nakajima, Y. Akiyama, S. Yanagida, T. Koike, T. Isobe, Y. Kameshima and K. Okada, Mater. Lett., 2009, 63, 1699–1701.
- 4 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori and N. S. Lewis, *Chem. Rev.*, 2010, **110**, 6446–6473.
- 5 (a) N. Serpone, E. Borgarello and M. Gratzel, J. Chem. Soc., Chem. Commun., 1984, 342–344; (b) H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 2000, 104, 4585–4587; (c) G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley and A. M. Venezia, J. Phys. Chem. B, 2001, 105, 1026–1032; (d) M. Miyauchi, A. Nakajima, T. Watanabe and K. Hashimoto, Chem. Mater., 2002, 14, 4714–4720.
- 6 (a) K. Tanaka, K. Harada and S. Murata, Sol. Energy, 1986, 36, 159–161; (b) J. M. Hermann, J. Disdier and P. Pichat, J. Catal., 1988, 113, 72–81.
- 7 T. Ohno, K. Sarukawa and M. Matsumura, New J. Chem., 2002, 26, 1167–1170.
- 8 (a) G. R. Bamwenda, K. Sayama and H. Arakawa, J. Photochem. Photobiol., A, 1999, 122, 175–183; (b) T. Torimoto, N. Nakamura, S. Ikeda and B. Ohtani, Phys. Chem. Chem. Phys., 2002, 4, 5910–5914; (c) M. Miyauchi, A. Nakajima, K. Hashimoto and T. Watanabe, Adv. Mater., 2000, 12, 1923–1927.
- 9 Y. Nosaka, S. Takahashi, H. Sakamoto and A. Y. Nosaka, J. Phys. Chem. C, 2011, 115, 21283–21290.
- 10 J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung, V. Augugliaro and J. Soria, *Langmuir*, 2001, **17**, 5368–5374.
- 11 H. Gerischer, Electrochim. Acta, 1993, 38, 3-9.
- (a) H. N. Ghosh and S. Adhikari, *Langmuir*, 2001, **17**, 4129–4130;
 (b) Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S. T. Zheng, C. J. Bardeen, X. Bu and P. Feng, *J. Am. Chem. Soc.*, 2011, **133**, 6934–6937.