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SUMMARY. Observational studies frequently are conducted to compare long-term effects of treatments. 
Without randomization, patients receiving one treatment are not guaranteed to be prognostically compa- 
rable to those receiving another treatment. Furthermore, the response of interest may be right-censored 
because of incomplete follow-up. Statistical methods that do not account for censoring and confounding 
may lead to biased estimates. This article presents a method for estimating treatment effects in nonrandom- 
ized studies with right-censored responses. We review the assumptions required to estimate average causal 
effects and derive an estimator for comparing two treatments by applying inverse weights to the complete 
cases. The weights are determined according to the estimated probability of receiving treatment conditional 
on covariates and the estimated treatment-specific censoring distribution. By utilizing martingale represen- 
tations, the estimator is shown to be asymptotically normal and an estimator for the asymptotic variance 
is derived. Simulation results are presented to evaluate the properties of the estimator. These methods are 
applied to an observational data set of acute coronary syndrome patients from Duke University Medical 
Center to estimate the effect of a treatment strategy on the mean 5-year medical cost. 
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1. Introduction 
In many biomedical studies, the primary aim is to estimate 
the difference in mean response between two treatments. How- 
ever, the primary response variable, R, often is not available 
immediately after the patient enters the study. Rather, the 
response is observed after some period of time that may vary 
by individual. The length of time before the response is ob- 
served, which is denoted by the positive random variable T ,  
is called the lag-time or time to response ascertainment and 
we will refer to R as the timelagged response. Examples of 
time-lagged responses include survival time, lifetime medical 
costs, quality-adjusted survival time, and cumulative hospital 
admissions. Because of the time lag and the fact that many 
studies have limited follow-up, some of the response data will 
be censored. 

In observational studies, because patients are not random- 
ized to treatment, the data analyst must be careful in deal- 
ing with potential confounding. The propensity score, which 
is the probability that an individual is assigned one of the 
treatments as a function of observed covariates, is commonly 
employed to adjust for confounding in large nonrandomized 
studies (Rubin, 1997; Dehejia and Wahba, 1999). Typically, 
the propensity scores are estimated from a parametric model 
and individuals with similar estimated propensity scores are 
compared either by stratification or matching. Alternatively, 
Cassel, Siirndal, and Wretman (1983) and Rosenbaum (1987) 

suggested inverse propensity score estimators to adjust for 
confounding. The topic of this paper will be to generalize the 
inverse propensity score estimators to the setting with cen- 
sored data. 

In the next section, we review the assumptions required 
to estimate average causal effects and describe the inverse 
propensity score estimators when there is no censoring. We 
extend the problem to deal with right censoring of time-lagged 
responses in Section 3. The large sample properties of the es- 
timator are outlined in Section 4. In Section 5, we conduct nu- 
merical studies to evaluate the small sample properties of the 
proposed estimator under various censoring and confounding 
patterns. In Section 6, we estimate treatment effects from an 
observational study of patients with coronary artery disease. 

2. Estimating Causal Effects with Propensity Scores 
We begin by reviewing the definition of average causal treat- 
ment effect when there is no censoring. With no censoring, the 
response R will be known for all the individuals in the study. 
Thus, the lag-time variable T need not be considered for the 
time being. Throughout the paper we consider counterfac- 
tual random variables (or potential outcomes) as described 
by Rubin (1974, 1978). We define R(') to correspond to the 
response of a randomly chosen individual in our population 
if, possibly contrary to fact, the patient received treatment 
0. Similarly, we define R(') as the response if the patient r e  
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ceived treatment 1. These are hypothetical quantities because 
an individual can receive only one treatment. Nonetheless, the 
average causal treatment effect is defined as 

6 = E ( R ( l ) )  - E(R(O)). 

In actuality, the experimental sample will receive (be as- 
signed) only one treatment, 0 or 1, and this will be denoted by 
the treatment indicator A = (0 , l )  and the observed response 
R = R ( O ) I ( A  = 0 )  + R ( ~ ) I ( A  = 1). It is important t o  un- 
derstand what conditions are required to identify the average 
causal treatment effect from the distribution of the observable 
random variables (R,  A) .  For example, in a randomized study, 
it is reasonable to assume that (do), Id1)) 1 A, where 1 de- 
notes being statistically independent. Under this assumption, 
the average causal treatment effect can be expressed in terms 
of the population parameters for the observable random vari- 
ables (R, A ) ,  namely, 

6 = E ( R  I A = 1) - E ( R  1 A = 0) .  

In an observational study, patients receiving treatment 1 
may not be comparable to those receiving treatment 0; there- 
fore, it may not be reasonable to assume that (do), R(l ) )  1 A. 
However, if prognostic factors X can be identified that are be- 
lieved to explain the prognostic variation and if, in addition, 
we believe that treatment choice only depends on X ,  then 
conditional on X ,  it may be reasonable to assume that treat- 
ment assignment is random. We denote the independence of 
the counterfactuals and treatment assignment conditional on 
the vector of observed covariates X by: 

With this assumption, the average causal treatment effect 6 
can be identified in terms of the distribution of the observable 
random variables (R,  A,  X ) .  This follows because 

E ( R ( ~ ) )  = E { E ( R ( ~ )  I X I }  

= E { E ( R ( ~ )  I A = 1, x ) }  
= E { E ( R  I A = 1, X ) } .  

