35 January 1981 Communications

Facile Syntheses of 2H-1,2,4-Benzothiadiazine 1,1-Dioxides and 4-Oxo-3,4-dihydroquinazolines from 2-Aminobenzenesulfonamide or 2-Aminobenzamide and Aldehydes in the Presence of Sodium Hydrogen Sulfite

Yoshio Imai*, Sadayuki Sato, Ryuichi Takasawa, Mitsuru Ueda Department of Polymer Chemistry, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992, Japan

In previous papers^{1,2}, we reported on the chemistry and applications of 3-substituted 2H-1,2,4-benzothiadiazine 1,1-dioxides (3). Generally, such benzothiadiazine derivatives were synthesized either by the condensation of o-aminobenzenesulfonamide (1) with reactive carboxylic acid derivatives giving intermediate o-(N-acylamino)-benzenesulfonamides, followed by cyclodehydration^{1,3}, or by the direct cyclocondensation of 1 with amidines at an elevated temperature4.

When aldehydes were employed as substrates in place of these carboxylic acid derivatives, the reaction products were not 3 but 3-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (4)5.6. Recently, it has been briefly shown that benzaldehyde-sodium hydrogen sulfite adduct condensed readily with ophenylenediamine leading to 2-phenylbenzimidazole7. This information led us to the suggestion that use of aldehydes and sodium hydrogen sulfite would provide 3 by the reaction with 1. We have now found a facile and efficient method for the synthesis of 3 by the reaction of 1 with various aldehydes (2) in the presence of sodium hydrogen sulfite.

Table 1. 3-Substituted 2H-1,2,4-Benzothiadiazine 1,1-Dioxides 3a-d

Product R Solvent^a Yield m.p. Molecular I.R. (KBr) [%] [°C] formula^b v_{SO_2} [cm $^{-1}$] 3a C_6H_5 **DMAc** 86 317°c.d $C_{13}H_{10}N_2O_2S$ 1290, 1150 DMF 77 (258.3)**DMSO** 59 3b 4-H₃C---C₆H₄ **DMAc** 96 35500 C14H12N2O2S 1280, 1155 (272.3)3c 4-H₃CO--C₆H₄ DMAc 98 324°° C14H12N2O3S 1280, 1160 DMF 75 (288.3)**DMSO** 57 3d n-C₆H₁₃ **DMAc** 80 144-145 $C_{13}H_{18}N_2O_2S$ 1290, 1155 (266.4)

Ref.4, m.p. 302-303 °C.

The reaction leading to the formation of 3 was best carried out by heating a mixture of 1, 2, and sodium hydrogen sulfite (1.5 equivalent based on 2) in dimethylacetamide at 150 °C for 2 h. The results of the reaction are summarized in Table 1. Various benzothiadiazine derivatives 3a-d were obtained in high yields by the direct cyclodehydration-dehydrogenation of 1 with both aromatic and aliphatic aldehydes 2a-d.

Further examination of the reaction conditions revealed effects of reaction temperature and amount of sodium hydrogen sulfite, as well as a solvent effect. The reaction at temperatures below 100 °C yielded a mixture of 3 and 4, and the optimum reaction temperature was found to be 150 °C. Use of less than an equivalent of sodium hydrogen sulfite diminished the yield of 3 markedly. Therefore, a slight excess of sodium hydrogen sulfite might be necessary for the completion of the reaction. These observations suggest that sodium hydrogen sulfite plays an important role in the dehydrogenation of 4 to afford 3. In fact, 4 was converted to 3 by treatment of 4 with sodium hydrogen sulfite at 150 °C. However, the mode of catalytic action of sodium hydrogen sulfite is not yet clearly known.

The reaction was then extended successfully to the synthesis of 2-substituted 4(3H)-quinazolinones (6). As shown in Table 2, a variety of quinazolinone derivatives 6a-e was obtained readily in a similar manner to that described above from the direct cyclodehydration-dehydrogenation of o-aminobenzamide (5) with aldehydes 2 with the assistance of sodium hydrogen sulfite. Known methods for the preparation of 6 involve either the direct synthesis or the cyclodehydration of the isolated intermediate o-(N-acylamino)-benzamides, from o-aminobenzamides and various carboxylic acid derivatives^{4,8,9,10}.

This facile and efficient procedure for the reaction in the presence of sodium hydrogen sulfite should be applicable for a variety of aromatic and aliphatic aldehydes, leading to substituted 2H-1,2,4-benzothiadiazine 1,1-dioxides and 4(3H)-quinazoli-

DMAc = dimethylacetamide, DMF = dimethylformamide, DMSO = dimethyl sulfoxide.

The microanalyses were in satisfactory agreement with the calculated values (C ± 0.21 , H ± 0.26 , N ± 0.26).

Determined by D.T.A. at a heating rate of 10 °C/min.