The second equality follows from (1). A similar argument gives 
E(R('))  = E{E(R  I A = 0,  X ) } .  

In observational studies with large numbers of covariates, 
adjustment for baseline differences using covariance methods 
might be inadequate. An alternative strategy to  adjust for 
covariate imbalance is through the use of the propensity score. 
Proposed by Rosenbaum and Rubin (1983), the propensity 
score is defined as the probability of being assigned treatment 
1 (say) conditional on X :  

~ ( z )  = P ( A  = 1 I X = z). 

Propensity scores are particularly useful because they allow 
the data analyst to adjust for prognostic differences while re- 
ducing the dimension of the covariates. 

We say that treatment assignment is stron ly ignorable if 

0 < T ( X )  < 1 (Rosenbaum and Rubin, 1983; Rosenbaum, 
1984). In addition to the independence between the coun- 
terfactual responses and treatment assignment conditional on 
covariates, the strong ignorability assumption guarantees that 

we observe covariates X ,  such that (do), R(l  7 ) 1 A I X and 

every individual has a positive probability of receiving either 
treatment. If we believed the strong ignorability assumption 
and either knew or could estimate the propensity score, then 
we could take advantage of the relationship 

where p i  = E ( R ( l ) ) ,  to obtain estimators. 
Equation (2) follows because 

1 E { I ( A  =I:$ - 

= E {  I ( A  = l ) ( R ( l )  - p i )  

T ( X )  

The next t o  last step follows from the strong ignorability as- 
sumption. Similarly, 

where PO = E(R(O)). 
Suppose we had a sample of data (Ri, Ai, X i ) ,  i = 1,.  . . , n 

assumed independent and identically distributed, then an es- 
timator for p1 is given by the solution to the estimating equai 
tion CY==, Ai(Ri - P ~ ) / T ( X ~ )  = 0 or equivalently 

n c s  
P 1 =  i=l n 

i=l 
Similarly an estimator for PO is given by 

P O  

(3) 

(4) 

For observational studies the propensity score is gener- 
ally unknown and must be estimated from the observed data 
( A i , X i ) .  For this purpose, we might assume a parametric 
model such as P ( A  = 1 I X = z) = ~ ( q y ) ,  where y de- 
notes a finite set of unknown parameters. Because treatment 
is binary, the logistic regression model is often used for this 
purpose. That is 

We do not need to restrict ourselves to only these mod- 
els. However, we will consider estimating the parameter y 
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using maximum likelihood, which we denote by 3, and we 
will assume the necessary regularity conditions so that this 
estimator will be asymptotically normal. We denote ~ ( z ,  yt) 
to be the true propensity score that generated the data and 
~ ( z ,  3) to be the maximum likelihood estimate of the propen- 
sity score, where ~ ( z ,  y) = exp (zTr)/[l  + exp (zCTy)]. By re- 
placing ..(Xi) with the estimate 7r(Xi,T) in (3) and (4), an 
estimator for average causal treatment effect is given by 

(5)  

These estimators were originally suggested for missing data 
problems (Cassel et al., 1983; Rosenbaum, 1987) and are simi- 
lar to the Horvitz-Thompson estimator (Horvitz and Thomp- 
son, 1952) in the survey sampling context. Little (1986) dis- 
cussed other weighting strategies based on the stratification 
of estimated propensity scores. 

3. Estimating Causal Effects in Right Censored Data 

As stated earlier, in many biomedical applications the re- 
sponse variable of interest may be censored. Let C, denote 
the zth individual's potential censoring time, in which case 
the observable data are defined by 

U, = min(T,, C,) = time to response ascertainment or cen- 

A, = I{(T,  5 C,)} = complete-case indicator, 

R, = response observed only if A, = 1. 

Now that censoring has been introduced, we need to define 
counterfactual lag-times {T,,), T:')} that correspond to the 
lag-times if, contrary to fact, the ith individual in our sample 
received treatment 0 or 1, respectively. The observed lag-time 
T, = T,"'I(A, = 0 )  + T2("I(A, = 1). The assumption of 
strong ignorability is now extended to 

with Propensity Scores 

soring, 

and 

and 

0 < .(Xi) < 1. 

In addition, we assume that censoring is noninformative 
conditional on treatment assignment; specifically, 

which also implies that Ci 1 (Ti, Ri X i )  Ai . This assumption 
may be weakened to allow 

(7 )  

but for many problems the first assumption will often suffice. 
Let us denote the treatment-specific censoring distributions 
as K l ( u )  and Ko(u),  where 

K ~ ( u )  = P(C 2 1 A = j ) ,  j = O , l .  

We must also assume that the lag-time T is bounded, say, 
by the value L ,  and that K1(L) and Ko(L) are bounded 

away from zero. This assumption is necessary to guarantee 
that there is some probability of observing individuals with 
all possible lag-times. 

The observable data are denoted by the sample of i.i.d. 
random vectors 

(Ui, Ai, Ail&, Ai, X i ) ,  i = 1, .  . . n. 

The focus is to use this data to estimate E(R(O)), E(R(l)), 
and the average causal treatment effect 6 = E ( R ( l ) ) - E ( R ( o ) ) .  
The proposed estimator will be an inverse-probability-weight- 
ed estimator motivated by the following relationship: 

We obtain this relationship by noting 

I ( A  = l ) (R( l )  -p i )  = E [  7T(X)K1 (T(1)) 

The inner expectation, given as Kl(T( ' ) ) I (A  = l)+Ko(T(l)) 
x I ( A  = 0), when multiplied by I ( A  = 1) yields K l ( T ( ' ) ) x  
I ( A  = 1).  Therefore, the left hand side of (8 )  equals 

which by equation ( 2 )  equals 0. Similarly, 

In general, x(z), Ko(u),  and Kl(u) are not known and must 
be estimated. In Section 2, we briefly discussed estimating the 
propensity score using maximum likelihood. We also propose 
estimating K1 (u) and Ko(u) with treatment-specific Kaplan- 
Meier estimators (Kaplan and Meier, 1958) of the censoring 
distribution. These estimators would be obtained by stratify- 
ing on treatment and then reversing the role of failure and 
censoring to obtain the Kaplan-Meier estimator for the cen- 
soring distribution. We denote the treatment-specific censor- 
ing estimators as k l ( u )  and ko(u). The estimator we propose 
for 6 is given as 
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where $1 and $0 are solutions to 

and 

respectively. Similar approaches using inverse weights have 
been suggested to estimate survival distributions (Hubbard, 
van der Laan, and Robins, 1999) and parameters in marginal 
structural models (Hernh,  Brumback, and Robins, 2001). 

The estimator (9) provides the data analyst with a tool to 
potentially estimate causal effects from data sets with cen- 
sored data. We would like to note that this estimator is not 
efficient among the class of semiparametric estimators that in- 
versely weight complete cases and assume that censoring fol- 
lows relationship (6). Further work needs to be done to obtain 
more efficient semiparametric estimators, including methods 
for using partial response information from individuals who 
are censored to gain efficiency. However, the proposed estima- 
tor provides easily computed consistent estimates and avoids 
the difficult task of correctly specifying the direct relationship 
between the time-lagged response and censoring given the co- 
variates. According to Rubin (1997), an advantage of propen- 
sity score methods compared to standard statistical models 
is that they allow the data analyst to examine the overlap of 
the covariate distributions. Without adequate covariate over- 
lap, estimating causal effects must rely on model-dependent 
extrapolations. 

4. Large Sample Properties 
The strategy taken for showing asymptotic normality is to 
derive the influence function of the proposed estimator. That 
is, we show that the estimator minus the estimand can be 
approximated by a sum of independent mean zero random 
variables. Namely, 

n 

2=7 

where $, is a function of the ith individual's data, such that 
E($,) = 0 and I?($:) is bounded and op(l) corresponds to a 
term that converges in probability to  zero as n goes to infinity. 
The random variable $i is defined as the i th influence func- 
tion of the estimator. If we can identify the influence function 
of 8, then we immediately know that the estimator is asymp 
totically normal. In addition, the asymptotic variance of 6 is 
given as E(+'). 

Clearly, the influence function of b is the difference of the 
influence functions of $1 and $0. If the propensity score ~ ( z )  
and the censoring distribution Kl(u )  are known, then the 
influence function for $1 can be easily obtained by noting 
that 

n%1 - 111) 
n 

n - l / 2  c A A ( &  - Pl) 
7r(Xz)K1 (U,) - z=1 - 

The last equality above follows from the fact that 

converges in probability to E{AzA2/n(Xz)K1(Uz)) ,  which can 
be shown to equal one using a conditioning argument similar 
to (8). Consequently, if the propensity score and censoring dis- 
tribution were known, the zth influence function for $1 would 
equal A,A2(R2 - p1)/7r(Xz)K1(U2). Similarly, the zth influ- 
ence function for $0 would equal (1 - A,)A,(R, - p0) / {1  - 

The technical difficulty comes from the fact that 8 involves 
estimated propensity scores, T ( Z ,  q ) ,  and estimated censor- 
ing distributions, &(u) and I ? ~ ( u ) .  Therefore, in order to 
derive the influence function, we must account for the influ- 
ence of estimating the parameter y in the propensity score 
by the maximum likelihood estimator T and estimating the 
treatment-specific censoring distribution by the correspond- 
ing Kaplan-Meier estimator. 

In the Appendix, we give the details in cqlculating the zth 
influence function of b and show that n1I2(8 - 6 )  is asymp- 
totically normal. The asymptotic variance of n1l2(b - 6) can 
be consistently estimated by 

7r (XZ) )KO (Ut 1. 

where 
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(1 - Aj)AjI(Uj 2 U )  

j=1 

r 

and 
n 

5.  Simulations 
We conducted simulation studies to  evaluate the properties of 
the proposed estimator, 8. Specifically, we considered a situ- 
ation where the primary goal was to estimate the difference 
in mean medical costs between two treatments in an obser- 
vational study when some of the data are censored. Our sim- 
ulations reflect the notion of counterfactual responses, as de- 
scribed previously. Namely, if individuals were assigned treat- 
ment 0, then medical costs, denoted by do), would be in- 
curred over a period T(O) (lag-time). Similarly, if individuals 
were assigned to treatment 1, then medical costs Id1), would 
be incurred over a period T(')  In our simulations, imbal- 
ance of prognostic factors was reflected by introducing two 
covariates, denoted by X1 and X2, that affect treatment as- 
signment, medical costs, and time lags. 