Table 2. 4(3H)-Quinazolinones 6a-e

Product	R	Yield [%]	m.p. [°C]		Molecular formula ^a		I.R. (KBr) ν_{Comp} [cm ⁻¹]
			found	reported	Tormuta		VCand [cm]
6a	C ₆ H ₅	95	246° ^b	236°10	C ₁₄ H ₁₀ N ₂ O	(222.2)	1665
6b	4-H ₃ C C ₆ H ₄	67	252° b	241° 10	$C_{15}H_{12}N_2O$	(236.3)	1660
6с	4-H ₃ COC ₆ H ₄	95	253°b	247°10	$C_{15}H_{12}N_2O_2$	(252.3)	1660
6d	4-ClC ₆ H ₄	94	318°b	306°9	C ₁₄ H ₉ ClN ₂ O	(256.7)	1670
6e	n-C ₆ H ₁₃	97	149-151°	no New York	$C_{14}H_{18}N_2O$	(230.3)	1680

^a The microanalyses were in satisfactory agreement with the calculated values (C ± 0.21 , H ± 0.27 , N ± 0.26).

3-(4-Tolyl)-2*H*-1,2,4-benzothiadiazine 1,1-Dioxide (3b); Typical Procedure:

Sodium hydrogen sulfite (0.390 g, 3.75 mmol) is added to a solution of o-aminobenzenesulfonamide (1; 0.430 g, 2.5 mmol) and p-tolualdehyde (2b; 0.300 g, 2.5 mmol) in dimethylacetamide (3 ml). The mixture is heated with stirring at 150 °C for 2 h and then poured into water (500 ml). A precipitate forms which is collected and dried; yield: 0.69 g (96%); m.p. 355 °C (recrystallized from ethanol).

C₁₄H₁₂N₂O₂S calc. C 61.75 H 4.44 N 10.29 (272.3) found 61.7 4.7 10.2

M.S.: $m/e = 272 \text{ (M}^{\frac{1}{2}}\text{)}.$

I.R. (KBr): $\nu_{SO_2} = 1280$, 1155 cm⁻⁻¹.

¹H-N.M.R. (DMSO- d_6): $\delta = 8.05-7.15$ (m, $8\,\mathrm{H}_{\mathrm{arom}}$); 2.48 ppm (s, $3\,\mathrm{H}$, CH₃).

2-(4-Methoxyphenyl)-4(3H)-quinazolinone (6c); Typical Procedure:

A mixture of o-aminobenzamide (5; 0.340 g, 2.5 mmol), p-anisaldehyde (2c; 0.340 g, 2.5 mmol), and sodium hydrogen sulfite (0.390 g, 3.75 mmol) in dimethylacetamide (3 ml) is stirred at 150 °C for 2 h. The reaction mixture is worked up as described above to give 6c; yield: 0.60 g (95%); m.p. 253 °C (recrystallized from benzene).

C₁₅H₁₂N₂O₂ calc. C 71.43 H 4.79 N 11.10 (252.3) found 71.4 5.0 10.9

M.S.: $m/e = 252 \text{ (M}^{\pm}\text{)}$.

LR. (KBr): $v_{\text{C}=<0} = 1660 \text{ cm}^{-1}$.

¹H-N.M.R. (DMSO- d_6): $\delta = 8.30-6.75$ (m, $8\,\mathrm{H}_{\mathrm{arom}}$); 3.77 ppm (s. $3\,\mathrm{H}$, $C\,\mathrm{H}_3$).

Received: June 19, 1980 (Revised form: August 4, 1980)

^b Determined by D.T.A. at a heating rate of 10 °C/min.

¹ Y. Imai, H. Koga, J. Polym. Sci. Polym. Chem. Ed. 11, 289 (1973).

Y. Imai, H. Koga, Nippon Kagaku Kaishi 1973, 1810; C. A. 79, 126462 (1973).

³ L. Raffa, Farmaco (Pavia) Ed. Sci. 12, 279 (1957); C. A. 54, 24788 (1960).

⁴ S. Tanimoto, S. Shimojo, R. Oda, Yuki Gosei Kagaku Kyokaishi 26, 151 (1968); C. A. 69, 36089 (1968).

⁵ L. H. Werner et al., J. Am. Chem. Soc. 82, 1161 (1960).

⁶ J. M. Loynes, H. F. Ridley, R. G. W. Spickett, J. Med. Chem. 8, 691 (1965).

⁷ J. Higgins, C. S. Marvel, J. Polym. Sci. Part A-1 8, 171 (1970).

⁸ T. A. Williamson, *Heterocyclic Compounds*, Vol. 6, R. C. Elderfield, Ed., John Wiley & Sons, Inc., New York, 1957, pp. 331-339.

⁹ D. T. Zentmyer, E. C. Wagner, J. Org. Chem. 14, 967 (1949).

¹⁰ H. Stephen, G. Wadge, J. Chem. Soc. 1956, 4420.