We considered three sets of simulation scenarios. For the 
first two simulation scenarios, the two covariates X1 and X2 
were generated as independent standard normal random vari- 
ables truncated at f1.96 and the counterfactual lag-time vari- 

ables were generated as 

T ( j )  = min{4,exp(0.5X1 . + 0.5xz + c)}, J = 0,1, (11) 

where E was a standard normal random variable. Thus, the 
lag-time was bounded by a maximum value of L = 4. Ad- 
ditionally, we considered the counterfactual medical costs for 
treatment 0 to be 

+ es+zzT(o) max(X1,o) R(0) = e8+z1 

+ e 5 + z 3 ~ ( 0 )  max(X2, o), (12) 

where Z1,Z2, and Z3 were independent standard normal ran- 
dom variables. The random variable R(O) represents a situa- 
tion where there was an initial cost at time 0 plus additional 
costs, depending on the lag-time and the values of the co- 
variates. For the first two simulations, the treatment assign- 
ment A = (0 , l )  for each individual was generated as indepen- 
dent Bernoulli random variables with Pr(A = 1 I X1,Xz) = 
(e^(ofr1X1+YzXz)/(1+eYo+Y1X1+Y2X2), Different values of y1 
and 7 2  were chosen to study varying amounts of confounding. 

The total medical cost of patients may not always be ob- 
served because of incomplete follow-up or censoring. Specifi- 
cally, the time lag may be censored by the variable C ,  which 
was generated according to  four censoring patterns. For the 
first two patterns, the censoring distributions were identical 
for both treatments. The uniform (0,6) and uniform (2,6) 
censoring distributions resulted in approximately 25% and 
10% of the simulated data being censored, respectively. For 
the last two patterns, treatment 0 had uniform (0,6) and uni- 
form (2,6) censoring, whereas treatment 1 had no censoring. 

In the simulation experiments, not only did we want to 
study the properties of the proposed estimator, but we also 
wanted to consider the consequences of analyses that didn't 
properly account for either confounding or censoring. There- 
fore, we considered three estimators. The proposed estima- 
tor 8 was calculated using (9), where k l ( u )  and KO(.) were 
treatment-specific Kaplan-Meier estimates of the censoring 
survival distributions and +(z) was estimated with a logis- 
tic regression model that included an intercept term along 
with Xi and X2. Next, we wanted to consider an estimator 
that accounted for censoring but not for confounding. A one- 
sample estimator for censored mean medical costs was given 
by Bang and Tsiatis (2000). Treatment difference, which does 
not account for covariate imbalance, was estimated simply as 
the difference in these treatment-specific estimators. This es- 
timator, denoted by dint, was identical t o  using estimator (9) 
and estimating the propensity score with a logistic regression 
model with only an intercept term. Finally, a naive approach 
that did not account for censoring was to consider only com- 
plete cases and delete all observations that were censored. 
This estimator, denoted by 8,,, was calculated by applying 
(5) to the complete cases (A = 1) and estimating +(z) with 
a logistic regression model using an intercept term, X1 and 
X z .  We expected d,, to adjust for covariate imbalances but 
not for censoring. 

Each simulation scenario used 2000 replications. The re- 
sults were summarized by the empirical bias (BIAS) and em- 
pirical standard error (Sim SE) of the estimates across the 
replications. The accuracy of ow estimate for the standard 
error was evaluated by comparing the empirical standard er- 
ror to  the empirical average of the estimated standard errors 
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Table 1 
Simulation summary for the medical cost data with R(l) = R(O) 

y1 = 7 2  = 0.00 0.25 0.50 0.75 1.00 
Sample Size: 500 1000 500 1000 500 1000 500 1000 500 1000 

Censoring pattern 1: uniform (2, 6) for both treatments 
8 BIAS 26.3 1.6 -0.3 -7.3 9.5 7.0 34.2 3.4 -12.8 -2.6 
8cc BIAS 24.3 2.0 -4.1 -9.6 11.1 7.6 24.0 0.1 -19.1 -1.9 
8int BIAS 28.0 1.3 263 265 520 513 710 685 790 818 
8 Sim SE 665 460 677 477 715 495 783 556 940 635 
8 Ave SE 641 460 645 468 679 488 72 1 532 786 590 
d ECP .949 .954 .950 .946 .947 .956 .940 .956 ,936 .945 

Censoring pattern 2: uniform (0, 6) for both treatments 
8 BIAS 19.3 1.7 -18.2 -21.9 16.5 9.2 23.8 -3.6 -20.1 -7.1 
JCc BIAS 21.6 1.5 -13.5 -21.7 17.5 5.6 19.2 -7.3 -30.0 -9.8 
dint BIAS 22.3 1.6 248 253 530 513 704 680 789 818 
8 Sirn SE 779 539 801 547 839 569 912 656 1103 722 
d Ave SE 722 520 728 530 76 1 551 806 599 873 657 
8 ECP .940 .948 .940 .950 .938 .956 ,934 ,945 .933 .943 

d BIAS 22.4 3.6 1.6 -5.4 8.7 6.3 26.7 3.1 -7.7 0.2 
dcc BIAS 131 113 108 101 123 121 136 115 99 112 

8 Ave SE 616 441 624 452 658 474 702 518 770 579 
8 ECP .945 .957 .952 ,949 .948 .955 .941 .950 .941 .947 

Censoring pattern 3: uniform (2, 6) for treatment 0, none for treatment 1 

6int BIAS 24.1 3.1 265 268 520 512 702 686 798 823 
8 Sim SE 634 439 658 454 693 479 764 540 923 621 

Censoring pattern 4: uniform (0 ,  6) for treatment 0, none for treatment 1 
8 BIAS 14.7 4.2 -17.5 -13.1 0.7 9.0 15.8 -2.0 -21.0 0.8 
hC BIAS 169 155 142 139 168 169 184 159 138 157 
8int BIAS 16.9 3.6 250 263 512 513 695 683 790 824 
8 Sim SE 703 480 736 506 776 528 857 609 1047 689 
8 Ave SE 659 473 672 489 705 510 753 561 822 622 
8 ECP ,936 .951 .939 .945 ,939 .947 .934 .944 ,926 .939 

For all studies, the mean of do) was approximately 5650 with a CV of 1.2. 

(Ave SEs) across the replications. Finally, the large-sample 
accuracy was evaluated by examining the empirical coverage 
probability (ECP) of the 95% confidence intervals; that is, the 
proportion of the replications where the estimate was within 
1.96 estimated standard errors from the truth. 

For the first simulation experiment, we examined the effect 
of the treatment assignment parameters (yo,y1, y~), sample 
size, and the censoring distribution on the estimators. We 
took yo = 0 and let y1 and 72 vary, taking on the values of 
0.00, 0.25, 0.50, 0.75, and 1.00. In each simulated data set, 
approximately 50% of individuals received treatment 1. We 
considered samples of size 500 and 1000. We set each individ- 
ual's counterfactual response for treatment 1 to be identical 
to their counterfactual response for treatment 0. Namely, for 
the i th individual, Rjl) = Rj0), where R(O) is defined in (12). 
Table 1 contains a summary of the simulation results. As ex- 
pected, the proposed estimator, 6,  with the correct model for 
the propensity score, was nearly unbiased and the 95% cov- 
erage probabilities had nearly their nominal level for all pa- 
rameter settings. Typically, the Sin1 SE was larger than the 

Ave SE. However, with samples of size 1000, the two mea- 
sures of standard error never differed by more than 10%. The 
complete-case estimator, JCc,  was nearly unbiased for the pa- 
rameter 6 when the censoring distributions were identical for 
both treatments. However, dCc was biased for censoring pat- 
terns 3 and 4. As expected 8int, the intercept-only estimator, 
which did not account for confounding, was biased except 
when y1 = yz = 0. 

The second simulation study considered the scenario where 
differed from R(O) by an additive factor multiplied by 

the lag-time. Specifically, R(') = do) + aT(l) ,  where Q! = 
200,400,600,800,1000. In Table 2, we see that the proposed 
estimator d was nearly unbiased with 95% coverage probabil- 
ities ranging from 93% to 95%. The Ave SE was on average 
about 5% smaller than the simulation standard error. As a: 
increased, the bias of 8,, increased. At Q! = 1000, the bias of 
8cc was -380 compared to -18 for the proposed estimator. 
The intercept-only estimator, 8int, was very biased, with 95% 
coverage probabilities ranging from 73% to 82%. The true 
value of 6 was too difficult to evaluate analytically and there- 
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Table 2 
Simulation summary with additive treatment effectsa 

Estimators 8 8cc dint 
(Y = 200 
6 = 298 

(Y = 400 
6 = 596 

(Y = 600 
b = 894 

(Y = 800 
6 = 1192 

Q = 1000 
6 = 1490 

BIAS 
Sim SE 
Ave SE 
ECP 
BIAS 
Sim SE 
Ave SE 
ECP 
BIAS 
Sim SE 
Ave SE 
ECP 
BIAS 
Sim SE 
Ave SE 
ECP 
BIAS 
Sim SE 
Ave SE 
ECP 

-10 
581 
557 

10 
558 
550 

13 
598 
550 

-4 
630 
561 

.952 

.951 

.944 

.930 
-18 
594 
562 

.945 

- 79 
513 
503 

.951 
-140 

495 
503 

.949 
-218 

512 
501 

.927 
-313 

551 
509 

.882 
-380 

523 
509 

.879 

534 
537 
525 

593 
525 
523 

643 
548 
524 

666 
574 
530 

700 
552 
532 

.816 

.797 

.754 

.735 

.730 

"Two thousand Monte Carlo simulations were used for each 
study. Censoring was generated as uniform (0,6) for both treat- 
ments. Sample sizes were 1000. Treatment assignment parameters 
were -yo = 0, 71 = 72 = 1/2. The true causal treatment effect was 
denoted by 6. For all studies the mean of do) was approximately 
5650 with a CV of 1.2. 

fore was approximated by averaging 500,000 replicates. We 
also considered the case where differed from do) by a 
multiplicative factor and observed similar qualitative results. 

A third simulation study, suggested by a referee, was de- 
signed to examine the effect of unequal treatment-specific co- 
variate variances on the proposed estimator. The treatment 
assignment for each individual was generated as independent 
Bernoulli random variables with Pr(A = 1) = 0.50. For in- 
dividuals with treatment assignment A = 0, the covariates 
X1 and X2 were generated as independent normal random 
variables with mean y and variance 2, where y = 0 and 0.25. 
For individuals with treatment assignment A = 1, the covari- 
ates Xi and X2 were generated as independent normal ran- 
dom variables with mean -y and variance 3. The counterfac- 
tual lag-times and medical costs were generated according to 
(11) and (12), respectively. For this setup, the true propensity 
score model that is induced is a polynomial logistic model that 
includes quadratic terms and interactions of the covariates 
(Rosenbaum and Rubin, 1983). The propensity score models 
used for estimators 8 and JCc were fitted using two different 
logistic regression models. In the first case, a logit model with 
only linear terms was used. The second model was a polyno- 
mial logit model including linear, quadratic, and interaction 
terms. We would expect the polynomial logit model to yield 
less biased results because this model represents the correct 
specification of the propensity score. We also examined the 
bias of these estimators for estimating the parameter 1-11. The 
results of the simulation are shown in Table 3. The proposed 
estimator with the polynomial logit model 8P was nearly un- 
biased for both 6 and 1-11 and had estimated 95% coverage 
between 93% and 94%. The large difference between the sim- 
ulation standard error and the average standard error was 
primarily due to a few outliers. For the linear logit model, the 
estimator 8' was more biased and had 95% coverage proba- 
bilities of approximately 90%. Both complete case estimators, 
8Lc and itc, were biased for parameter 1-11 in all settings. Addi- 
tionally, 6LcA was biased for 6. As expected, the intercept-only 
estimator, 6iint, was biased and had poor coverage probabili- 
ties for both parameter settings. 

Table 3 
Simulation summary with unequal covariate variances" 

R(1) = fp) 
Estimators 8' 8p -1 

6cc 4 n t  

y = o  BIAS(6) -374 6 -285 4 -376 
BIAS(p1) -184 -1 -700 -576 - 185 
Sim SE 629 686 515 534 64 1 
Ave SE 611 629 509 512 622 
ECP .go1 ,939 .922 .945 .902 

y r O . 2 5  BIAS(6) -395 -31 -284 10 -1144 
BIAS(1-11) -289 -27 - 794 -615 -577 
Sim SE 642 823 521 607 648 
Ave SE 616 69 1 512 54 1 632 
ECP .882 .936 .913 .948 .542 

a The propensity score models for 8 and 8,!! included an intercept term, XI,  and X2. The 
propensity score models for &' and 8FC included an intercept term, X1,X2, an interaction term, 
and second-order terms. Two thousand Monte Carlo simulations were used for each study. Cen- 
soring was uniform (0,6) for both treatments. Sample sizes were 1000 with Pr(A = 1) = 0.50. 
The covariates X1 and X2 were independent normal random variables. For A = 0, the mean of 
the covariates was y and the variance was 2. For A = 1, the mean of the covariates was --y and 
the variance was 3. The true causal treatment effect was zero. For both studies, the mean of do) 
was approximately 6400 with a CV of 1.2. 
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Figure 1. Estimated treatment-specific censoring distribu- 
tions where the curves represent one minus the Kaplan-Meier 
estimates for censoring. 

6. Example 
As part of an observational study to estimate the economic 
burden of acute coronary syndromes on a population of pa- 
tients with heart disease, we applied the proposed method to 
estimate 5-year medical cost treatment differences. A Duke 
University Medical Center database prospectively recorded 
baseline demographics, medical history, and catheterization 
results for patients with acute coronary syndrome who re- 
ceived their initial heart catheterization between 1986 and 
1997. The purpose of the analysis was to describe medical 
cost differences between an initial treatment of coronary an- 
gioplasty (PCI) and medicine (MED) (see Mark et al., 1994). 
The study population included individuals with one- or two- 
vessel coronary artery disease, ejection fraction > 30%, and 
no history of congestive heart failure. Attempts were made to 
contact patients 6 months after their initial heart catheteri- 
zation and annually thereafter. A total of 1657 patients re- 
ceived an initial treatment strategy of PCI and 1557 patients 
received MED. All costs were converted to 1997 dollar values 
and discounted at a rate of 3% per year (Eisenstein et al., 

For this analysis, an individual was considered to have com- 
plete cost data (i.e., Ai = 1) if they were followed for 5+ years 
or if they died before the end of 1998. A total of 2284 out 
of 3214 patients have complete data. Among the individuals 
with complete cost data, the mean medical cost for an initial 
treatment of PCI was $41,793 compared to $26,801 for MED, 
for a difference of $14,992. As one might have expected, the 
medical cost data were right-skewed. For PCI patients with 
complete cost data, the median cost was $32,226, whereas the 
95th and 99th percentiles of cost were $104,105 and $170,971. 
For MED patients with complete cost data, the median cost 
was $16,219, whereas the 95th and 99th percentiles of cost 
were $80,442 and $173,204. 
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Figure 2. Estimated treatment-specific distributions of 
propensity scores (for PCI treatment) with the final model. 

To apply the proposed estimator, we must estimate the 
censoring distributions and propensity scores. The treatment- 
specific censoring distributions were estimated with Kaplan- 
Meier estimates and are shown in Figure 1. The probability 
of being censored by five years was 0.39 for the PCI patients 
compared to 0.23 for the MED patients. The difference in 
the censoring distributions was at least partially due to the 
increased use of PCI during the study period (Mark et al., 
1994). 

As a preliminary analysis, a propensity score model was 
constructed using a logistic regression model. Twelve vari- 
ables were considered for the propensity score model. These 
variables were age (median 59, range 30-91), sex, race, ejec- 
tion fraction (median 55, range 30-92), hypertension, history 
of myocardial infarction, mitral insufficiency, diabetes, periph- 
eral vascular disease, unstable angina status, history of smok- 
ing, and number of diseased coronary vessels (one or two). 
We also considered all two-way interactions, and higher-order 
terms for the continuous variables. An initial logit model was 
constructed using a stepwise variable selection technique. Ad- 
ditional terms were added to the model following the iterative 
procedure described by Rosenbaum and Rubin (1984). The 
final propensity score model contained 23 terms. The three 
strongest predictors in the propensity score model based on 
the chi-squared statistic were hypertension, history of smok- 
ing, and ejection fraction. Individuals with higher ejection 
fraction measurements were more likely to  receive PCI treat- 
ment, whereas individuals with a history of smoking or hyper- 
tension were more likely to receive MED. Figure 2 displays the 
distributions of the estimated propensity scores by treatment. 
The estimated propensity score distributions were quite sim- 
ilar for both treatments. Of the 51% of individuals that actu- 
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ally received PCI, the estimated propensity scores ranged 
from a minimum of .18 to  a maximum of .84, with a median 
of .54. By comparison, among those patients receiving MED, 
the minimum, maximum, and median estimated propensity 
scores (for PCI treatment) were .17, .80, and .49. 

Applying these estimated quantities to (9), the estimated 
causal treatment effect was $15,395, with a standard error 
of $1314. The estimated 5-year medical cost for an initial 
treatment of PCI was $41,736 compared to $26,341 for MED. 
Similar treatment effects were obtained by iCc and 8int. The 
complete-case estimator ice, estimated the treatment effect to 
be $15,797, whereas the 8i,t estimated the treatment effect to 
be $14,591. 

We conducted several sensitivity analyses on this data. To 
assess the impact of model selection, we used a logistic regres- 
sion model with the 12 variables entered as linear effects. The 
estimated treatment difference was $15,446, only $51 greater 
than the estimated difference given by the primary model 
used. Also, to examine the effect of extremely high-cost indi- 
viduals, we considered log costs. We estimated, with methods 
described above, the average log cost for PCI and MED to 
be 10.45 and 9.74, respectively. When exponentiated, these 
quantities yielded estimates of $34,201 and $16,970, for a dif- 
ference of $17,231. These figures were similar to the expo- 
nentiated (average log cost) values among the complete cases 
of $34,372 for PCI and $17,223 for MED, for a difference of 
$17,149. 

In this example, the adjustments for confounding and cen- 
soring only altered the results slightly. Several reasons are 
possible for this finding. For this study population, the ma- 
jority of costs were incurred during the first few months af- 
ter catheterization, which would dampen the effect of ignor- 
ing censoring. Moreover, the factors most predictive in the 
propensity score model were not very prognostic of medical 
costs. Nonetheless, for observational data of this type, we be- 
lieve it is important to conduct such an analysis to ensure that 
the biases that may have resulted were taken into account. 

7. Discussion 
In this paper we present a method to estimate causal treat- 
ment effects in observational studies using propensity scores. 
We also consider some of the large sample properties of the 
estimator and give an estimate for the asymptotic standard er- 
ror. Extensive simulation studies show that our estimator per- 
forms well with moderate sample sizes similar to those used in 
clinical trial settings. In the previous sections, we have focused 
on estimating medical cost differences between two treatment 
strategies. More generally, these methods may be used t o  esti- 
mate treatment effects for any time-lagged response. However, 
one cautionary note is that inverse-probability-weighted esti- 
mators are known to be unstable when the weights are large. 
In this paper, the weights are a function of the estimated 
propensity scores and estimated censoring distributions. To 
bound the estimated censoring distributions away from zero, 
we suggested using an artificial maximum lag-time. In appli- 
cations, particular care needs to be taken to restrict attention 
to those individuals whose covariate values indicate that they 
have a reasonable chance to receive either treatment. When 
applying weighting methods to response data with extremely 
long tails, we suggest that the data analyst conduct some ex- 

ploratory analyses to examine the sensitivity of the results to 
a small number of extreme outliers, 
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RESUME 
Les ktudes observationnelles sont frkquemment menkes pour 
comparer les effets au long terme de traitements. Hors ran- 
domisation, les patients recevant un des traitements ne prk- 
sentent plus de comparabilitk pronostique par rapport aux 
patients recevant un autre traitement. De plus la rkponse 
Btudike peut Gtre censurBe B droite en raison de suivis inter- 
rompus. Les mkthodes statistiques ne prenant pas en compte 
la censure et la non skparation d’effets peuvent ainsi conduire 
B des estimations biaishes. Cet article prksente une mkthode 
pour estimer les effets de traitements dans des ktudes non ran- 
domiskes, avec rkponses censurkes B droite. Nous rkexaminons 
les hypotheses nkcessaires ii l’estimation des effets directs 
moyens, et nous construisons un estimateur pour la compara- 
ison de deux traitements en appliquant une pondkration in- 
verses aux cas complets. Les poids sont dkterminks en fonction 
de la probabilitk inverse de recevoir le traitement, condition- 
nellement aux covariables et  B la distribution estimke de la 
censure sphcifique au traitement. En utilisant les martingales, 
nous montrons que l’estimateur est asymptotiquement normal 
et nous obtenons une estimation de la variance asymptotique. 
On prksente des rksultats de simulation kvaluant les propriktks 
de l’estimateur. Les mkthodes sont appliqukes B des donnkes 
observationnelles de patients avec insuffisance coronaire aigue, 
du Centre medical de Duke University, pour estimer l’effet 
d’une stratkgie de traitement sur le coQt mkdical moyen B 5 
ans. 
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APPENDIX 1 

Much of the theoretical development relies on martingale me- 
thods applied to censoring problems as described in Fleming 

and Harrington (1991). Let the filtration F(u)  be the increas- 
ing sequence of a-algebras generated by 

a { I ( c ,  I t ) ,  t I u, A,, X,,  R,, T,, 2 = 1 , .  . . , n ) ,  

which is the a-algebra generated by all covariates, treatment 
assignments, response variables, and lag-times, along with 
censoring history up to time u. We construct an F ( z )  mar- 
tingale process for individual j by defining 

M,c(z) = N,c(2) 

- lz {xE( t ) I (A ,  = 0 )  + AE(t)I(A, = I)} T(t)dt, 

where N j ( z )  = I(U, 5 z ,A ,  = 0 )  is the counting process 
that counts whether individual j was censored before or at 
time z, Y,(z) = I (U,  2 z) is the indicator of whether indi- 
vidual j is at risk at time z, and A;(z), A i ( z )  are the censoring 
hazard functions for treatment groups 0 and 1, respectively. 
Using results of Gill (1980), the Kaplan-Meier estimator for 
censoring from treatment group 1 can be represented as 

(13) 
The estimator T maximizes the objective function given by 

n 

L ( y ,  X ,  A)  = n {..(Xi, T ) } ~ "  (1 - ..(Xi, Y)}( ' -~ ' ) .  
i= 1 

The score vector S-,, defined as 

is given by c:=, S,(Xi ,Ai ,y t ) ,  where 

and yt is the true parameter generating the data. If y is 
suppressed in x ( X i , y ) ,  then it is implicitly assumed that 
..(Xi) = ~ ( X i , y t ) .  Standard asymptotic theory allows us to 
represent the estimator + as follows: 

n 

n l / 2 ( j - y t )  = n-1/2 C { E  (s-, s,T) 1-l sY (xi 7 Ai , ̂ ~ t  ) + o p  (1) 1 

i=l 

(14) 
where S-, ( X i ,  Ai, yt) are independent and identically distri- 
buted random variables. By the central limit theorem 3 is 
unconditionally asymptotically normal with mean zero and 
covariance matrix {E(s-,s,T)}-'. 

We assume that there exists E > 0 such that K1(L)  > 
E ,  Ko(L) > E, and E < .(X) < (1 - E) with probability 1. The 
estimator minus the estimand can be represented as &i(8 - 
6 )  = &@I - 111) - &(Fo - pa). We note that 

J;;;(F1- 111) = 
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L By adding and subtracting common terms (15) can be rep- 
resented as + OP(1). 

Finally, we consider the sum of independent and identi- 
cally distributed terms (18). Here, we utilize an equality from 
Fbbins and Rotnitzky (1992), 

(16) 
n 

AiAi(Ri -PI) - AiAi(Ri - pi) 
W i ,  -it)& (Ui) ..(Xi , 7t)& (Ui) 

(17) Thus, the sum of i.i.d. terms (18) can be written as 

By applying representation of 9 shown in (14), we can ex- 
pand (16) as 

I n 
AiAi(Ri - p i )  - AiAi(Ri - PI) 
~ ( X i , ? ) m 4 )  ~ ( X Z , 7 t ) ~ l ( ~ Z )  

Using Gill’s representation (13) of the Kaplan-Meier esti- By analogy, we can derive the influence function for Po. Thus, 
the influence function for 8 = f i1  - fi0 is given by mator, (17) is equal to 
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L 

Because we have identified the influence function, we know 
that the estimator is asymptotically normal with asymptotic 
variance of E($'). Because (19) is F(0) measurable, this 
means that (19) is uncorrelated with (20) and (21). The co- 
variance between (20) and (21) must be zero because A,(1 - 
Ai) = 0. Consequently, the variance of the influence function 
is given as the variance(l9) + variance(20) + variance(21). 

A consistent estimator of the variance of (19) is given by 

n 
- (1 - A)(& - PO)  

(1 - ..(Xi,?)} i=l 

- HiT { 2(s,s,')}-' Xi 

and k(S,S,') estimates E(S,ST). Formulas for E(S,ST) and 
H are given at the end of Section 4. 

By employing standard martingale computations (Fleming 
and Harrington, 1991), the variance of (20) will equal 

x X;:(u)l$(u)du 

where Gl(Ui )  and Go(Ui)  are defined at the end of Section 4. 1 (Ri (0) - P 0 ) 7  aT(x,) 

(1 -..(Xi)) 
t 




